![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Earth & environment > Earth sciences > Meteorology > General
This volume contains refereed papers submitted by international experts who participated in the Atmospheric Modeling workshop March 15 -19, 2000 at the Institute for Mathematics and Its Applications (IMA) at the University of Minnesota. The papers cover a wide range of topics presented in the workshop. In particular, mathematical topics include a performance comparison of operator-splitting and non- splitting methods, time-stepping methods to preserve positivity and consideration of multiple timescale issues in the modeling of atmospheric chemistry, a fully 3D adaptive-grid method, impact of rid resolution on model predictions, testing the robustness of different flow fields, modeling and numerical methods in four-dimensional variational data assimilation, and parallel computing. Modeling topics include the development of an efficient self-contained global circulation-chemistry-transport model and its applications, the development of a modal aerosol model, and the modeling of the emissions and chemistry of monoterpenes that lead to the formation of secondary organic aerosols. The volume provides an excellent cross section of current research activities in atmospheric modeling.
This book takes an excursion through solar science, science history, and geoclimate with a husband and wife team who revealed some of our sun's most stubborn secrets. E Walter and Annie S D Maunder's work helped in understanding our sun's chemical, electromagnetic and plasma properties. They knew the sun's sunspot migration patterns and its variable, climate-affecting, inactive and active states in short and long time frames. An inactive solar period starting in the mid-seventeenth century lasted approximately seventy years, one that E Walter Maunder worked hard to make us understand: the Maunder Minimum of c 1620-1720 (which was posthumously named for him). With ongoing concern over global warming, and the continuing failure to identify root causes driving earth's climatic changes, the Maunders' story outlines how our cyclical sun can alter climate. The book goes on to view the sun-earth connection in terms of geomagnetic variation and climatic change; contemporary views on the sun's operating mechanisms are explored, and the effects these have on the earth over long and short time scales are pondered. If not a call to widen earth's climate research to include the sun, this book strives to illustrate how solar causes and effects can influence earth's climate in ways we must understand in order to enhance solar system research and our well-being.
This thesis presents a study of strong stratification and turbulence collapse in the planetary boundary layer, opening a new avenue in this field. It is the first work to study all regimes of stratified turbulence in a unified simulation framework without a break in the paradigms for representation of turbulence. To date, advances in our understanding and the parameterization of turbulence in the stable boundary layer have been hampered by difficulties simulating the strongly stratified regime, and the analysis has primarily been based on field measurements. The content presented here changes that paradigm by demonstrating the ability of direct numerical simulation to address this problem, and by doing so to remove the uncertainty of turbulence models from the analysis. Employing a stably stratified Ekman layer as a simplified physical model of the stable boundary layer, the three stratification regimes observed in nature- weakly, intermediately and strongly stratified-are reproduced, and the data is subsequently used to answer key, long-standing questions. The main part of the book is organized in three sections, namely a comprehensive introduction, numerics, and physics. The thesis ends with a clear and concise conclusion that distills specific implications for the study of the stable boundary layer. This structure emphasizes the physical results, but at the same time gives relevance to the technical aspects of numerical schemes and post-processing tools. The selection of the relevant literature during the introduction, and its use along the work appropriately combines literature from two research communities: fluid dynamics, and boundary-layer meteorology.
This book deals in a modern manner with a family of named problems from an old and mature subject, classical elasticity. These problems are formulated over either a half or the whole of a linearly elastic and isotropic two- or three-dimensional space, subject to loads concentrated at points or lines. The discussion of each problem begins with a careful examination of the prevailing symmetries, and proceeds with inverting the canonical order, in that it moves from a search for balanced stress fields to the associated strain and displacement fields. The book, although slim, is fairly well self-contained; the only prerequisite is a reasonable familiarity with linear algebra (in particular, manipulation of vectors and tensors) and with the usual differential operators of mathematical physics (gradient, divergence, curl, and Laplacian); the few nonstandard notions are introduced with care. Support material for all parts of the book is found in the final Appendix.
