![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > General
In recent years, ELM has emerged as a revolutionary technique of computational intelligence, and has attracted considerable attentions. An extreme learning machine (ELM) is a single layer feed-forward neural network alike learning system, whose connections from the input layer to the hidden layer are randomly generated, while the connections from the hidden layer to the output layer are learned through linear learning methods. The outstanding merits of extreme learning machine (ELM) are its fast learning speed, trivial human intervene and high scalability. This book contains some selected papers from the International Conference on Extreme Learning Machine 2013, which was held in Beijing China, October 15-17, 2013. This conference aims to bring together the researchers and practitioners of extreme learning machine from a variety of fields including artificial intelligence, biomedical engineering and bioinformatics, system modelling and control, and signal and image processing, to promote research and discussions of “learning without iterative tuning". This book covers algorithms and applications of ELM. It gives readers a glance of the newest developments of ELM.
Modern image processing techniques are based on multiresolution geometrical methods of image representation. These methods are efficient in sparse approximation of digital images. There is a wide family of functions called simply â€X-lets’, and these methods can be divided into two groups: the adaptive and the nonadaptive. This book is devoted to the adaptive methods of image approximation, especially to multismoothlets. Besides multismoothlets, several other new ideas are also covered. Current literature considers the black and white images with smooth horizon function as the model for sparse approximation but here, the class of blurred multihorizon is introduced, which is then used in the approximation of images with multiedges. Additionally, the semi-anisotropic model of multiedge representation, the introduction of the shift invariant multismoothlet transform and sliding multismoothlets are also covered. Geometrical Multiresolution Adaptive Transforms should be accessible to both mathematicians and computer scientists. It is suitable as a professional reference for students, researchers and engineers, containing many open problems and will be an excellent starting point for those who are beginning new research in the area or who want to use geometrical multiresolution adaptive methods in image processing, analysis or compression.
This research book provides a comprehensive overview of the state-of-the-art subspace learning methods for pattern recognition in intelligent environment. With the fast development of internet and computer technologies, the amount of available data is rapidly increasing in our daily life. How to extract core information or useful features is an important issue. Subspace methods are widely used for dimension reduction and feature extraction in pattern recognition. They transform a high-dimensional data to a lower-dimensional space (subspace), where most information is retained. The book covers a broad spectrum of subspace methods including linear, nonlinear and multilinear subspace learning methods and applications. The applications include face alignment, face recognition, medical image analysis, remote sensing image classification, traffic sign recognition, image clustering, super resolution, edge detection, multi-view facial image synthesis.
With the proliferation of social media and on-line communities in networked world a large gamut of data has been collected and stored in databases. The rate at which such data is stored is growing at a phenomenal rate and pushing the classical methods of data analysis to their limits. This book presents an integrated framework of recent empirical and theoretical research on social network analysis based on a wide range of techniques from various disciplines like data mining, social sciences, mathematics, statistics, physics, network science, machine learning with visualization techniques and security. The book illustrates the potential of multi-disciplinary techniques in various real life problems and intends to motivate researchers in social network analysis to design more effective tools by integrating swarm intelligence and data mining.
The Internet of Things (IoT) usually refers to a world-wide network of interconnected heterogeneous objects (sensors, actuators, smart devices, smart objects, RFID, embedded computers, etc) uniquely addressable, based on standard communication protocols. Beyond such a definition, it is emerging a new definition of IoT seen as a loosely coupled, decentralized system of cooperating smart objects (SOs). A SO is an autonomous, physical digital object augmented with sensing/actuating, processing, storing, and networking capabilities. SOs are able to sense/actuate, store, and interpret information created within themselves and around the neighbouring external world where they are situated, act on their own, cooperate with each other, and exchange information with other kinds of electronic devices and human users. However, such SO-oriented IoT raises many in-the-small and in-the-large issues involving SO programming, IoT system architecture/middleware and methods/methodologies for the development of SO-based applications. This Book will specifically focus on exploring recent advances in architectures, algorithms, and applications for an Internet of Things based on Smart Objects. Topics appropriate for this Book include, but are not necessarily limited to: - Methods for SO development - IoT Networking - Middleware for SOs - Data Management for SOs - Service-oriented SOs - Agent-oriented SOs - Applications of SOs in Smart Environments: Smart Cities, Smart Health, Smart Buildings, etc. Advanced IoT Projects.
