![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Energy technology & engineering > Electrical engineering > General
Fully updated throughout, "Electric Vehicle Technology, Second Edition," is a complete guide to the principles, design and applications of electric vehicle technology. Including all the latest advances, it presents clear and comprehensive coverage of the major aspects of electric vehicle development and offers an engineering-based evaluation of electric motor scooters, cars, buses and trains. This new edition includes: important new chapters on types of electric vehicles, including pickup and linear motors, overall efficiencies and energy consumption, and power generation, particularly for zero carbon emissionsexpanded chapters updating the latest types of EV, types of batteries, battery technology and other rechargeable devices, fuel cells, hydrogen supply, controllers, EV modeling, ancillary system design, and EV and the environmentbrand new practical examples and case studies illustrating how electric vehicles can be used to substantially reduce carbon emissions and cut down reliance on fossil fuelsfuturistic concept models, electric and high-speed trains and developments in magnetic levitation and linear motorsan examination of EV efficiencies, energy consumption and sustainable power generation. MATLAB(R) examples can be found on the companion website www.wiley.com/go/electricvehicle2e Explaining the underpinning science and technology, this book is essential for practicing electrical, automotive, power, control and instrumentation engineers working in EV research and development. It is also a valuable reference for academics and students in automotive, mechanical, power and electrical engineering.
Understanding the latest capabilities in the cyber threat landscape as well as the cyber forensic challenges and approaches is the best way users and organizations can prepare for potential negative events. Adopting an experiential learning approach, this book describes how cyber forensics researchers, educators and practitioners can keep pace with technological advances, and acquire the essential knowledge and skills, ranging from IoT forensics, malware analysis, and CCTV and cloud forensics to network forensics and financial investigations. Given the growing importance of incident response and cyber forensics in our digitalized society, this book will be of interest and relevance to researchers, educators and practitioners in the field, as well as students wanting to learn about cyber forensics.
Unfriendly to conventional electronic devices, circuits, and systems, extreme environments represent a serious challenge to designers and mission architects. The first truly comprehensive guide to this specialized field, Extreme Environment Electronics explains the essential aspects of designing and using devices, circuits, and electronic systems intended to operate in extreme environments, including across wide temperature ranges and in radiation-intense scenarios such as space. The Definitive Guide to Extreme Environment Electronics Featuring contributions by some of the world's foremost experts in extreme environment electronics, the book provides in-depth information on a wide array of topics. It begins by describing the extreme conditions and then delves into a description of suitable semiconductor technologies and the modeling of devices within those technologies. It also discusses reliability issues and failure mechanisms that readers need to be aware of, as well as best practices for the design of these electronics. Continuing beyond just the "paper design" of building blocks, the book rounds out coverage of the design realization process with verification techniques and chapters on electronic packaging for extreme environments. The final set of chapters describes actual chip-level designs for applications in energy and space exploration. Requiring only a basic background in electronics, the book combines theoretical and practical aspects in each self-contained chapter. Appendices supply additional background material. With its broad coverage and depth, and the expertise of the contributing authors, this is an invaluable reference for engineers, scientists, and technical managers, as well as researchers and graduate students. A hands-on resource, it explores what is required to successfully operate electronics in the most demanding conditions.
Every day, millions of people are unaware of the amazing processes that take place when using their phones, connecting to broadband internet, watching television, or even the most basic action of flipping on a light switch. Advances are being continually made in not only the transmission of this data but also in the new methods of receiving it. These advancements come from many different sources and from engineers who have engaged in research, design, development, and implementation of electronic equipment used in communications systems. This volume addresses a selection of important current advancements in the electronics and communications engineering fields, focusing on signal processing, chip design, and networking technology. The sections in the book cover: Microwave and antennas Communications systems Very large-scale integration Embedded systems Intelligent control and signal processing systems
This book provides applications of machine learning in healthcare systems and seeks to close the gap between engineering and medicine. It will combine the design and problem-solving skills of engineering with health sciences, in order to advance healthcare treatment. The book will include areas such as diagnosis, monitoring, and therapy. The book will provide real-world case studies, gives a detailed exploration of applications in healthcare systems, offers multiple perspectives on a variety of disciplines, while also letting the reader know how to avoid some of the consequences of old methods with data sharing. The book can be used as a reference for practitioners, researchers and for students at basic and intermediary levels in Computer Science, Electronics and Communications.