This book focuses on the phenomenon of sediment erosion and resuspension in the Yellow River delta, China, which is a vital issue involved in understanding the sediment transport processes in estuarine and coastal environments, and how these contribute to the nature and distribution of geohazards in the subaqueous Yellow River delta and Bohai Sea. The most important sections of this book will be the detailed physical mechanisms and theoretical models of sediment erosion and resuspension problem fully considering the wave-induced seabed dynamic response to waves, which are particularly useful for postgraduate students and junior researchers entering the discipline of estuary and coastal sedimentation, marine geotechnical engineering, estuary and coastal engineering, harbor and waterway engineering and coastal environmental protection. This book can also serve as a textbook for advanced graduate students of Marine Engineering Geology and Estuarine Sediment Dynamics.
Climate change is an issue in which every human being on the planet is a potential stakeholder. Therefore, equity and ethical considerations have an important role to play in determining a climate change response strategy that will prevent the worst case scenario. In this context, the authors of this important new book attempt to provide a better understanding of the practical and analytical issues surrounding climate change negotiations. Each of the chapters reflects on an issue linked to the concepts of ethics, equity and climate change such as economics, morality, politics, rights and law, philosophy, and atmospheric science. The authors, who come from a diverse range of national, disciplinary and sectoral backgrounds, advance pragmatic policy suggestions to enhance international negotiations on climate change and highlight the value of considering more humanistic aspects in the negotiation process. Greenhouse gas emissions are widely considered to be the ultimate environmental externality and consequently an issue of great contemporary concern. This insightful and original treatment of the important issues will be welcomed by climate change negotiators, policymakers, and economic, environmental and social researchers. It will also be of interest to anyone who believes that the negotiation process may benefit from a more deep-rooted shift in social attitudes and beliefs.
Since the Industrial Revolution the chemical composition of the atmosphere has changed at a rate unprecedented in recent history. Ozone depletion emerged as one of the most important environmental issues of the 20th century as evidence grew for substantial human influences on the atmospheric ozone abundances over much of the globe. The science of the ozone layer and its interactions with halogenated chemical compounds are the primary subjects of this book. The volume provides a comprehensive view of the chemical, dynamical, and radiative processes that affect ozone and other chemicals in the stratosphere and mesosphere.
which successfully passed the QA-process (i.e., met the Data Quality Objectices) were included into the TFS-central data bank. The following summary of major results obtained in TFS would not have been possible without the contribution of many experimentalists and modellers participating in this project. I would like to thank these colleagues for their support. All participants are grateful for the financial support by the BMBF and for the assistance by the Projekttragerschaft (UKF-GSF-Miinchen). Garmisch-Partenkirchen, WOLFGANG SEILER February 2002 DEVELOPMENT AND APPLICATION OF A MESOSCALE MODEL HIERARCHY FOR THE DIAGNOSIS AND FORECAST OF THE DISTRIBUTION OF POLLUTANTS OVER GERMANY AND EUROPE Journal of Atmospheric Chemistry 42: 5-22, 2002. 5 (c) 2002 Kluwer Academic Publishers. An Empirical, Receptor-Based Procedure for Assessing the Effect of Different Ozone Mitigation Strategies WOLFGANG FRICKE, WINFRIED VANDERSEE and STEFAN GILGE Deutscher Wetterdienst, Meteorologisches Observatorium, Albin-Schwaiger-Weg 10, D-82383 Hohenpeissenberg, Germany, e-mail: [email protected] (Received: 6 November 2000; in final form: 29 May 2(01) Abstract. The paper presents a new receptor-based approach for investigating the effect of differ- ent mitigation strategies on surface ozone concentrations. The empirical approach relates measured ozone concentrations to 3-D back trajectories and European precursor emission data (NOx, VOC, isoprene). These are the only parameters used as input. Following a description of the method, results for two German stations, an urban and a rural mountain site, are described, and discussed in detail.
