![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > General
This book reveals the historical context and the evolution of the technically complex Allied Signals Intelligence (Sigint) activity against Japan from 1920 to 1945. It traces the all-important genesis and development of the cryptanalytic techniques used to break the main Japanese Navy code (JN-25) and the Japanese Army’s Water Transport Code during WWII. This is the first book to describe, explain and analyze the code breaking techniques developed and used to provide this intelligence, thus closing the sole remaining gap in the published accounts of the Pacific War. The authors also explore the organization of cryptographic teams and issues of security, censorship, and leaks. Correcting gaps in previous research, this book illustrates how Sigint remained crucial to Allied planning throughout the war. It helped direct the advance to the Philippines from New Guinea, the sea battles and the submarine onslaught on merchant shipping. Written by well-known authorities on the history of cryptography and mathematics, Code Breaking in the Pacific is designed for cryptologists, mathematicians and researchers working in communications security. Advanced-level students interested in cryptology, the history of the Pacific War, mathematics or the history of computing will also find this book a valuable resource.
Based on a rigorous selection of submissions to The 29th International Symposium on Computer and Information Sciences (ISCIS 2014),  this books includes some of the most recent ideas and technical results in computer systems, computer science, and computer-communication networks. It offers the reader a timely access to innovative research and advances in computing and communications from many different areas of the world.  The topics covered include (but are not limited to) computer architectures and digital systems, algorithms, theory, software engineering, data engineering, computational intelligence, system security, computer systems and networks, performance modeling and analysis, distributed and parallel systems, bioinformatics, computer vision and significant applications such as medical informatics and imaging.  The 29th International Symposium on Computer and Information Sciences (ISCIS 2014) took place in Krakow Old City, Poland on October, 27–8, 2014.
Addressing the open problem of engineering normative open systems using the multi-agent paradigm, normative open systems are explained as systems in which heterogeneous and autonomous entities and institutions coexist in a complex social and legal framework that can evolve to address the different and often conflicting objectives of the many stakeholders involved. Presenting  a software engineering approach which covers both the analysis and design of these kinds of systems, and which deals with the open issues in the area, ROMAS (Regulated Open Multi-Agent Systems) defines a specific multi-agent architecture, meta-model, methodology and CASE tool. This CASE tool is based on Model-Driven technology and integrates the graphical design with the formal verification of some properties of these systems by means of model checking techniques. Utilizing tables to enhance reader insights into the most important requirements for designing normative open multi-agent systems, the book also provides a detailed and easy to understand description of the ROMAS approach and the advantages of using ROMAS. This method is illustrated with case studies, in which the reader may develop a comprehensive understanding of applying ROMAS to a given problem. The case studies are presented with illustrations of the developments. Reading this book will help readers to understand the increasing demand for normative open systems and their development requirements; understand how multi-agent systems approaches can be used to deal with the development of systems of this kind; to learn an easy to use and complete engineering method for large-scale and complex normative systems and to recognize how Model-Driven technology can be used to integrate the analysis, design, verification and implementation of multi-agent systems.
This book describes how the principle of self-sufficiency can be applied to a reconfigurable modular robotic organism. It shows the design considerations for a novel REPLICATOR robotic platform, both hardware and software, featuring the behavioral characteristics of social insect colonies. Following a comprehensive overview of some of the bio-inspired techniques already available, and of the state-of-the-art in re-configurable modular robotic systems, the book presents a novel power management system with fault-tolerant energy sharing, as well as its implementation in the REPLICATOR robotic modules. In addition, the book discusses, for the first time, the concept of “artificial energy homeostasis” in the context of a modular robotic organism, and shows its verification on a custom-designed simulation framework in different dynamic power distribution and fault tolerance scenarios. This book offers an ideal reference guide for both hardware engineers and software developers involved in the design and implementation of autonomous robotic systems.
