![]() |
![]() |
Your cart is empty |
||
Books > Earth & environment > Earth sciences > Meteorology > General
Future Forests: Adaptation to Climate Change provides background on forests as natural and social systems, the current distribution and dynamics based on major biomes that set the stage for their role of forests in global systems, the nature of climate change organized by biomes, and detailed descriptions of mitigation and adaptation strategies. This book forms presents a foundational summary of the feedback between the effect of climate change on forests and the converse effects of forests on climate, leading to conclusions on how forest management needs to be dictated by climate change. The book will be ideal for readers in the fields of climate change science, forest science and conservation biology, helping them develop a thorough understanding on the broad perspective of climate change on forests, the response of forests to these changes, and other climate-forest interaction potentials.
Climate change is a major challenge facing the modern world. The chemistry of air and it's influence on the climate system forms the main focus of this monograph. The book presents a problem-based approach to presenting global atmospheric processes, evaluating the effects of changing air composition as well as possibilities for interference within these processes and indicates ways for solving the problem of climate change through chemistry. The new edition includes innovations and latest research results.
This book contains the most recent progress in data assimilation in meteorology, oceanography and hydrology including land surface. It spans both theoretical and applicative aspects with various methodologies such as variational, Kalman filter, ensemble, Monte Carlo and artificial intelligence methods. Besides data assimilation, other important topics are also covered including targeting observation, sensitivity analysis, and parameter estimation. The book will be useful to individual researchers as well as graduate students for a reference in the field of data assimilation.
This book provides comprehensive information on the youngest member of the petroleum sciences family: Oilfield Chemistry, proposes the chemical agents for addressing current problems, and explains the functions, mechanisms and synergistic effects of various chemical agents
Written by pioneers in the field, "Highlights in
Helioclimatology" examines the scientific evidence related to the
influence of solar activity on climate and the resulting
atmospheric process that creates hurricanes. In addition to
providing the science behind the phenomenon, this book also
provides tools for aiding in hurricane prediction, specifically
spectral analysis and signal theory. In addition to aiding readers
in understanding tropical storm and hurricane genesis,
intensification, and prediction, "Highlights in Helioclimatology"
also provides an excellent introduction to spectral analysis - an
essential tool for anyone who is actively performing research in
hurricanes and climatology.
Significant advancements in the experimental analysis of soils and shales have been achieved during the last few decades. Outstanding progress in the field has led to the theoretical development of geomechanical theories and important engineering applications. This book provides the reader with an overview of recent advances in a variety of advanced experimental techniques and results for the analysis of the behaviour of geomaterials under multiphysical testing conditions. Modern trends in experimental geomechanics for soils and shales are discussed, including testing materials in variably saturated conditions, non-isothermal experiments, micro-scale investigations and image analysis techniques. Six theme papers from leading researchers in experimental geomechanics are also included. This book is intended for postgraduate students, researchers and practitioners in fields where multiphysical testing of soils and shales plays a fundamental role, such as unsaturated soil and rock mechanics, petroleum engineering, nuclear waste storage engineering, unconventional energy resources and CO2 geological sequestration.
The studies in this dissertation aim at advancing our scientific understandings about physical processes involved in the aerosol-cloud-precipitation interaction and quantitatively assessing the impacts of aerosols on the cloud systems with diverse scales over the globe on the basis of the observational data analysis and various modeling studies. As recognized in the Fifth Assessment Report by the Inter-government Panel on Climate Change, the magnitude of radiative forcing by atmospheric aerosols is highly uncertain, representing the largest uncertainty in projections of future climate by anthropogenic activities. By using a newly implemented cloud microphysical scheme in the cloud-resolving model, the thesis assesses aerosol-cloud interaction for distinct weather systems, ranging from individual cumulus to mesoscale convective systems. This thesis also introduces a novel hierarchical modeling approach that solves a long outstanding mismatch between simulations by regional weather models and global climate models in the climate modeling community. More importantly, the thesis provides key scientific solutions to several challenging questions in climate science, including the global impacts of the Asian pollution. As scientists wrestle with the complexities of climate change in response to varied anthropogenic forcing, perhaps no problem is more challenging than the understanding of the impacts of atmospheric aerosols from air pollution on clouds and the global circulation.
The purpose of this book is to bridge the gap between the traditional Geomechanics and Numerical Geotechnical Modelling with applications in science and practice. Geomechanics is rarely taught within the rigorous context of Continuum Mechanics and Thermodynamics, while when it comes to Numerical Modelling, commercially available finite elements or finite differences software utilize constitutive relationships within the rigorous framework. As a result, young scientists and engineers have to learn the challenging subject of constitutive modelling from a program manual and often end up with using unrealistic models which violate the Laws of Thermodynamics. The book is introductory, by no means does it claim any completeness and state of the art in such a dynamically developing field as numerical and constitutive modelling of soils. The author gives basic understanding of conventional continuum mechanics approaches to constitutive modelling, which can serve as a foundation for exploring more advanced theories. A considerable effort has been invested here into the clarity and brevity of the presentation. A special feature of this book is in exploring thermomechanical consistency of all presented constitutive models in a simple and systematic manner.