The book is based on the best papers of IEEE IRI 2018 and IEEE FMI 2018, Salt Lake City, July, 2018. They have been enhanced and modified suitably for publication. The book comprises recent works covering several aspects of reuse in intelligent systems - including Scientific Theory and Technology-Based Applications. New data analytic algorithms, technologies, and tools are sought to be able to manage, integrate, and utilize large amounts of data despite hardware, software, and/or bandwidth constraints; to construct models yielding important data insights, and to create visualizations to aid in presenting and understanding the data. Furthermore, it addresses the representation, cleansing, generalization, validation, and reasoning strategies for the scientifically-sound and cost-effective advancement of all kinds of intelligent systems - including all software and hardware aspects. The book addresses problems such as, how to optimally select the information/data sets for reuse and how to optimize the integration of existing information/knowledge with new, developing information/knowledge sources!
Anticipating a limit to the continuous miniaturization (More-Moore), intense research efforts are being made to co-integrate various functionalities (More-than-Moore) in a single chip. Currently, strain engineering is the main technique used to enhance the performance of advanced semiconductor devices. Written from an engineering applications standpoint, this book encompasses broad areas of semiconductor devices involving the design, simulation, and analysis of Si, heterostructure silicongermanium (SiGe), and III-N compound semiconductor devices. The book provides the background and physical insight needed to understand the new and future developments in the technology CAD (TCAD) design at the nanoscale. Features Covers stressstrain engineering in semiconductor devices, such as FinFETs and III-V Nitride-based devices Includes comprehensive mobility model for strained substrates in global and local strain techniques and their implementation in device simulations Explains the development of strain/stress relationships and their effects on the band structures of strained substrates Uses design of experiments to find the optimum process conditions Illustrates the use of TCAD for modeling strain-engineered FinFETs for DC and AC performance predictions This book is for graduate students and researchers studying solid-state devices and materials, microelectronics, systems and controls, power electronics, nanomaterials, and electronic materials and devices.
This book examines the use of biomedical signal processing-EEG, EMG, and ECG-in analyzing and diagnosing various medical conditions, particularly diseases related to the heart and brain. In combination with machine learning tools and other optimization methods, the analysis of biomedical signals greatly benefits the healthcare sector by improving patient outcomes through early, reliable detection. The discussion of these modalities promotes better understanding, analysis, and application of biomedical signal processing for specific diseases. The major highlights of Biomedical Signal Processing for Healthcare Applications include biomedical signals, acquisition of signals, pre-processing and analysis, post-processing and classification of the signals, and application of analysis and classification for the diagnosis of brain- and heart-related diseases. Emphasis is given to brain and heart signals because incomplete interpretations are made by physicians of these aspects in several situations, and these partial interpretations lead to major complications. FEATURES Examines modeling and acquisition of biomedical signals of different disorders Discusses CAD-based analysis of diagnosis useful for healthcare Includes all important modalities of biomedical signals, such as EEG, EMG, MEG, ECG, and PCG Includes case studies and research directions, including novel approaches used in advanced healthcare systems This book can be used by a wide range of users, including students, research scholars, faculty, and practitioners in the field of biomedical engineering and medical image analysis and diagnosis.