The book presents findings, views and ideas on what exact problems of image processing, pattern recognition and generation can be efficiently solved by cellular automata architectures. This volume provides a convenient collection in this area, in which publications are otherwise widely scattered throughout the literature. The topics covered include image compression and resizing; skeletonization, erosion and dilation; convex hull computation, edge detection and segmentation; forgery detection and content based retrieval; and pattern generation. The book advances the theory of image processing, pattern recognition and generation as well as the design of efficient algorithms and hardware for parallel image processing and analysis. It is aimed at computer scientists, software programmers, electronic engineers, mathematicians and physicists, and at everyone who studies or develops cellular automaton algorithms and tools for image processing and analysis, or develops novel architectures and implementations of massive parallel computing devices. The book will provide attractive reading for a general audience because it has do-it-yourself appeal:Â all the computer experiments presented within it can be implemented with minimal knowledge of programming. The simplicity yet substantial functionality of the cellular automaton approach, and the transparency of the algorithms proposed, makes the text ideal supplementary reading for courses on image processing, parallel computing, automata theory and applications.
This book addresses the problems that are encountered, and solutions that have been proposed, when we aim to identify people and to reconstruct populations under conditions where information is scarce, ambiguous, fuzzy and sometimes erroneous. The process from handwritten registers to a reconstructed digitized population consists of three major phases, reflected in the three main sections of this book. The first phase involves transcribing and digitizing the data while structuring the information in a meaningful and efficient way. In the second phase, records that refer to the same person or group of persons are identified by a process of linkage. In the third and final phase, the information on an individual is combined into a reconstruction of their life course. The studies and examples in this book originate from a range of countries, each with its own cultural and administrative characteristics, and from medieval charters through historical censuses and vital registration, to the modern issue of privacy preservation. Despite the diverse places and times addressed, they all share the study of fundamental issues when it comes to model reasoning for population reconstruction and the possibilities and limitations of information technology to support this process. It is thus not a single discipline that is involved in such an endeavor. Historians, social scientists, and linguists represent the humanities through their knowledge of the complexity of the past, the limitations of sources, and the possible interpretations of information. The availability of big data from digitized archives and the need for complex analyses to identify individuals calls for the involvement of computer scientists. With contributions from all these fields, often in direct cooperation, this book is at the heart of the digital humanities, and will hopefully offer a source of inspiration for future investigations.
This book presents a comprehensive report on the evolution of Fuzzy Logic since its formulation in Lotfi Zadeh’s seminal paper on “fuzzy sets,” published in 1965. In addition, it features a stimulating sampling from the broad field of research and development inspired by Zadeh’s paper. The chapters, written by pioneers and prominent scholars in the field, show how fuzzy sets have been successfully applied to artificial intelligence, control theory, inference, and reasoning. The book also reports on theoretical issues; features recent applications of Fuzzy Logic in the fields of neural networks, clustering, data mining and software testing; and highlights an important paradigm shift caused by Fuzzy Logic in the area of uncertainty management. Conceived by the editors as an academic celebration of the fifty years’ anniversary of the 1965 paper, this work is a must-have for students and researchers willing to get an inspiring picture of the potentialities, limitations, achievements and accomplishments of Fuzzy Logic-based systems.
This book presents an Intelligent Control Architecture (ICA) to enable multiple collaborating marine vehicles to autonomously carry out underwater intervention missions. The presented ICA is generic in nature but aimed at a case study where a marine surface craft and an underwater vehicle are required to work cooperatively. It is shown that they are capable of cooperating autonomously towards the execution of complex activities since they have different but complementary capabilities. The ICA implementation is verified in simulation, and validated in trials by means of a team of autonomous marine robots. This book also presents architectural details and evaluation scenarios of the ICA, results of simulations and trials from different maritime operations, and future research directions.
The contributions in this volume focus on the Bayesian interpretation of natural languages, which is widely used in areas of artificial intelligence, cognitive science, and computational linguistics. This is the first volume to take up topics in Bayesian Natural Language Interpretation and make proposals based on information theory, probability theory, and related fields. The methodologies offered here extend to the target semantic and pragmatic analyses of computational natural language interpretation. Bayesian approaches to natural language semantics and pragmatics are based on methods from signal processing and the causal Bayesian models pioneered by especially Pearl. In signal processing, the Bayesian method finds the most probable interpretation by finding the one that maximizes the product of the prior probability and the likelihood of the interpretation. It thus stresses the importance of a production model for interpretation as in Grice’s contributions to pragmatics or in interpretation by abduction.