This collection of papers, celebrating the contributions of Swedish logician Dag Prawitz to Proof Theory, has been assembled from those presented at the Natural Deduction conference organized in Rio de Janeiro to honour his  seminal  research. Dag Prawitz’s work forms the basis of intuitionistic type theory and his inversion principle constitutes the foundation of most modern accounts of proof-theoretic semantics in Logic, Linguistics and Theoretical Computer Science. The range of contributions includes material on the extension of natural deduction with higher-order rules, as opposed to higher-order connectives, and a paper discussing the application of natural deduction rules to dealing with equality in predicate calculus. The volume continues with a key chapter summarizing work on the extension of the Curry-Howard isomorphism (itself a by-product of the work on natural deduction), via methods of category theory that have been successfully applied to linear logic, as well as many other contributions from highly regarded authorities. With an illustrious group of contributors addressing a wealth of topics and applications, this volume is a valuable addition to the libraries of academics in the multiple disciplines whose development has been given added scope by the methodologies supplied by natural deduction. The volume is representative of the rich and varied directions that Prawitz work has inspired in the area of natural deduction.
The book is a unique effort to represent a variety of techniques designed to represent, enhance, and empower multi-disciplinary and multi-institutional machine learning research in healthcare informatics. The book provides a unique compendium of current and emerging machine learning paradigms for healthcare informatics and reflects the diversity, complexity and the depth and breath of this multi-disciplinary area. The integrated, panoramic view of data and machine learning techniques can provide an opportunity for novel clinical insights and discoveries.
The book is mainly addressed to young graduate students in engineering and natural sciences who start to face numerical simulation, either at a research level or in the field of industrial applications. The main subjects covered are: Biomechanics, Stochastic Calculus, Geophysical flow simulation and Shock-Capturing numerical methods for Hyperbolic Systems of Partial Differential Equations. The book can also be useful to researchers or even technicians working at an industrial environment, who are interested in the state-of-the-art numerical techniques in these fields. Moreover, it gives an overview of the research developed at the French and Spanish universities and in some European scientific institutions. This book can be also useful as a textbook at master courses in Mathematics, Physics or Engineering.
The Soft Computing techniques, which are based on the information processing of biological systems are now massively used in the area of pattern recognition, making prediction & planning, as well as acting on the environment. Ideally speaking, soft computing is not a subject of homogeneous concepts and techniques; rather, it is an amalgamation of distinct methods that confirms to its guiding principle. At present, the main aim of soft computing is to exploit the tolerance for imprecision and uncertainty to achieve tractability, robustness and low solutions cost. The principal constituents of soft computing techniques are probabilistic reasoning, fuzzy logic, neuro-computing, genetic algorithms, belief networks, chaotic systems, as well as learning theory. This book covers contributions from various authors to demonstrate the use of soft computing techniques in various applications of engineering.
The book discusses intelligent system design using soft computing and similar systems and their interdisciplinary applications. It also focuses on the recent trends to use soft computing as a versatile tool for designing a host of decision support systems.