This book addresses the issue of improving the accuracy in exon prediction in DNA sequences using various adaptive techniques based on different performance measures that are crucial in disease diagnosis and therapy. First, the authors present an overview of genomics engineering, structure of DNA sequence and its building blocks, genetic information flow in a cell, gene prediction along with its significance, and various types of gene prediction methods, followed by a review of literature starting with the biological background of genomic sequence analysis. Next, they cover various theoretical considerations of adaptive filtering techniques used for DNA analysis, with an introduction to adaptive filtering, properties of adaptive algorithms, and the need for development of adaptive exon predictors (AEPs) and structure of AEP used for DNA analysis. Then, they extend the approach of least mean squares (LMS) algorithm and its sign-based realizations with normalization factor for DNA analysis. They also present the normalized logarithmic-based realizations of least mean logarithmic squares (LMLS) and least logarithmic absolute difference (LLAD) adaptive algorithms that include normalized LMLS (NLMLS) algorithm, normalized LLAD (NLLAD) algorithm, and their signed variants. This book ends with an overview of the goals achieved and highlights the primary achievements using all proposed techniques. This book is intended to provide rigorous use of adaptive signal processing algorithms for genetic engineering, biomedical engineering, and bioinformatics and is useful for undergraduate and postgraduate students. This will also serve as a practical guide for Ph.D. students and researchers and will provide a number of research directions for further work. Features Presents an overview of genomics engineering, structure of DNA sequence and its building blocks, genetic information flow in a cell, gene prediction along with its significance, and various types of gene prediction methods Covers various theoretical considerations of adaptive filtering techniques used for DNA analysis, introduction to adaptive filtering, properties of adaptive algorithms, need for development of adaptive exon predictors (AEPs), and structure of AEP used for DNA analysis Extends the approach of LMS algorithm and its sign-based realizations with normalization factor for DNA analysis Presents the normalized logarithmic-based realizations of LMLS and LLAD adaptive algorithms that include normalized LMLS (NLMLS) algorithm, normalized LLAD (NLLAD) algorithm, and their signed variants Provides an overview of the goals achieved and highlights the primary achievements using all proposed techniques Dr. Md. Zia Ur Rahman is a professor in the Department of Electronics and Communication Engineering at Koneru Lakshmaiah Educational Foundation (K. L. University), Guntur, India. His current research interests include adaptive signal processing, biomedical signal processing, genetic engineering, medical imaging, array signal processing, medical telemetry, and nanophotonics. Dr. Srinivasareddy Putluri is currently a Software Engineer at Tata Consultancy Services Ltd., Hyderabad. He received his Ph.D. degree (Genomic Signal Processing using Adaptive Signal Processing algorithms) from the Department of Electronics and Communication Engineering at Koneru Lakshmaiah Educational Foundation (K. L. University), Guntur, India. His research interests include genomic signal processing and adaptive signal processing. He has published 15 research papers in various journals and proceedings. He is currently a reviewer of publishers like the IEEE Access and IGI.
This work is dedicated to CMOS based imaging with the emphasis on the noise modeling, characterization and optimization in order to contribute to the design of high performance imagers in general and range imagers in particular. CMOS is known to be superior to CCD due to its flexibility in terms of integration capabilities, but typically has to be enhanced to compete at parameters as for instance noise, dynamic range or spectral response. Temporal noise is an important topic, since it is one of the most crucial parameters that ultimately limits the performance and cannot be corrected. This work gathers the widespread theory on noise and extends the theory by a non-rigorous but potentially computing efficient algorithm to estimate noise in time sampled systems. This work contributed to two generations of LDPD based ToF range image sensors and proposed a new approach to implement the MSI PM ToF principle. This was verified to yield a significantly faster charge transfer, better linearity, dark current and matching performance. A non-linear and time-variant model is provided that takes into account undesired phenomena such as finite charge transfer speed and a parasitic sensitivity to light when the shutters should remain OFF, to allow for investigations of largesignal characteristics, sensitivity and precision. It was demonstrated that the model converges to a standard photodetector model and properly resembles the measurements. Finally the impact of these undesired phenomena on the range measurement performance is demonstrated.
