![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Earth & environment > Earth sciences > Meteorology > General
The interactions of biogeochemical cycles influence and maintain
our climate system. Land use and fossil fuel emissions are
currently impacting the biogeochemical cycles of carbon, nitrogen
and sulfur on land, in the atmosphere, and in the oceans.
The book discusses the ideas and creates a framework for building
toward a theory of paleoclimate. Using the rich and mounting array
of observational evidence of climatic changes from geology,
geochemistry, and paleontology, Saltzman offers a dynamical
approach to the theory of paleoclimate evolution and an expanded
theory of climate.
Glaciers in the Andes are particularly important natural archives of present and past climatic and environmental changes, in significant part because of the N-S trend of this topographic barrier and its influence on the atmospheric circulation of the southern hemisphere. Strong gradients in the seasonality and amount of precipitation exist between the equator and 30 Degrees S. Large differences in amount east and west of the Andean divide also occur, as well as a change from tropical summer precipitation (additionally modified by the seasonal shift of the circulation belts) to winter precipitation in the west wind belt (e. g. , Yuille, 1999; Garraud and Aceituno, 2001). The so-called 'dry axis' lies between the tropical and extra tropical precipitation regimes (Figure 1). The high mountain desert within this axis responds most sensitively to the smallest changes in effective moisture. An important hydro-meteorological feature on a seasonal to inter-annual time-scale is the occurrence of EN SO events, which strongly control the mass balance of glaciers in this area (e. g. , Wagnon et ai. , 2001; Francou et ai. , in press). The precipitation pattern is an important factor for the interpretation of climatic and environmental records extracted from ice cores, because much of this information is related to conditions at the actual time of precipitation, and this is especially so for stable isotope records. Several ice cores have recently been drilled to bedrock in this area. From Huascanin (Thompson et ai. , 1995), Sajama (Thompson et ai.
This book presents a novel approach in the field of global change
by presenting a comprehensive analysis of interhemispheric linkages
of climate, present and past, and their effects on human societies.
Many satellites have recently been launched or are in preparation, which operate in the microwave to IR ranges, the main objective being to observe the earth's atmosphere or interstellar clouds. Analysis of the data they supply requires extensive laboratory work because we still only have sufficiently accurate data (line positions, intensities, and profiles) for only a few species. Furthermore, the observer community is making increasing calls for laboratory data, as new development open up new observational possibilities (such as submillimeter observation). Research on these subjects involves many different areas of specialisation in fields of research that generate a wealth of data. In Spectroscopy from Space the people responsible for field observations explain which results they are expecting from their measurements and how laboratory people can help them to analyse their satellite data. Laboratory spectroscopists explain why what they can do now, and what kinds of experiment and theoretical development that might undertake to meet the needs of the remote sensing community. The problems of distributing reliable laboratory data in a timely way are also addressed.
Nominated by Tsinghua University as an outstanding Ph.D. thesis, this book investigates the mechanical properties of unsaturated compacted clayey soil, the multi-field coupling consolidation theory of unsaturated soil and its application to a 261.5 m high earth-rockfill dam. It proposes a multi-field coupling analysis method of consolidation, and develops an efficient and practical finite element (FE) program for large-scale complex earth-rockfill dams. The book is primarily intended for researchers studying the multi-field coupling analysis of seepage consolidation.
This book presents recent research into developing and applying computational tools to estimate the performance and safety of hydraulic structures from the planning and construction stage to the service period. Based on the results of a close collaboration between the author and his colleagues, friends, students and field engineers, it shows how to achieve a good correlation between numerical computation and the actual in situ behavior of hydraulic structures. The book's heuristic and visualized style disseminates the philosophy and road map as well as the findings of the research. The chapters reflect the various aspects of the three typical and practical methods (the finite element method, the block element method, the composite element method) that the author has been working on and made essential contributions to since the 1980s. This book is an advanced continuation of Hydraulic Structures by the same author, published by Springer in 2015.
Global climate change - rapid, substantial and human induced - may have radical consequences for life on earth. The problem is a complex one, however, demanding a multi-disciplinary approach. A simple cost-benefit analysis cannot capture the essentials, nor can the issue be reduced to an emissions reduction game, as the Kyoto process tries to do. It is much more sensible to adopt an integrative approach, which reveals that global climate change needs to be considered as a spider in a web, a triggering factor for a range of other, related problems - land use changes, water supply and demand, food supply, energy supply, human health, air pollution, etc. But an approach like this, which takes account of all items of knowledge, known and uncertain, does not produce clear-cut, final and popular answers. It does provide useful insights, however, which will allow comprehensive and effective long-term climate strategies to be put into effect. Climate Change: An Integrated Perspective will appeal to a broad spectrum of readers. It is a useful source for the climate-change professionals, such as policy makers and analysts, natural and social scientists. It is also suitable for educationalists, students and indeed anyone interested in the fascinating world of multidisciplinary research underlying our approach to this global change issue.