This book presents current progress on challenges related to Big Data management by focusing on the particular challenges associated with context-aware data-intensive applications and services. The book is a state-of-the-art reference discussing progress made, as well as prompting future directions on the theories, practices, standards and strategies that are related to the emerging computational technologies and their association with supporting the Internet of Things advanced functioning for organizational settings including both business and e-science. Apart from inter-operable and inter-cooperative aspects, the book deals with a notable opportunity namely, the current trend in which a collectively shared and generated content is emerged from Internet end-users. Specifically, the book presents advances on managing and exploiting the vast size of data generated from within the smart environment (i.e. smart cities) towards an integrated, collective intelligence approach. The book also presents methods and practices to improve large storage infrastructures in response to increasing demands of the data intensive applications. The book contains 19 self-contained chapters that were very carefully selected based on peer review by at least two expert and independent reviewers and is organized into the three sections reflecting the general themes of interest to the IoT and Big Data communities: Section I: Foundations and Principles Section II: Advanced Models and Architectures Section III: Advanced Applications and Future Trends The book is intended for researchers interested in joining interdisciplinary and transdisciplinary works in the areas of Smart Environments, Internet of Things and various computational technologies for the purpose of an integrated collective computational intelligence approach into the Big Data era. Â
The proceeding is a collection of research papers presented, at the 8th International Conference on Robotics, Vision, Signal Processing and Power Applications (ROVISP 2013), by researchers, scientists, engineers, academicians as well as industrial professionals from all around the globe. The topics of interest are as follows but are not limited to: • Robotics, Control, Mechatronics and Automation • Vision, Image, and Signal Processing • Artificial Intelligence and Computer Applications • Electronic Design and Applications • Telecommunication Systems and Applications • Power System and Industrial Applications
The aim of this book is to understand the state-of-the-art theoretical and practical advances of swarm intelligence. It comprises seven contemporary relevant chapters. In chapter 1, a review of Bacteria Foraging Optimization (BFO) techniques for both single and multiple criterions problem is presented. A survey on swarm intelligence for multiple and many objectives optimization is presented in chapter 2 along with a topical study on EEG signal analysis. Without compromising the extensive simulation study, a comparative study of variants of MOPSO is provided in chapter 3. Intractable problems like subset and job scheduling problems are discussed in chapters 4 and 7 by different hybrid swarm intelligence techniques. An attempt to study image enhancement by ant colony optimization is made in chapter 5. Finally, chapter 7 covers the aspect of uncertainty in data by hybrid PSO.      Â
This book presents a comprehensive approach to protecting sensitive information when large data collections are released by their owners. It addresses three key requirements of data privacy: the protection of data explicitly released, the protection of information not explicitly released but potentially vulnerable due to a release of other data, and the enforcement of owner-defined access restrictions to the released data. It is also the first book with a complete examination of how to enforce dynamic read and write access authorizations on released data, applicable to the emerging data outsourcing and cloud computing situations. Private companies, public organizations and final users are releasing, sharing, and disseminating their data to take reciprocal advantage of the great benefits of making their data available to others. This book weighs these benefits against the potential privacy risks. A detailed analysis of recent techniques for privacy protection in data release and case studies illustrate crucial scenarios. Protecting Privacy in Data Release targets researchers, professionals and government employees working in security and privacy. Advanced-level students in computer science and electrical engineering will also find this book useful as a secondary text or reference.
This book presents and discusses the main strategic and organizational challenges posed by Big Data and analytics in a manner relevant to both practitioners and scholars. The first part of the book analyzes strategic issues relating to the growing relevance of Big Data and analytics for competitive advantage, which is also attributable to empowerment of activities such as consumer profiling, market segmentation, and development of new products or services. Detailed consideration is also given to the strategic impact of Big Data and analytics on innovation in domains such as government and education and to Big Data-driven business models. The second part of the book addresses the impact of Big Data and analytics on management and organizations, focusing on challenges for governance, evaluation, and change management, while the concluding part reviews real examples of Big Data and analytics innovation at the global level. The text is supported by informative illustrations and case studies, so that practitioners can use the book as a toolbox to improve understanding and exploit business opportunities related to Big Data and analytics.
The work presented in this book is a combination of theoretical advancements of big data analysis, cloud computing, and their potential applications in scientific computing. The theoretical advancements are supported with illustrative examples and its applications in handling real life problems. The applications are mostly undertaken from real life situations. The book discusses major issues pertaining to big data analysis using computational intelligence techniques and some issues of cloud computing. An elaborate bibliography is provided at the end of each chapter. The material in this book includes concepts, figures, graphs, and tables to guide researchers in the area of big data analysis and cloud computing.