MICROWAVE INTEGRATED CIRCUIT COMPONENTS DESIGN THROUGH MATLAB (R) This book teaches the student community microwave integrated circuit component design through MATLAB (R), helping the reader to become conversant in using codes and, thereafter, commercial software for verification purposes only. Microwave circuit theory and its comparisons, transmission line networks, S-parameters, ABCD parameters, basic design parameters of planar transmission lines (striplines, microstrips, slot lines, coplanar waveguides, finlines), filter theory, Smith chart, inverted Smith chart, stability circles, noise figure circles and microwave components, are thoroughly explained in the book. The chapters are planned in such a way that readers get a thorough understanding to ensure expertise in design. Aimed at senior undergraduates, graduates and researchers in electrical engineering, electromagnetics, microwave circuit design and communications engineering, this book: * Explains basic tools for design and analysis of microwave circuits such as the Smith chart and network parameters * Gives the advantage of realizing the output without wiring the circuit by simulating through MATLAB code * Compares distributed theory with network theory * Includes microwave components, filters and amplifiers S. Raghavan was a Senior Professor (HAG) in the Department of Electronics and Communication Engineering, National Institute of Technology (NIT), Trichy, India and has 39 years of teaching and research experience at the Institute. His interests include: microwave integrated circuits, RF MEMS, Bio MEMS, metamaterial, frequency selective surfaces (FSS), substrate integrated waveguides (SIW), biomedical engineering and microwave engineering. He has established state-of-the-art MICs and microwave research laboratories at NIT, Trichy with funding from the Indian government. He is a Fellow/Senior Member in more than 24 professional societies including: IEEE (MTT, EMBS, APS), IETE, IEI, CSI, TSI, ISSS, ILA and ISOI. He is twice a recipient of the Best Teacher Award, and has received the Life Time Achievement Award, Distinguished Professor of Microwave Integrated Circuit Award and Best Researcher Award.
This book provides a platform to understand Internet of things with Raspberry Pi and the basic knowledge of the programming and interfacing of the devices and designed systems. It broadly covers introduction to Internet of Things and enabling technologies, interfacing with Raspberry Pi and Arduino and interfacing with Raspberry Pi GPIO. Internet of Things with Raspberry pi and Arduino is aimed at senior undergraduate, graduate students and professionals in electrical engineering, computer engineering including robotics.
Covers the fundamentals of shape feature extraction from images Discusses different applications of image shape feature in the field of content based image retrieval Includes polygonal approximation techniques of shape features Details moment based, scale space and geometric shape features Different approaches for extracting image shape features are reviewed affecting image retrieval from a large database
The book explores technological advances in the fourth industrial revolution (4IR), which is based on a variety of technologies such as artificial intelligence, Internet of Things, machine learning, big data, additive printing, cloud computing, and virtual and augmented reality. Critically analyzing the impacts and effects of these disruptive technologies on various areas, including economics, society, business, government, labor, law, and environment, the book also provides a broad overview of 4IR, with a focus on technologies, to allow readers to gain a deeper understanding of the recent advances and future trajectories. It is intended for researchers, practitioners, policy-makers and industry leaders.
This textbook provides students with an overview of cyber-physical microgrid networks and an in-depth introduction to photovoltaics, batteries, flywheel, supercapacitor, micro-turbines, wind generation, power-electronic interfaces, modeling and stability analysis of microgrids, and cyber-communication networks and security. The text helps upper-level undergraduate and graduate students gain a foundational understanding of microgrids and renewable energy, and offers an introduction to the frontier of theoretical research and practical applications of cyber-physical systems, paving the way to uncover and understand the operational mechanism of cyber-physical microgrids. The book includes examples and test systems throughout for problem-solving and will be an essential resource for students, researchers, and professionals in power engineering.
This book is a collection of best selected research papers presented at 7th International Conference on Computing in Engineering and Technology (ICCET 2022), organized by Dr. Babasaheb Ambedkar Technological University, Lonere, India, during February 12 - 13, 2022. Focusing on frontier topics and next-generation technologies, it presents original and innovative research from academics, scientists, students, and engineers alike. The theme of the conference is Applied Information Processing System.