This book focuses on civil and structural engineering and construction management applications. The contributions constitute modified, extended and improved versions of research presented at the minisymposium organized by the editors at the ECCOMAS conference on this topic in Barcelona 2014.
This monograph is the continuation and completion of the monograph, “Intelligent Systems: Approximation by Artificial Neural Networks” written by the same author and published 2011 by Springer. The book you hold in hand presents the complete recent and original work of the author in approximation by neural networks. Chapters are written in a self-contained style and can be read independently. Advanced courses and seminars can be taught out of this brief book. All necessary background and motivations are given per chapter. A related list of references is given also per chapter. The book’s results are expected to find applications in many areas of applied mathematics, computer science and engineering. As such this monograph is suitable for researchers, graduate students, and seminars of the above subjects, also for all science and engineering libraries. Â
This book presents interdisciplinary research that pursues the mutual enrichment of neuroscience and robotics. Building on experimental work, and on the wealth of literature regarding the two cortical pathways of visual processing - the dorsal and ventral streams - we define and implement, computationally and on a real robot, a functional model of the brain areas involved in vision-based grasping actions. Grasping in robotics is largely an unsolved problem, and we show how the bio-inspired approach is successful in dealing with some fundamental issues of the task. Our robotic system can safely perform grasping actions on different unmodeled objects, denoting especially reliable visual and visuomotor skills. The computational model and the robotic experiments help in validating theories on the mechanisms employed by the brain areas more directly involved in grasping actions. This book offers new insights and research hypotheses regarding such mechanisms, especially for what concerns the interaction between the dorsal and ventral streams. Moreover, it helps in establishing a common research framework for neuroscientists and roboticists regarding research on brain functions.
This book reviews the challenging issues that present barriers to greater implementation of the cloud computing paradigm, together with the latest research into developing potential solutions. Topics and features: presents a focus on the most important issues and limitations of cloud computing, covering cloud security and architecture, QoS and SLAs; discusses a methodology for cloud security management, and proposes a framework for secure data storage and identity management in the cloud; introduces a simulation tool for energy-aware cloud environments, and an efficient congestion control system for data center networks; examines the issues of energy-aware VM consolidation in the IaaS provision, and software-defined networking for cloud related applications; reviews current trends and suggests future developments in virtualization, cloud security, QoS data warehouses, cloud federation approaches, and DBaaS provision; predicts how the next generation of utility computing infrastructures will be designed.
This book consists of 20 chapters in which the authors deal with different theoretical and practical aspects of new trends in Collective Computational Intelligence techniques. Computational Collective Intelligence methods and algorithms are one the current trending research topics from areas related to Artificial Intelligence, Soft Computing or Data Mining among others. Computational Collective Intelligence is a rapidly growing field that is most often understood as an AI sub-field dealing with soft computing methods which enable making group decisions and processing knowledge among autonomous units acting in distributed environments. Web-based Systems, Social Networks, and Multi-Agent Systems very often need these tools for working out consistent knowledge states, resolving conflicts and making decisions. The chapters included in this volume cover a selection of topics and new trends in several domains related to Collective Computational Intelligence: Language and Knowledge Processing, Data Mining Methods and Applications, Computer Vision, and Intelligent Computational Methods. This book will be useful for graduate and PhD students in computer science as well as for mature academics, researchers and practitioners interested in the methods and applications of collective computational intelligence in order to create new intelligent systems.
This book presents the very concept of an index matrix and its related augmented matrix calculus in a comprehensive form. It mostly illustrates the exposition with examples related to the generalized nets and intuitionistic fuzzy sets which are examples of an extremely wide array of possible application areas. The present book contains the basic results of the author over index matrices and some of its open problems with the aim to stimulating more researchers to start working in this area.