This book, which goes far beyond a traditional collection of technical articles, is dedicated to Enric Trillas, a fuzzy systems pioneer but also an internationally renowned researcher in other areas of science, such as mathematics and aerospace, and an outstanding manager of scientific affairs in Spain. Some of the contributions in this book develop technical, state-of-the-art themes obviously related to fuzzy logic, while others resemble popular-science articles that shed light on complex mathematical concepts. There are also chapters that highlight the authors’ personal relationships and experiences working with Enric Trillas. While planning this book project, the editors decided to give contributors absolute freedom of thought and expression in preparing their chapters. The result is a colorful and inspiring mixture of styles and topics, which perfectly reflects Enric Trillas’s multifaceted contributions to research and his outstanding role in promoting education and technological transfer in the field of soft computing. This Festschrift to Enric Trillas, published on the occasion of his 75th birthday, is not only intended as an exemplary source of information for young scientists dealing with uncertainty, imprecision and accuracy of models, but also as an inspiring guide to the role of scientists in education, politics and communication.
The book shows how eastern and western perspectives and conceptions can be used to addresses recent topics laying at the crossroad between philosophy and cognitive science. It reports on new points of view and conceptions discussed during the International Conference on Philosophy and Cognitive Science (PCS2013), held at the Sun Yat-sen University, in Guangzhou, China, and the 2013 Workshop on Abductive Visual Cognition, which took place at KAIST, in Deajeon, South Korea. The book emphasizes an ever-growing cultural exchange between academics and intellectuals coming from different fields. It juxtaposes research works investigating new facets on key issues between philosophy and cognitive science, such as the role of models and causal representations in science; the status of theoretical concepts and quantum principles; abductive cognition, vision, and visualization in science from an eco-cognitive perspective. Further topics are: ignorance immunization in reasoning; moral cognition, violence, and epistemology; and models and biomorphism. The book, which presents a unique and timely account of the current state-of-the art on various aspects in philosophy and cognitive science, is expected to inspire philosophers, cognitive scientists and social scientists, and to generate fruitful exchanges and collaboration among them.
The book reports on a novel approach for holistically identifying the relevant state drivers of complex, multi-stage manufacturing systems. This approach is able to utilize complex, diverse and high-dimensional data sets, which often occur in manufacturing applications, and to integrate the important process intra- and interrelations. The approach has been evaluated using three scenarios from different manufacturing domains (aviation, chemical and semiconductor). The results, which are reported in detail in this book, confirmed that it is possible to incorporate implicit process intra- and interrelations on both a process and programme level by applying SVM-based feature ranking. In practice, this method can be used to identify the most important process parameters and state characteristics, the so-called state drivers, of a manufacturing system. Given the increasing availability of data and information, this selection support can be directly utilized in, e.g., quality monitoring and advanced process control. Importantly, the method is neither limited to specific products, manufacturing processes or systems, nor by specific quality concepts.
This book collects research works that exploit neural networks and machine learning techniques from a multidisciplinary perspective. Subjects covered include theoretical, methodological and computational topics which are grouped together into chapters devoted to the discussion of novelties and innovations related to the field of Artificial Neural Networks as well as the use of neural networks for applications, pattern recognition, signal processing, and special topics such as the detection and recognition of multimodal emotional expressions and daily cognitive functions, and bio-inspired memristor-based networks. Providing insights into the latest research interest from a pool of international experts coming from different research fields, the volume becomes valuable to all those with any interest in a holistic approach to implement believable, autonomous, adaptive and context-aware Information Communication Technologies.