South America is a unique place where a number of past climate archives are ava- able from tropical to high latitude regions. It thus offers a unique opportunity to explore past climate variability along a latitudinal transect from the Equator to Polar regions and to study climate teleconnections. Most climate records from tropical and subtropical South America for the past 20,000 years have been interpreted as local responses to shift in the mean position and intensity of the InterTropical Conv- gence Zone due to tropical and extratropical forcings or to changes in the South American Summer Monsoon. Further South, the role of the Southern Hemisphere westerly winds on global climate has been highly investigated with both paleodata and coupled climate models. However the regional response over South America during the last 20,000 years is much more variable from place to place than pre- ously thought. The factors that govern the spatial patterns of variability on millennial scale resolution are still to be understood. The question of past natural rates and ranges of climate conditions over South America is therefore of special relevance in this context since today millions of people live under climates where any changes in monsoon rainfall can lead to catastrophic consequences.
The concept of carbonaceous aerosol has only recently emerged from atmospheric pollution studies; even standard nomenclature and terminology are still unsettled. This monograph is the first to offer comprehensive coverage of the nature and atmospheric role of carbonaceous aerosol particles. Atmospheric chemists, physicists, meteorologists, and modellers will find this a thought-inspiring and sometimes provocative overview of all global phenomena affected by or related to carbonaceous aerosol.
Jesuits established a large number of astronomical, geophysical and
meteorological observatories during the 17th and 18th centuries and
again during the 19th and 20th centuries throughout the world. The
history of these observatories has never been published in a
complete form. Many early European astronomical observatories were
established in Jesuit colleges.
The field of physical oceanography has matured to a point where it is now conceivable to combine numerical models and observations via data assimilation in order to provide ocean prediction products on various spatial and time scales. As a result, many nations have begun large-scale efforts to provide routine products to the oceanographic community and started to develop operational oceanography systems. The Global Ocean Data Assimilation Experiment (GODAE) provides a framework for these efforts, i.e., a global system of observations, communications, modeling, and assimilation that will deliver regular, comprehensive information on the state of the oceans, in a way that will promote and engender wide utility and availability of this resource for maximum benefit to the community. The societal benefit of this experiment will be an increased knowledge of the marine environment and ocean climate, predictive skills for societal, industrial, and commercial benefit and tactical and strategic advantage, as well as the provision of a comprehensive and integrated approach to the oceans. We therefore considered it timely, given the international context, to bring together leading scientists, system developers, and application providers to present an integrated view of oceanography. The chapters collected in this volume cover a wide range of topics and summarize our present knowledge in ocean modeling, ocean observing systems, and data assimilation.
Our desire to understand the global carbon cycle and its link to the climate system represents a huge challenge. These overarching questions have driven a great deal of scientific endeavour in recent years: What are the basic oceanic mechanisms which control the oceanic carbon reservoirs and the partitioning of carbon between ocean and atmosphere? How do these mechanisms depend on the state of the climate system and how does the carbon cycle feed back on climate? What is the current rate at which fossil fuel carbon dioxide is absorbed by the oceans and how might this change in the future? To begin to answer these questions we must first understand the distribution of carbon in the ocean, its partitioning between different ocean reservoirs (the "solubility" and "biological" pumps of carbon), the mechanisms controlling these reservoirs, and the relationship of the significant physical and biological processes to the physical environment. The recent surveys from the JGOFS and WOCE (Joint Global Ocean Flux Study and World Ocean Circulation Ex periment) programs have given us a first truly global survey of the physical and biogeochemical properties of the ocean. These new, high quality data provide the opportunity to better quantify the present oceans reservoirs of carbon and the changes due to fossil fuel burning. In addition, diverse process studies and time-series observations have clearly revealed the complexity of interactions between nutrient cycles, ecosystems, the carbon-cycle and the physical envi ronment."
The term Little Ice Age' was originally used by glaciologists to describe the most recent major glacial advance of the Holocene. Subsequently, the Little Ice Age' has come to be associated with a period of advances of European glaciers between about 1450 to 1850, as well as with relatively cooler temperatures. The issue of whether or not this concept remains accurate is a major theme of many of the papers included in this volume. The main geographical focus is on the North Atlantic and European sectors, and includes research from a number of different palaeoclimatic fields. Examples are the use of documentary sources, early instrumental records, grain-harvest data, fossil-insect data, ice-core records, glacial evidence, lichenometry, synoptic climatology, and also the human dimensions of climate change. The papers presented reflect state-of-the-art knowledge, as well as thought-provoking new insights into these subject areas. The book will be of value to all those interested in the above topics and in the overall themes of climate variability and global change.