The book addresses a weakness of current methodologies used in extreme value assessment, i.e. the assumption of stationarity, which is not given in reality. With respect to this issue a lot of new developed technologies are presented, i.e. influence of trends vs. internal correlations, quantitative uncertainty assessments, etc. The book not only focuses on artificial time series data, but has a close link to empirical measurements, in order to make the suggested methodologies applicable for practitioners in water management and meteorology.
The global food security and sustainable agriculture are the key challenges before the scientific community in the present era of enhanced climate variability, rapidly rising population and dwindling resources. No part of the world is immune from meteorological extremes of one sort or another posing threat to the food security. Agrometeorology has to make most efficient use of the opportunities available in achieving the objectives of enhancing productivity and maintenance of sustainability. Increased awareness and technological advancement have provided opportunities to develop efficient agrometeorological services that can help cope with risks. These include improvements in weather forecasting, better understanding of the monsoon variability and crop-weather relationships, advances in operational agrometeorology and agrometeorological information systems, adaptation strategies to climate change and improved risk evaluation and management. This book based on an International Workshop held in New Delhi, India should be of interest to all organizations and agencies interested in agrometeorological applications.
This book's main objective is to decipher for the reader the main processes in the atmosphere and the quantification of air pollution effects on humans and the environment, through first principles of meteorology and modelling/measurement approaches. The understanding of the complex sequence of events, starting from the emission of air pollutants into the atmosphere to the human health effects as the final event, is necessary for the prognosis of potential risk to humans from specific chemical compounds and mixtures of them. It fills a gap in the literature by providing a solid grounding in the first principles of meteorology and air pollution, making it particularly useful for undergraduate students. Its broad scope makes it a valuable text in many related disciplines, containing a comprehensive and integrated methodology to study the first principles of air pollution, meteorology, indoor air pollution, and human exposure. Problem-solving exercises help to reinforce concepts.
This volume provides an up to date overview of climate variability during the 20th century in the context of natural and anthropogenic variability. It compiles a number of contributions to a workshop held in Gwatt, Switzerland, in July 2006 dealing with different aspects of climate change, variability, and extremes during the past 100 years. The individual contributions cover a broad range of topics. The volume fills a gap in this exciting field of research.
General Circulation Models (GCMs) are rapidly assuming widespread
use as powerful tools for predicting global events on time scales
of months to decades, such as the onset of EL Nino, monsoons, soil
moisture saturation indices, global warming estimates, and even
snowfall predictions. While GCMs have been praised for helping to
foretell the current El Nino and its impact on droughts in
Indonesia, its full power is only now being recognized by
international scientists and governments who seek to link GCMs to
help them estimate fish harvests, risk of floods, landslides, and
even forest fires.
This book focuses on how climatic change during the last fifteen million years - especially the last three million - has affected human evolution and other evolutionary events. Leading evolutionists and physical geologists from all over the worldauthorities on such subjects as paleoceanography, palynology, mammalian paleontology, and paleoanthropology - address the relationship between climatic and biotic evolution, presenting and integrating the most up-to-date research in their fields. Among the subjects discussed are: global and regional climatic changes; tectonism and its effects on climate; the evolution of biomes and mammals; the ways climate might have influenced the origins of hominid species; and the evolution of hominid morphologies and behaviors. The book draws on the comparatively rich data base of the Late Neogene and includes many new data sets and hypotheses on paleoclimatic changes and on floral and mammalian evolution.
Most studies of the impacts of climate change consider impacts in the future from anthropogenic climate change. Very few consider what the impacts of past climate change have been. History and Climate: Memories of the Future? contains 13 interdisciplinary chapters which consider impacts of change in different regions of the world, over the last millennium. Initial chapters assess evidence for the changes, while later chapters consider the impacts on agriculture, fisheries, health, and society. The book will be of interest to anyone working in the field of climate change and history.