This book describes capacity building in strategic and non-strategic machine tool technology. It includes machine building in sectors such as machine tools, automobiles, home appliances, energy, and biomedical engineering, along with case studies. The book offers guidelines for capacity building in academia, covering how to promote enterprises of functional reverse engineering enterprises. It also discusses machine tool development, engineering design, prototyping of strategic, and non-strategies machine tools, as well as presenting communication strategies and IoT, along with case studies. Professionals from the CNC (Computer Numeric Control) machine tools industry, industrial and manufacturing engineers, and students and faculty in engineering disciplines will find interest in this book.
This book presents a comprehensive set of guidelines and applications of DIgSILENT PowerFactory, an advanced power system simulation software package, for different types of power systems studies. Written by specialists in the field, it combines expertise and years of experience in the use of DIgSILENT PowerFactory with a deep understanding of power systems analysis. These complementary approaches therefore provide a fresh perspective on how to model, simulate and analyse power systems. It presents methodological approaches for modelling of system components, including both classical and non-conventional devices used in generation, transmission and distribution systems, discussing relevant assumptions and implications on performance assessment. This background is complemented with several guidelines for advanced use of DSL and DPL languages as well as for interfacing with other software packages, which is of great value for creating and performing different types of steady-state and dynamic performance simulation analysis. All employed test case studies are provided as supporting material to the reader to ease recreation of all examples presented in the book as well as to facilitate their use in other cases related to planning and operation studies. Providing an invaluable resource for the formal instruction of power system undergraduate/postgraduate students, this book is also a useful reference for engineers working in power system operation and planning.
This book presents a comprehensive set of techniques that enhance all key aspects of a modern Virtual Prototype (VP)-based design flow. The authors emphasize automated formal verification methods, as well as advanced coverage-guided analysis and testing techniques, tailored for SystemC-based VPs and also the associated Software (SW). Coverage also includes VP modeling techniques that handle functional as well as non-functional aspects and also describes correspondence analyses between the Hardware- and VP-level to utilize information available at different levels of abstraction. All approaches are discussed in detail and are evaluated extensively, using several experiments to demonstrate their effectiveness in enhancing the VP-based design flow. Furthermore, the book puts a particular focus on the modern RISC-V ISA, with several case-studies covering modeling as well as VP and SW verification aspects.
Multirate Signal processing can improve system performance and reduce costs in applications ranging from laboratory instruments, cable modems, wireless systems, satellites, Radar, Sonar, and consumer entertainment products. This second edition continues to offer a systematic, clear, and intuitive introduction to multirate signal processing for working engineers and system designers. Significant new material and fresh concepts, including Green Signal Processing techniques have been introduced. The author uses extensive examples and figures to illustrate a wide range of multirate techniques, from basic resampling to leading-edge cascade and multi-stage filter structures. Along the way he draws on extensive research and consulting experience to introduce processing "tricks" shown to maximize performance and efficiency. Coverage includes: * Effect of sampling and resampling in time and frequency domains * Relationships between FIR filter specifications and filter length (# of taps) * Window design and equal-ripple (Remez) design techniques * Square-Root Nyquist and Half-band Filters including new enhancements * Polyphase FIR filters: up-sampling, down-sampling * Polyphase M-path analysis and synthesis channelizers and cascade pairs * Polyphase interpolators for arbitrary sample rate changes * Dyadic half-band filters, quadrature mirror filters * Channel banks for multiple arbitrary bandwidths and center frequencies * Comprehensive coverage of recursive all-pass filters and channelizers, non-uniform and uniform phase, mixed recursive and non-recursive * Comparisons with traditional DSP designs * Extensive applications coverage throughout