This volume gathers the latest advances, innovations, and applications in the field of seismic engineering, as presented by leading researchers and engineers at the 1st International Workshop on Energy-Based Seismic Engineering (IWEBSE), held in Madrid, Spain, on May 24-26, 2021. The contributions cover a diverse range of topics, including energy-based EDPs, damage potential of ground motion, structural modeling in energy-based damage assessment of structures, energy dissipation demand on structural components, innovative structures with energy dissipation systems or seismic isolation, as well as seismic design and analysis. Selected by means of a rigorous peer-review process, they will spur novel research directions and foster future multidisciplinary collaborations.
This book discusses the numerical simulation of water waves, which combines mathematical theories and modern techniques of numerical simulation to solve the problems associated with waves in coastal, ocean, and environmental engineering. Bridging the gap between practical mathematics and engineering, the book describes wave mechanics, establishment of mathematical wave models, modern numerical simulation techniques, and applications of numerical models in engineering. It also explores environmental issues related to water waves in coastal regions, such as pollutant and sediment transport, and introduces numerical wave flumes and wave basins. The material is self-contained, with numerous illustrations and tables, and most of the mathematical and engineering concepts are presented or derived in the text. The book is intended for researchers, graduate students and engineers in the fields of hydraulic, coastal, ocean and environmental engineering with a background in fluid mechanics and numerical simulation methods.
At a time of so much politicized debate over the phenomenon of global warming, the second edition of "The Future of the World's Climate" places the discussion in a broader geological, paleo-climatic, and astronomical context. This book is a resource based on reviews of current climate science and supported by sound, accurate data and projections made possible by technological advances in climate modeling. Crucially, this title examines in detail a wide variety of aspects, including human factors like land use, expanding urban climates, and governmental efforts at mitigation, such as the Kyoto Protocol. It also examines large-scale, long-term changes in oceans, glaciers, and atmospheric composition, including tropospheric ozone and aerosols. Weather extremes are addressed, as well as the impact of catastrophic events such as massive volcanism and meteorite impacts. Readers will find a complete picture of the Earth's future
climate, delivered by authors drawn from all over the world and
from the highest regarded peer-reviewed groups; most are also
contributors to the Intergovernmental Panel on Climate Change's
(IPCC) Assessment Reports.
This book draws on the author's professional experience and expertise in humid and arid regions to familiarize readers with the basic scientific philosophy and methods regarding floods and their impacts on human life and property. The basis of each model, algorithm and calculation methodology is presented, together with logical and analytical strategies. Global warming and climate change trends are addressed, while flood risk assessments, vulnerability, preventive and mitigation procedures are explained systematically, helping readers apply them in a rational and effective manner. Lastly, real-world project applications are highlighted in each section, ensuring readers grasp not only the theoretical aspects but also their concrete implementation.
The focus of this work is the development of models to estimate evapotranspiration (ET), investigating the partitioning between soil evaporation and plant transpiration at field and regional scales, and calculating ET over heterogeneous vegetated surfaces. Different algorithms with varying complexities as well as spatial and temporal resolutions are developed to estimate evapotranspiration from different data inputs. The author proposes a novel approach to estimate ET from remote sensing by exploiting the linkage between water and carbon cycles. At the field scale, a hybrid dual source model (H-D model) is proposed. It is verified with field observations over four different ecosystems and coupled with a soil water and heat transfer model, to simulate water and heat transfer in the soil-plant-atmosphere continuum. At the regional scale, a hybrid dual source scheme and trapezoid framework based ET model (HTEM), using remote sensing images is developed. This model is verified with data from the USA and China and the impact of agricultural water-saving on ET of different land use types is analyzed, in these chapters. The author discusses the potential of using a remote sensing ET model in the real management of water resources in a large irrigation district. This work would be of particular interest to any hydrologist or micro-meteorologist who works on ET estimation and it will also appeal to the ecologist who works on the coupled water and carbon cycles. Land evapotranspiration is an important research topic in hydrology, meteorology, ecology and agricultural sciences. Dr. Yuting Yang works at the CSIRO Land and Water, Canberra, Australia.