The book drawing on the author's nearly half a century of energetic materials research experience intends to systematically review the global researches on liquid explosives. The book focuses on the study of the conception, explosion mechanism, properties and preparation of liquid explosives. It provides a combination of theoretical knowledge and practical examples in a reader-friendly style. The book is likely to be interest of university researchers and graduate students in the fields of energetic materials, blasting engineering and mining.
Understanding and predicting the Earth's climate system,
particularly climate variability and possible human-induced climate
change, presents one of the most difficult and urgent challenges in
science. Climate scientists worldwide have responded to that
challenge over the past decade by creating a wide variety of ever
more sophisticated climate models that are beginning to show
considerable ability to replicate many aspects of the climate
system. At the same time, to fully understand climate change, one
also has to look to past climates. For this purpose five eminent
scholars who span the disciplines of modeling and observation,
including elements of past, present and future climate studies came
together at this Les Houches school. They presented a systematic
development of each of their respective subjects which provided a
comprehensive overview of this vast and complex subject. These core
lectures were supplemented by a set of shorter lectures and of
seminars.
As the first comprehensive and authoritative review of intra-seasonal variability (ISV), this multi-author work balances coverage of observation, theory and modeling and provides a single source of reference for all those interested in this important, multi-faceted natural phenomenon and its relation to major short-term climatic variations. Commencing with an overview of ISV and observations from an historical perspective, the book offers successive chapters that deal with the role of ISV in monsoon variability on the monsoon regions of South Asia, East Asia and South America, in North America, and in the oceans. The coupling between ocean and atmosphere is considered, together with the function of angular momentum and Earth rotation. Later chapters deal with modeling ISV in the atmosphere and oceans, and the connection between the Madden and Julian Oscillations, and El Nino/Southern Oscillation with short-term climate are considered.
Initially, the role of snow and ice in the global water balance is assessed and methods of snow measurements are explained. Remote sensing is dealt with with regard to periodical snow cover mapping. Last advances and refinements refer to spatial resolution, cloud interference and separate monitoring of snow and glacier ice. Following a review of snow melt and runoff modelling, the Snowmelt Runoff Model (SRM) demonstrates the merits of remote sensing in snow hydrology by using the satellite data as a direct input variable. Applications in over 100 mountain basins around the world are documented, with surface areas ranging from 0.3 km2 to 900.000 km2. Based on runoff modelling, runoff forecasts are dealt with including seasonal and short term forecasts as well as computation of hydrographs from forecasted temperatures and precipitation. The climate change is becoming a major concern of our times. The effect of various climate scenarios on the seasonal snow cover and runoff is evaluated by the updated computer program which also enable the real-time runoff forecasts to be improved. As a final note, a method is outlined to predict the decline of glaciers in the warming climate.
This book sheds new light on improved methods for the study of the initiation and run-out of earthquake-induced landslides. It includes an initiation study method that considers tension-shear failure mechanism; an improved, rigorous, dynamic sliding-block method based on dynamic critical acceleration; and a run-out analysis of earthquake-induced landslides that takes account of the trampoline effect, all of which add to the accuracy and accessibility of landslide study. The book includes abundant illustrations, figures and tables, making it a valuable resource for those looking for practical landslide research tools.
Wetland Systems covers broad water and environmental engineering aspects relevant for the drainage and treatment of storm water and wastewater. It provides a descriptive overview of complex 'black box' treatment systems and the general design issues involved. Standard and novel design recommendations for predominantly constructed wetlands and related sustainable drainage systems are given to take into account the interests of professional engineers and environmental scientists. Wetland Systems deals comprehensively with not only the design, operation, maintenance and water quality monitoring of traditional and novel wetland systems, but also covers: * Analysis of asset performance * Modelling of treatment processes * Performances of existing infrastructure * Sustainability and economic issues Solutions to pressing water quality problems associated with constructed treatment wetlands, integrated constructed wetlands, farm constructed wetlands and storm water ponds, and other sustainable biological filtration and treatment technologies linked to public health engineering are explained. Case study topics are diverse: natural wetlands and constructed treatment wetlands; sustainable water management; and specific applications, such as wetlands treating hydrocarbons. The research projects discussed are multi-disciplinary, holistic, experimental and modelling-orientated. Wetland Systems is a useful reference for the design and operation of wetland systems by engineers and scientists working for the water industry, non-governmental organisations, local authorities and governmental bodies. It is also a valuable text for undergraduate and postgraduate students, lecturers and researchers in civil and environmental engineering fields.
|
You may like...
Elocutionary Manual - the Principles of…
Alexander Melville Bell
Paperback
R500
Discovery Miles 5 000
|