![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Applied physics & special topics > Geophysics
In 1991, my newly formed researchgroupat Berkeley was working intensely in the area of continuum-level constitutive relationships that could be obtained in a deductive mannerfrom microstructuralinformationthroughthemethods of homogenization theory. Of particular interest was the application of such methods to structural problems in the blossoming field of micromechanical devices. In this context it was becoming evident that we needed to learn to navigate through the continuum/discrete interface. Such were the circumstances when Vladimir Granik came to visit us at Berkeley for the first time. It is probably not surprising that we received with great enthusiasm his offer to join forces and develop a mechanics .of solid structures that would be based on a discrete representation of matter. Vladimir had established the foundations for such an endeavor with his work at Moscow University in the late 1970s. Since that first meeting, and with ever-increasing enthusiasm, it has been a great privilege for me to collaborate with Vladimir. We first applied the formalism of what has become known as "doublet mechanics" to the microstructure-based theory of failure of solids and worked on the paral- lels and differences between the doublet approach and homogenization, to- gether with Kevin Mon and Derek Hansford. Plane elastodynamics followed after Francesco Maddalena had proposed doublet viscoelesticity. The consti- tutive relationships in doublet mechanics were laid on a firm thermodynami- cal foundation through the work of Kevin Mon, while Miqin Zhang analyzed free boundary effects on multi-scale plane elastic waves in discrete domains.
This volume summarizes recent developments in our understanding of active galactic nuclei, including quasars, seyfert galaxies and radio galaxies. The predominant emphasis is put on observational results with information from essentially all wave bands, but important theoretical results are also presented. Among the contributions are discussions of the different types of active galaxies, the nature of the central engine, the wiggly structure of radio jets, the dynamics of the gas in jets, the study of millimeter and extreme ultraviolet regions, and a discussion of the observed continuum of the entire electromagnetic spectrum. The intended readers are professional astronomers and astrophysicists as well as graduate students in this field of research.
The proceedings of this workshop should probably be prefaced with a few words on some of the more confusing jargon. The phrases "Very Low-Mass star" , "VLM star", or simply "VLM" are now used fairly uniformly by as tronomers studying the stars at the bottom of the hydrogen-burning stellar main sequence - unfortunately, however, there is no clear definition as to what constitutes a VLM star. The reader should be warned that VLM stars are variously considered to be stars with; masses less than 0.3M ; masses 0 less than 0.1M ; spectra later than about M6-7; luminosities fainter than 0 Mv = 15; or luminosities fainter than Mbol = 12. The important features of a VLM star, however, would seem to be (1) that it is about as faint as a star can be, and (2) that it still remains a star (ie. it still burns hydrogen) . All of the above criteria, therefore, would seem to qualify an object as a VLM star, and requiring a more stringent definition is probably quibbling.
The 14 papers in this collection discuss recent progress in areas such as mixing in stellar interiors, redistribution and loss of angular momentum, emphasizing in particular the effects of turbulence. An introductory review by E. Schatzman, to whom this volume is dedicated, is followed by three sections: observational facts (surface abundances, stellar rotation, loss of mass and angular momentum, etc.), physical knowledge (mass transport and mixing by waves, turbulent transport, fast dynamo action, etc.), and the interpretation of observations.
Large-scale structures in the universe are becoming ever more important in modern astrophysics. This volume is dedicated to the memory of the late astrophysicist Fritz Zwicky and presents 34 lectures dealing with observational and theoretical aspects of the morphology of the universe. Reports on the distribution, properties and evolution of groups, clusters and superclusters of galaxies, as well as theoretical attempts to explain these findings using such ideas as biased galaxy formation and cold dark matter, are presented here for researchers and students of astronomy and astrophysics.