This book presents up-to-date research developments and novel methodologies on fuzzy control systems. It presents solutions to a series of problems with new approaches for the analysis and synthesis of fuzzy time-delay systems and fuzzy stochastic systems, including stability analysis and stabilization, dynamic output feedback control, robust filter design, and model approximation. A set of newly developed techniques such as fuzzy Lyapunov function approach, delay-partitioning, reciprocally convex, cone complementary linearization approach are presented. Fuzzy Control Systems with Time-Delay and Stochastic Perturbation: Analysis and Synthesis is a comprehensive reference for researcher and practitioners working in control engineering, system sciences and applied mathematics, and is also a useful source of information for senior undergraduates and graduates in these areas. The readers will benefit from some new concepts, new models and new methodologies with practical significance in control engineering and signal processing. Â Â
This book deals with the theory, design principles, and application of hybrid intelligent systems using type-2 fuzzy sets in combination with other paradigms of Soft Computing technology such as Neuro-Computing and Evolutionary Computing. It provides a self-contained exposition of the foundation of type-2 fuzzy neural networks and presents a vast compendium of its applications to control, forecasting, decision making, system identification and other real problems. Type-2 Fuzzy Neural Networks and Their Applications is helpful for teachers and students of universities and colleges, for scientists and practitioners from various fields such as control, decision analysis, pattern recognition and similar fields.
This highly practical and self-contained guidebook explains the principles and major applications of digital hologram recording and numerical reconstruction (Digital Holography). A special chapter is designated to digital holographic interferometry with applications in deformation and shape measurement and refractive index determination. Applications in imaging and microscopy are also described. Spcial techniques such as digital light-in-flight holography, holographic endoscopy, information encrypting, comparative holography, and related techniques of speckle metrology are also treated
This book provides an overview of the research work on data privacy and privacy enhancing technologies carried by the participants of the ARES project. ARES (Advanced Research in Privacy an Security, CSD2007-00004) has been one of the most important research projects funded by the Spanish Government in the fields of computer security and privacy. It is part of the now extinct CONSOLIDER INGENIO 2010 program, a highly competitive program which aimed to advance knowledge and open new research lines among top Spanish research groups. The project started in 2007 and will finish this 2014. Composed by 6 research groups from 6 different institutions, it has gathered an important number of researchers during its lifetime. Among the work produced by the ARES project, one specific work package has been related to privacy. This books gathers works produced by members of the project related to data privacy and privacy enhancing technologies. The presented works not only summarize important research carried in the project but also serve as an overview of the state of the art in current research on data privacy and privacy enhancing technologies.
The field of robotic vision has advanced dramatically recently with the development of new range sensors. Tremendous progress has been made resulting in significant impact on areas such as robotic navigation, scene/environment understanding, and visual learning. This edited book provides a solid and diversified reference source for some of the most recent important advancements in the field of robotic vision. The book starts with articles that describe new techniques to understand scenes from 2D/3D data such as estimation of planar structures, recognition of multiple objects in the scene using different kinds of features as well as their spatial and semantic relationships, generation of 3D object models, approach to recognize partially occluded objects, etc. Novel techniques are introduced to improve 3D perception accuracy with other sensors such as a gyroscope, positioning accuracy with a visual servoing based alignment strategy for microassembly, and increasing object recognition reliability using related manipulation motion models. For autonomous robot navigation, different vision-based localization and tracking strategies and algorithms are discussed. New approaches using probabilistic analysis for robot navigation, online learning of vision-based robot control, and 3D motion estimation via intensity differences from a monocular camera are described. This collection will be beneficial to graduate students, researchers, and professionals working in the area of robotic vision. Â
This monograph covers some selected problems of positive and fractional electrical circuits composed of resistors, coils, capacitors and voltage (current) sources. The book consists of 8 chapters, 4 appendices and a list of references. Chapter 1 is devoted to fractional standard and positive continuous-time and discrete-time linear systems without and with delays. In chapter 2 the standard and positive fractional electrical circuits are considered and the fractional electrical circuits in transient states are analyzed. Descriptor linear electrical circuits and their properties are investigated in chapter 3, while chapter 4 is devoted to the stability of fractional standard and positive linear electrical circuits. The reachability, observability and reconstructability of fractional positive electrical circuits and their decoupling zeros are analyzed in chapter 5. The fractional linear electrical circuits with feedbacks are considered in chapter 6. In chapter 7 solutions of minimum energy control for standard and fractional systems with and without bounded inputs is presented. In chapter 8 the fractional continuous-time 2D linear systems described by the Roesser type models are investigated.