This volume enables readers to understand the complexity associated with climate change policy and the science behind it. For example, the author describes the criticism and defense of the widely known hockey stick temperature graph derived from combining instrumental data and proxy temperature indications using tree ring, ice core and other paleoclimatic data. Readers will also learn that global warming cannot easily be avoided by reducing CO2 and other greenhouse gas emissions in rich countries. Not only is emissions reduction extremely difficult in rich countries, but demands such as the UN mandate to improve the lives of the poorest global citizens cannot be satisfied without significantly increasing global energy use, and CO2 emissions. Therefore, the author asserts that climate engineering and adaptation are preferable to mitigation, particularly since the science is less than adequate for making firm statements about the Earth s future climate.Readers will also learn that global warming cannot easily be avoided by reducing CO2 and other greenhouse gas emissions in rich countries. Not only is emissions reduction extremely difficult in rich countries, but demands such as the UN mandate to improve the lives of the poorest global citizens cannot be satisfied without significantly increasing global energy use, and CO2 emissions. Therefore, the author asserts that climate engineering and adaptation are preferable to mitigation, particularly since the science is less than adequate for making firm statements about the Earth s future climate."
This book comprises select proceedings of the National Conference on Advances in Structural Technology (CoAST 2019). It brings together different applied and technological aspects of structural engineering. The main topics covered in this book include solid mechanics, composite structures, fluid-structure interaction, soil-structure interaction, structural safety, and structural health monitoring. The book also focuses on emerging structural materials and the different behavior of civil, mechanical, and aerospace structural systems. Given its contents, this book will be a useful reference for researchers and practitioners working in structural safety and engineering.
This book features a collection of extended papers based on presentations given at the SimHydro 2019 conference, held in Sophia Antipolis in June 2019 with the support of French Hydrotechnic Society (SHF), focusing on "Which models for extreme situations and crisis management?" Hydraulics and related disciplines are frequently applied in extreme situations that need to be understood accurately before implementing actions and defining appropriate mitigation measures. However, in such situations currently used models may be partly irrelevant due to factors like the new physical phenomena involved, the scale of the processes, and the hypothesis included in the different numerical tools. The availability of computational resources and new capacities like GPU offers modellers the opportunity to explore various approaches to provide information for decision-makers. At the same time, the topic of crisis management has sparked interest from stakeholders who need to share a common understanding of a situation. Hydroinfomatics tools can provide essential information in crises; however, the design and integration of models in decision-support systems require further development and the engagement of various communities, such as first responders. In this context, methodologies, guidelines and standards are more and more in demand in order to ensure that the systems developed are efficient and sustainable. Exploring both the limitations and performance of current models, this book presents the latest developments based on new numerical schemes, high-performance computing, multiphysics and multiscale methods, as well as better integration of field-scale model data. As such, it will appeal to practitioners, stakeholders, researchers and engineers active in this field.
The book attempts to provide a consistent treatment climate variability at time scales longer than interannual. The first describes the observed decadal variability when there are sufficient observational data for analysis, identifying the major phenomena that are mainly involved. The second part contains contributions describing the present level of understanding of decadal variability. Researchers and students will find the book useful as a reference, and scientists in related disciplines (geology, biogeochemistry, paleoclimatology) will have an overview of current knowledge.
This thesis focuses on the seismic response of piles in liquefiable ground. It describes the design of a three-dimensional, unified plasticity model for large post-liquefaction shear deformation of sand, formulated and implemented for parallel computing. It also presents a three-dimensional, dynamic finite element analysis method for piles in liquefiable ground, developed on the basis of this model,. Employing a combination of case analysis, centrifuge shaking table experiments and numerical simulations using the proposed methods, it demonstrates the seismic response patterns of single piles in liquefiable ground. These include basic force-resistance mode, kinematic and inertial interaction coupling mechanism and major influence factors. It also discusses a beam on the nonlinear Winkler foundation (BNWF) solution and a modified neutral plane solution developed and validated using centrifuge experiments for piles in consolidating and reconsolidating ground. Lastly, it studies axial pile force and settlement during post-earthquake reconsolidation, showing pile axial force to be irrelevant in the reconsolidation process, while settlement is process dependent.
This book focuses on the robustness analysis of high accuracy surface modeling method (HASM) to yield good performance of it. Understanding the sensitivity and uncertainty is important in model applications. The book aims to advance an integral framework for assessing model error that can demonstrate robustness across sets of possible controls, variable definitions, standard error, algorithm structure, and functional forms. It is an essential reference to the most promising numerical models. In areas where there is less certainty about models, but also high expectations of transparency, robustness analysis should aspire to be as broad as possible. This book also contains a chapter at the end featuring applications in climate simulation illustrating different implementations of HASM in surface modeling. The book is helpful for people involved in geographical information science, ecological informatics, geography, earth observation, and planetary surface modeling. |
![]() ![]() You may like...
The Indian Ocean and its Role in the…
Caroline Ummenhofer, Raleigh R. Hood
Paperback
Precipitation - Earth Surface Responses…
Jesus Rodrigo-Comino
Paperback
R3,842
Discovery Miles 38 420
Resilience - The Science of Adaptation…
Zinta Zommers, Keith Alverson
Paperback
R2,228
Discovery Miles 22 280
Artificial Intelligence of Things for…
Rajeev Kumar Gupta, Arti Jain, …
Hardcover
R7,249
Discovery Miles 72 490
|