The discipline encompassing the use of high-resolution geophysics for obtaining geoengineering survey data has evolved rapidly over the past decades to become an interdisciplinary subject encompassing the fields of Geophysics, engineering, geology, marine geology, oceanography, and civil engineering. While high-resolution geophysical surveys are routinely performed offshore today, this has been so only since the late 1960s. High-resolution geophysical methods are employed in the offshore environment to obtain a comprehensive picture of the sea-floor mor phology and underlying shallow stratigraphy. The purpose of the survey methods is to assist in the design and installation of bottom-supported structures such as drilling and production platforms and pipelines. Drilling structures and pipelines of steel and/or concrete have become behemoths with respect to their size and the complexity of their design in order to withstand, for periods of up to twenty-five years, an extremely harsh environment, including storm waves, strong currents, unstable sea floor conditions, and great water depths. It is therefore of paramount importance that the geometry and physical properties of the sea floor be well understood in order to provide an adequate foundation for the design lives of such structures. On land, engineering foundation data usually may be obtained by visual field inspection and shallow borehole information, but offshore the presence of the water column places certain constraints on geoengineering investigations. High-resolution geophysical methods employed in the acquisition of geoengineering data offshore are defined as the use of seismic sources and receivers that operate at acoustic frequencies greater than 100 Hz.
Many geological features of the Earth's lithosphere create variations in the Earth's magnetic field that can be detected by satellites. The resulting magnetic anomaly maps can provide new insights into the tectonic features and broad structures of the lithosphere. This book documents the acquisition, reduction and analysis of satellite magnetic field data in the study of the Earth's lithosphere. The text considers issues of interpreting data, summarizes various interpretation methods, considers rock magnetism concepts and sources of variation in magnetism, and provides a complete summary of published maps and the methods used to create them. Mapping and interpreting lithospheric fields from satellite magnetic data has resulted in the new subdiscipline of geomagnetism. Advanced students and researchers will find that The Magnetic Field of the Earth's Lithosphere provides a much needed review of this important topic.
This series of reference books describes the sciences of different fields in and around geodesy. Each chapter, is written by experts in the respective fields and covers an individual field and describes the history, theory, the objective, the technology, and the development, the highlight of the research, the applications, the problems, as well as future directions. Contents of Volume II include: Geodetic LEO Satellite Missions, Satellite Altimetry, Airborne Lidar, GNSS Software Receiver, Geodetic Boundary Problem, GPS and INS, VLBI, Geodetic Reference Systems, Spectral Analysis, Earth Tide and Ocean Loading Tide, Remote Sensing, Photogrammetry, Occultation, Geopotential Determination, Geoid Determination, Local Gravity Field, Geopotential Determination, Magnet Field, Mobile Mapping, General Relativity, Wide-area Precise Positioning etc.
The Stanford Geostatistical Modeling Software (SGeMS) is an open-source computer package for solving problems involving spatially related variables. It provides geostatistics practitioners with a user-friendly interface, an interactive 3-D visualization, and a wide selection of algorithms. This practical book provides a step-by-step guide to using SGeMS algorithms. It explains the underlying theory, demonstrates their implementation, discusses their potential limitations, and helps the user make an informed decision about the choice of one algorithm over another. Users can complete complex tasks using the embedded scripting language, and new algorithms can be developed and integrated through the SGeMS plug-in mechanism. SGeMS was the first software to provide algorithms for multiple-point statistics, and the book presents a discussion of the corresponding theory and applications. Incorporating the full SGeMS software (now available from www.cambridge.org/9781107403246), this book is a useful user-guide for Earth Science graduates and researchers, as well as practitioners of environmental mining and petroleum engineering.
ESO's new and exciting telescope, the VLT in Chile, will certainly bring a host of new results in optical astronomy for the years to come. This workshop surveys a large variety of possible observations and the needed instrumentation. It is an exciting overview of front research in astronomy rarely published before. The book covers the whole gamut of optical-IR astronomy from the solar system, search for planets in nearby stars, physics of galactic stars and clusters, galactic structure, structure of nearby galaxies, AGN and quasars, clusters of galaxies, to large structure and cosmology. Furthermore it summarizes the two panel discussions.
The ESO jIAC Workshop on Quasar Hosts was held in Puerto de la Cruz, Tenerife, from 24 to 27 September 1996 in the Conference Centre of the Ca- bildo Insular de Tenerife. The four days of the meeting were filled with fasci- nating new results and interesting discussions, and ranged from the centre of our own galaxy to some of the most distant objects known in the universe. Quasar Host studies are going through an exciting time, and are benefiting from new facilities, including the refurbished HST and the Keck, and from novel techniques, including adaptive optics and deconvolution methods. We also saw the first of hopefully many results from the ISO satellite. These re- sults were presented during the many sessions and discussed in the gardens over coffee, and on the bus during our tour of the Canaries Observatories. We would very much like to thank the secretaries of ESO and lAC, Christina Stoffer, Pamela Bristow, Monica Murphy, Judith de Araoz, and Beatriz Mederos, who we depended on for their expertise and efficiency. Our colleagues on the scientific organising committee, Phil Crane, Bob Fosbury, Marie-Helene Ulrich, Peter Shaver and Jose Rodriguez-Espinosa, deserve considerable thanks for their contributions to the programme. We must also thank the local organising committee, Fernando Cabrera- Guerra, Monica Murphy, Ismael Perez-Fournon, Ana Perez-Garcia, Luis Ramirez-Castro, and Montserrat Villar-Martin, for all their efforts in making sure things ran smoothly on the day.