Provides a comprehensive overview and introduction to the concepts, methodologies, analysis, design and applications of metasynthetic computing and engineering. The author: • Presents an overview of complex systems, especially open complex giant systems such as the Internet, complex behavioural and social problems, and actionable knowledge discovery and delivery in the big data era. • Discusses ubiquitous intelligence in complex systems, including human intelligence, domain intelligence, social intelligence, network intelligence, data intelligence and machine intelligence, and their synergy through metasynthetic engineering. • Explains the concept and methodology of human-centred, human-machine-cooperated qualitative-to-quantitative metasynthesis for understanding and managing open complex giant systems, and its computing approach: metasynthetic computing. • Introduces techniques and tools for analysing and designing problem-solving systems for open complex problems and systems. Metasynthetic Computing and Engineering uses the systematology methodology in addressing system complexities in open complex giant systems, for which it may not only be effective to apply reductionism or holism. The book aims to encourage and inspire discussions, design, implementation and reflection of effective methodologies and tools for computing and engineering open complex systems and problems. Researchers, research students and practitioners in complex systems, artificial intelligence, data science, computer science, and even system science, cognitive science, behaviour science, and social science, will find this book invaluable.
This volume presents a collection of carefully selected contributions in the area of social media analysis. Each chapter opens up a number of research directions that have the potential to be taken on further in this rapidly growing area of research. The chapters are diverse enough to serve a number of directions of research with Sentiment Analysis as the dominant topic in the book. The authors have provided a broad range of research achievements from multimodal sentiment identification to emotion detection in a Chinese microblogging website. The book will be useful to research students, academics and practitioners in the area of social media analysis. Â
Vision-based control of wheeled mobile robots is an interesting field of research from a scientific and even social point of view due to its potential applicability. This book presents a formal treatment of some aspects of control theory applied to the problem of vision-based pose regulation of wheeled mobile robots. In this problem, the robot has to reach a desired position and orientation, which are specified by a target image. It is faced in such a way that vision and control are unified to achieve stability of the closed loop, a large region of convergence, without local minima and good robustness against parametric uncertainty. Three different control schemes that rely on monocular vision as unique sensor are presented and evaluated experimentally. A common benefit of these approaches is that they are valid for imaging systems obeying approximately a central projection model, e.g., conventional cameras, catadioptric systems and some fisheye cameras. Thus, the presented control schemes are generic approaches. A minimum set of visual measurements, integrated in adequate task functions, are taken from a geometric constraint imposed between corresponding image features. Particularly, the epipolar geometry and the trifocal tensor are exploited since they can be used for generic scenes. A detailed experimental evaluation is presented for each control scheme.
This book captures the state of the art in cloud technologies, infrastructures, and service delivery and deployment models. The work provides guidance and case studies on the development of cloud-based services and infrastructures from an international selection of expert researchers and practitioners. Features: presents a focus on security and access control mechanisms for cloud environments, analyses standards and brokerage services, and investigates the role of certification for cloud adoption; evaluates cloud ERP, suggests a framework for implementing “big data” science, and proposes an approach for cloud interoperability; reviews existing elasticity management solutions, discusses the relationship between cloud management and governance, and describes the development of a cloud service capability assessment model; examines cloud applications in higher education, including the use of knowledge-as-a-service in the provision of education, and cloud-based e-learning for students with disabilities.
Computational Intelligence techniques have been widely explored in various domains including forensics. Analysis in forensic encompasses the study of pattern analysis that answer the question of interest in security, medical, legal, genetic studies and etc. However, forensic analysis is usually performed through experiments in lab which is expensive both in cost and time. Therefore, this book seeks to explore the progress and advancement of computational intelligence technique in different focus areas of forensic studies. This aims to build stronger connection between computer scientists and forensic field experts. This book, Computational Intelligence in Digital Forensics: Forensic Investigation and Applications, is the first volume in the Intelligent Systems Reference Library series. The book presents original research results and innovative applications of computational intelligence in digital forensics. This edited volume contains seventeen chapters and presents the latest state-of-the-art advancement of Computational Intelligence in Digital Forensics; in both theoretical and application papers related to novel discovery in intelligent forensics. The chapters are further organized into three sections: (1) Introduction, (2) Forensic Discovery and Investigation, which discusses the computational intelligence technologies employed in Digital Forensic, and (3) Intelligent Forensic Science Applications, which encompasses the applications of computational intelligence in Digital Forensic, such as human anthropology, human biometrics, human by products, drugs, and electronic devices. |
You may like...
Alien: 6-Film Collection - Alien…
Sigourney Weaver, Lance Henriksen, …
DVD
|