Teaching Electromagnetics: Innovative Approaches and Pedagogical Strategies is a guide for educators addressing course content and pedagogical methods primarily at the undergraduate level in electromagnetic theory and its applications. Topics include teaching methods, lab experiences and hands-on learning, and course structures that help teachers respond effectively to trends in learning styles and evolving engineering curricula. The book grapples with issues related to the recent worldwide shift to remote teaching. Each chapter begins with a high-level consideration of the topic, reviews previous work and publications, and gives the reader a broad picture of the topic before delving into details. Chapters include specific guidance for those who want to implement the methods and assessment results and evaluation of the effectiveness of the methods. Respecting the limited time available to the average teacher to try new methods, the chapters focus on why an instructor should adopt the methods proposed in it. Topics include virtual laboratories, computer-assisted learning, and MATLAB (R) tools. The authors also review flipped classrooms and online teaching methods that support remote teaching and learning. The end result should be an impact on the reader represented by improvements to his or her practical teaching methods and curricular approach to electromagnetics education. The book is intended for electrical engineering professors, students, lab instructors, and practicing engineers with an interest in teaching and learning. In summary, this book: Surveys methods and tools for teaching the foundations of wireless communications and electromagnetic theory Presents practical experience and best practices for topical coverage, course sequencing, and content Covers virtual laboratories, computer-assisted learning, and MATLAB tools Reviews flipped classroom and online teaching methods that support remote teaching and learning Helps instructors in RF systems, field theory, and wireless communications bring their teaching practice up to date Dr. Krishnasamy T. Selvan is Professor in the Department of Electronics & Communication Engineering, SSN College of Engineering, since June 2012. Dr. Karl F. Warnick is Professor in the Department of Electrical and Computer Engineering at BYU.
Teaching Electromagnetics: Innovative Approaches and Pedagogical Strategies is a guide for educators addressing course content and pedagogical methods primarily at the undergraduate level in electromagnetic theory and its applications. Topics include teaching methods, lab experiences and hands-on learning, and course structures that help teachers respond effectively to trends in learning styles and evolving engineering curricula. The book grapples with issues related to the recent worldwide shift to remote teaching. Each chapter begins with a high-level consideration of the topic, reviews previous work and publications, and gives the reader a broad picture of the topic before delving into details. Chapters include specific guidance for those who want to implement the methods and assessment results and evaluation of the effectiveness of the methods. Respecting the limited time available to the average teacher to try new methods, the chapters focus on why an instructor should adopt the methods proposed in it. Topics include virtual laboratories, computer-assisted learning, and MATLAB (R) tools. The authors also review flipped classrooms and online teaching methods that support remote teaching and learning. The end result should be an impact on the reader represented by improvements to his or her practical teaching methods and curricular approach to electromagnetics education. The book is intended for electrical engineering professors, students, lab instructors, and practicing engineers with an interest in teaching and learning. In summary, this book: Surveys methods and tools for teaching the foundations of wireless communications and electromagnetic theory Presents practical experience and best practices for topical coverage, course sequencing, and content Covers virtual laboratories, computer-assisted learning, and MATLAB tools Reviews flipped classroom and online teaching methods that support remote teaching and learning Helps instructors in RF systems, field theory, and wireless communications bring their teaching practice up to date Dr. Krishnasamy T. Selvan is Professor in the Department of Electronics & Communication Engineering, SSN College of Engineering, since June 2012. Dr. Karl F. Warnick is Professor in the Department of Electrical and Computer Engineering at BYU.
This book gathers extended versions of the best papers presented at the Global Joint Conference on Industrial Engineering and Its Application Areas (GJCIE), organized virtually on August 14-15, 2020, by Istanbul Technical University. It covers a wide range of topics, including decision analysis, supply chain management, systems modelling and quality control. Further, special emphasis is placed on cutting-edge applications of industrial Internet-of-Things. Technological, economic and business challenges are discussed in detail, presenting effective strategies that can be used to modernize current structures, eliminating the barriers that are keeping industries from taking full advantage of IoT technologies. The book offers an important link between technological research and industry best practices, and covers various disciplinary areas such as manufacturing, healthcare and service engineering, among others.