Aerosols play a critical role in a broad range of scientific disciplines, such as atmospheric chemistry and physics, combustion science, drug delivery and human health. This thesis explores the fundamentals of a new technique for capturing single or multiple particles using light, and for characterising these particles by Raman or fluorescence spectroscopy. The outcome of this research represents a significant development in optical manipulation techniques, specifically in optical tweezing. These findings can be applied to studies of the mass accommodation of gas-phase water molecules adsorbing onto a water surface. Not only is this a fundamental process of interest to physical chemists, but it is important for understanding the role of aerosol particles in the atmosphere, including their ability to become cloud droplets. This new strategy for investigating aerosol dynamics is fundamental in helping us understand the indirect effect of aerosols on the climate.
The subject of this book is the methodology and results of integrated geophysical investigations in the Caucasian region, mainly interpretation of magnetic and gravity anomalies with utilization of a huge petrophysical database for the evaluation of geological structure and mineral resources. Relative voluminous geophysical data are useful for the Earth Sciences researchers interested in the Caucasian region (and adjacent and similar regions) characterized by complicated geological structure, inclined magnetization (polarization), uneven topography and mountain/sea transition. Examination of geophysical fields verified by super-deep wells drilling indicates that magmatic rocks of the Lesser Caucasus are extended northward under thick sedimentary cover of the Kura Depression up to the Greater Caucasus. These rocks form hidden petroleum-bearing traps of a newly identified type. On the basis of geophysical studies (mainly inexpensive magnetic and electric methods), a new copper-polymetallic province in the Greater Caucasus has been revealed. a newly developed integrated approach and special information-statistical techniques for processing and interpretation of geophysical data facilitate detection of important geological features, e.g. hidden intersections of linear structures that control location of large commercial ore and oil-and-gas deposits, as well as focuses of dangerous geodynamic events at a depth. Numerous illustrations (including colour) elucidate different problems and solutions on various scales and in diverse geological-geophysical environments. Many aspects of this book have been presented at the teaching courses for bachelors, masters and doctors at the Tel-Aviv University (Tel Aviv, Israel) and Ben-Gurion University (Be'er-Sheva, Israel). Benefits to readers are predetermined by the combination of the authors many-years personal experience in the geophysical studies of Azerbaijan and other regions of the Caucasus with the authors' knowledge of the modern level of geophysics in the world.
This volume presents a collection of papers given at a Rhine-LUCIFS (Land use and climate impact on fluvial systems), the aim being to bring together researchers with longstanding experience in developing concepts and modelling approaches for long term landscape evolution and scientists involved in more classical studies on the evolution of the Rhine river system. It is divided into two parts: part one reviews the Rhine river system and gives case studies to demonstrate the types of data that can be extracted from sedimentary archives. Part two provides a state of the art review on concepts for fluvial system research, as well as modelling the components of large river basins, written by leading European scientists in this field.
This IMA Volume in Mathematics and its Applications NONLINEAR PHENOMENA IN ATMOSPHERIC AND OCEANIC SCIENCES is based on the proceedings of a workshop which was an integral part of the 1989-90 IMA program on "Dynamical Systems and their Applications". The aim of this workshop was to promote cross-fertilization of ideas between investigators who are using nonlinear dynamical systems and numerical simulations to study the earth's atmosphere and oceans. We thank George F. Carnevale, Shui-Nee Chow, Martin Golubitsky, Richard McGehee, Raymond Pierrehumbert and George R. Sell for organizing the meeting. We especially thank George F. Carnevale and Raymond Pierrehumbert for editing the proceedings. We also take this opportunity to thank those agencies whose financial support made the workshop possible: the Army Research Office, the Minnesota Supercom puter Institute, the National Science Foundation, and the Office of Naval Research. A vner Friedman Willard Miller, Jr. PREFACE When we took on this project, we did not realize we were organizing a workshop on two-dimensional fluid dynamics. The participants who were invited had been working on a broad range of mathematically challenging problems related to atmo spheric and oceanic phenomena, and they were given carte blanche to talk about their current interests. With few exceptions, the favored subject involved one or another aspect of fluid flow in two dimensions.