Written by a distinguished international scientist, who has made
fundamental contributions on the climatic relationship between air
pollution and meteorology, the book provides a compendium of
realistic examples of air pollution behaviour. After commencing
with a general survey he takes us through a study of diffusion
mechanisms including pollution from industrial chimneys and road
traffic. Air pollution meteorology covers boundary layer scaling,
pre-processing meteorological data, air quality management, urban
meteorology, and atmospheric chemistry (oxides of nitrogen are
central to ozone chemistry) with accounts of typical air pollution
episodes and a brief dictionary of air pollutants.
The book discusses the ideas and creates a framework for building
toward a theory of paleoclimate. Using the rich and mounting array
of observational evidence of climatic changes from geology,
geochemistry, and paleontology, Saltzman offers a dynamical
approach to the theory of paleoclimate evolution and an expanded
theory of climate.
The interactions of biogeochemical cycles influence and maintain
our climate system. Land use and fossil fuel emissions are
currently impacting the biogeochemical cycles of carbon, nitrogen
and sulfur on land, in the atmosphere, and in the oceans.
Glaciers in the Andes are particularly important natural archives of present and past climatic and environmental changes, in significant part because of the N-S trend of this topographic barrier and its influence on the atmospheric circulation of the southern hemisphere. Strong gradients in the seasonality and amount of precipitation exist between the equator and 30 Degrees S. Large differences in amount east and west of the Andean divide also occur, as well as a change from tropical summer precipitation (additionally modified by the seasonal shift of the circulation belts) to winter precipitation in the west wind belt (e. g. , Yuille, 1999; Garraud and Aceituno, 2001). The so-called 'dry axis' lies between the tropical and extra tropical precipitation regimes (Figure 1). The high mountain desert within this axis responds most sensitively to the smallest changes in effective moisture. An important hydro-meteorological feature on a seasonal to inter-annual time-scale is the occurrence of EN SO events, which strongly control the mass balance of glaciers in this area (e. g. , Wagnon et ai. , 2001; Francou et ai. , in press). The precipitation pattern is an important factor for the interpretation of climatic and environmental records extracted from ice cores, because much of this information is related to conditions at the actual time of precipitation, and this is especially so for stable isotope records. Several ice cores have recently been drilled to bedrock in this area. From Huascanin (Thompson et ai. , 1995), Sajama (Thompson et ai.
This book presents a novel approach in the field of global change
by presenting a comprehensive analysis of interhemispheric linkages
of climate, present and past, and their effects on human societies.
This book presents recent research into developing and applying computational tools to estimate the performance and safety of hydraulic structures from the planning and construction stage to the service period. Based on the results of a close collaboration between the author and his colleagues, friends, students and field engineers, it shows how to achieve a good correlation between numerical computation and the actual in situ behavior of hydraulic structures. The book's heuristic and visualized style disseminates the philosophy and road map as well as the findings of the research. The chapters reflect the various aspects of the three typical and practical methods (the finite element method, the block element method, the composite element method) that the author has been working on and made essential contributions to since the 1980s. This book is an advanced continuation of Hydraulic Structures by the same author, published by Springer in 2015.
The book drawing on the author's nearly half a century of energetic materials research experience intends to systematically review the global researches on liquid explosives. The book focuses on the study of the conception, explosion mechanism, properties and preparation of liquid explosives. It provides a combination of theoretical knowledge and practical examples in a reader-friendly style. The book is likely to be interest of university researchers and graduate students in the fields of energetic materials, blasting engineering and mining. |
You may like...
Semantic Multimedia and Ontologies…
Yiannis Kompatsiaris, Paola Hobson
Hardcover
R4,172
Discovery Miles 41 720
Free-Surface Flow - Environmental Fluid…
Nikolaos D. Katopodes
Paperback
Visual Database Systems 3 - Visual…
Stefano Spaccapietra, Ramesh Jain
Hardcover
R5,231
Discovery Miles 52 310
Computational Approaches in the Transfer…
Xiaoyan Zhang, Martin Constable, …
Hardcover
|