This book covers advancements of power electronic converters and their control techniques for grid integration of large-scale renewable energy sources and electrical vehicles. Major emphasis is on transformer-less direct grid integration, bidirectional power transfer, compensation of grid power quality issues, DC system protection and grounding, interaction in mixed AC/DC systems, AC and DC system stability, design of high-frequency high power density systems with advanced soft magnetic materials, modeling and simulation of mixed AC/DC systems, switching strategies for enhanced efficiency, and protection and reliability for sustainable grid integration. This book is an invaluable resource for professionals active in the field of renewable energy and power conversion. Md. Rabiul Islam received his PhD from the University of Technology Sydney (UTS), Australia. He was appointed as a Lecturer at Rajshahi University of Engineering & Technology (RUET) in 2005 and promoted to full-term Professor in 2017. In early 2018, he joined the School of Electrical, Computer, and Telecommunications Engineering, University of Wollongong, Australia. He is a Senior Member of IEEE. His research interests include the fields of power electronic converters, renewable energy technologies, power quality, electrical machines, electric vehicles, and smart grids. He has authored or coauthored more than 200 publications including 50 IEEE Transactions/IEEE Journal papers. He has been serving as an editor for IEEE Transactions on Energy Conversion and IEEE Power Engineering Letters, and associate editor for IEEE Access. Md. Rakibuzzaman Shah is a Senior Lecturer with the School of Engineering, Information Technology and Physical Science at Federation University Australia. He has worked and consulted with distribution network operators and transmission system operators on individual projects and has done collaborative work on a large number of projects (EPSRC project on multi-terminal HVDC, Scottish and Southern Energy multi-infeed HVDC) - primarily on the dynamic impact of integrating new technologies and power electronics into large systems. He is an active member of the IEEE and CIGRE. He has more than 70 international publications and has spoken at the leading power system conferences around the world. His research interests include future power grids (i.e., renewable energy integration, wide-area control), asynchronous grid connection through VSC-HVDC, application of data mining in power system, distribution system energy management, and low carbon energy systems. Mohd. Hasan Ali is currently an Associate Professor with the Electrical and Computer Engineering Department at the University of Memphis, USA, where he leads the Electric Power and Energy Systems (EPES) Laboratory. His research interests include advanced power systems, smart-grid and microgrid systems, renewable energy systems, and cybersecurity issues in modern power grids. Dr. Ali has more than 190 publications, including 2 books, 4 book chapters, 2 patents, 60 top ranked journal papers, 96 peer-reviewed international conference papers, and 20 national conference papers. He serves as the editor of the IEEE Transactions on Sustainable Energy and IET-Generation, Transmission and Distribution (GTD) journal. Dr. Ali is a Senior Member of the IEEE Power and Energy Society (PES). He is also the Chair of the PES of the IEEE Memphis Section.
The Internet has gone from an Internet of people to an Internet of Things (IoT). This has brought forth strong levels of complexity in handling interoperability that involves the integrating of wireless sensor networks (WSNs) into IoT. This book offers insights into the evolution, usage, challenges, and proposed countermeasures associated with the integration. Focusing on the integration of WSNs into IoT and shedding further light on the subtleties of such integration, this book aims to highlight the encountered problems and provide suitable solutions. It throws light on the various types of threats that can attack both WSNs and IoT along with the recent approaches to counter them. This book is designed to be the first choice of reference at research and development centers, academic institutions, university libraries, and any institution interested in the integration of WSNs into IoT. Undergraduate and postgraduate students, Ph.D. scholars, industry technologists, young entrepreneurs, and researchers working in the field of security and privacy in IoT are the primary audience of this book. |
You may like...
Power System Analysis and Design, SI…
J. Duncan Glover, Mulukutla Sarma, …
Paperback
The Electrostatic Accelerator - A…
Ragnar Hellborg, Harry J. Whitlow
Paperback
R754
Discovery Miles 7 540
Modeling and Nonlinear Robust Control of…
Jonatan Martin Escorcia Hernandez, Ahmed Chemori, …
Paperback
R2,758
Discovery Miles 27 580
Practical Grounding, Bonding, Shielding…
G. Vijayaraghavan, Mark Brown, …
Paperback
R1,427
Discovery Miles 14 270
|