This book clarifies the role and relevance of the body in social interaction and cognition from an embodied cognitive science perspective. Theories of embodied cognition have during the last decades offered a radical shift in explanations of the human mind, from traditional computationalism, to emphasizing the way cognition is shaped by the body and its sensorimotor interaction with the surrounding social and material world. This book presents a theoretical framework for the relational nature of embodied social cognition, which is based on an interdisciplinary approach that ranges historically in time and across different disciplines. It includes work in cognitive science, artificial intelligence, phenomenology, ethology, developmental psychology, neuroscience, social psychology, linguistics, communication and gesture studies. The theoretical framework is illustrated by empirical work that provides some detailed observational fieldwork on embodied actions captured in three different episodes of spontaneous social interaction and cognition in situ. Furthermore, the theoretical contributions and implications of the study of embodied social cognition are discussed and summed up. Finally, the issue what it would take for an artificial system to be socially embodied is addressed and discussed, as well as the practical relevance for applications to artificial intelligence (AI) and socially interactive technology.
This book presents latest results and selected applications of Computational Intelligence in Biomedical Technologies. Most of contributions deal with problems of Biomedical and Medical Informatics, ranging from theoretical considerations to practical applications. Various aspects of development methods and algorithms in Biomedical and Medical Informatics as well as Algorithms for medical image processing, modeling methods are discussed. Individual contributions also cover medical decision making support, estimation of risks of treatments, reliability of medical systems, problems of practical clinical applications and many other topics. This book is intended for scientists interested in problems of Biomedical Technologies, for researchers and academic staff, for all dealing with Biomedical and Medical Informatics, as well as PhD students. Useful information is offered also to IT companies, developers of equipment and/or software for medicine and medical professionals.
This monograph presents a comprehensive study of portfolio optimization, an important area of quantitative finance. Considering that the information available in financial markets is incomplete and that the markets are affected by vagueness and ambiguity, the monograph deals with fuzzy portfolio optimization models. At first, the book makes the reader familiar with basic concepts, including the classical mean–variance portfolio analysis. Then, it introduces advanced optimization techniques and applies them for the development of various multi-criteria portfolio optimization models in an uncertain environment. The models are developed considering both the financial and non-financial criteria of investment decision making, and the inputs from the investment experts. The utility of these models in practice is then demonstrated using numerical illustrations based on real-world data, which were collected from one of the premier stock exchanges in India. The book addresses both academics and professionals pursuing advanced research and/or engaged in practical issues in the rapidly evolving field of portfolio optimization. Â
In recent years, ELM has emerged as a revolutionary technique of computational intelligence, and has attracted considerable attentions. An extreme learning machine (ELM) is a single layer feed-forward neural network alike learning system, whose connections from the input layer to the hidden layer are randomly generated, while the connections from the hidden layer to the output layer are learned through linear learning methods. The outstanding merits of extreme learning machine (ELM) are its fast learning speed, trivial human intervene and high scalability. This book contains some selected papers from the International Conference on Extreme Learning Machine 2013, which was held in Beijing China, October 15-17, 2013. This conference aims to bring together the researchers and practitioners of extreme learning machine from a variety of fields including artificial intelligence, biomedical engineering and bioinformatics, system modelling and control, and signal and image processing, to promote research and discussions of “learning without iterative tuning". This book covers algorithms and applications of ELM. It gives readers a glance of the newest developments of ELM. |
You may like...
If Anyone Builds It, Everyone Dies - The…
Eliezer Yudkowsky, Nate Soares
Paperback
Principles of Business Information…
George Reynolds, Ralph M. Stair, …
Paperback
Principles Of Business Information…
Ralph Stair, George Reynolds, …
Paperback
(1)R1,780 Discovery Miles 17 800
The path to becoming a data-driven…
Organisation for Economic Cooperation and Development
Paperback
R1,382
Discovery Miles 13 820
OECD report on public communication…
Organisation for Economic Cooperation and Development
Paperback
R1,953
Discovery Miles 19 530
|