This is a fair overview of the basic problems in Solar Physics. The authors address not only the physics that is well understood but also discuss many open questions. The lecturers' involvement in the SOHO mission guarantees a modern and up-to-date analysis of observational data and makes this volume an extremely valuable source for further research.
A knowledge of linear systems provides a firm foundation for the study of optimal control theory and many areas of system theory and signal processing. State-space techniques developed since the early sixties have been proved to be very effective. The main objective of this book is to present a brief and somewhat complete investigation on the theory of linear systems, with emphasis on these techniques, in both continuous-time and discrete-time settings, and to demonstrate an application to the study of elementary (linear and nonlinear) optimal control theory. An essential feature of the state-space approach is that both time-varying and time-invariant systems are treated systematically. When time-varying systems are considered, another important subject that depends very much on the state-space formulation is perhaps real-time filtering, prediction, and smoothing via the Kalman filter. This subject is treated in our monograph entitled "Kalman Filtering with Real-Time Applications" published in this Springer Series in Information Sciences (Volume 17). For time-invariant systems, the recent frequency domain approaches using the techniques of Adamjan, Arov, and Krein (also known as AAK), balanced realization, and oo H theory via Nevanlinna-Pick interpolation seem very promising, and this will be studied in our forthcoming monograph entitled "Mathematical Ap proach to Signal Processing and System Theory." The present elementary treatise on linear system theory should provide enough engineering and mathe of these two subjects."
Although there are some biological processes that are supported by
UV radiation, most organisms are stressed by it in various ways,
e.g. through DNA damage.
The geodynamic evolution of the Mediterranean region has been often described as a puzzling problem' because of the complex space-time distribution of tectonic events. The gathering of new constraining information and frequent changes of data and ideas among the scientists working on this topic seems to be the most suitable approach to the above problem. This volume reports the most significant results of geological, geophysical, seismological, volcanological, paleomagnetic studies and the geodynamic syntheses presented, and discussed. Special attention is devoted to regions, such as the Aegean--Anatolian and central Mediterranean, which played a crucial role in the evolution of the whole Mediterranean area. A considerable improvement in the understanding of the post-Tortonian deformation pattern of the Tyrrhenian--Apennine system has been achieved by recent geological and geophysical investigations. The geodynamic implications of the data presently available might provide important insights into the evolution of continental collision zones, where shortening processes may also involve lateral extrusion of crustal wedges and consumption of continental-like lithosphere. The main uncertainties which still surround the relative motion between Africa and Eurasia in the Mediterranean region are also pointed out. The arguments reported in this volume are mainly addressed to research scientists and advanced students of the earth sciences. (abstract) This volume reports information about the evolutionary history and the present structural-tectonic setting of the Mediterranean region, which has been presented and discussed during a meeting on Recent Evolution and Seismicity of the Mediterranean Region', held in Erice (Italy) in September 1992. Recent results of geological, geophysical, seismological, volcanological and paleomagnetic studies are described. The geodynamic implications of the presently available data set might provide important insights into the evolution of continental collision zones, where shortening processes may also involve lateral extrusion of crustal wedges and consumption of continental-like lithosphere.
Relativistic celestial mechanics - investigating the motion celestial bodies under the influence of general relativity - is a major tool of modern experimental gravitational physics. With a wide range of prominent authors from the field, this two-volume series consists of reviews on a multitude of advanced topics in the area of relativistic celestial mechanics - starting from more classical topics such as the regime of asymptotically-flat spacetime, light propagation and celestial ephemerides, but also including its role in cosmology and alternative theories of gravity as well as modern experiments in this area. This first volume of a two-volume series is concerned with theoretical foundations such as post-Newtonian solutions to the two-body problem, light propagation through time-dependent gravitational fields, as well as cosmological effects on the movement of bodies in the solar systems. On the occasion of his 80-th birthday, these two volumes honor V. A. Brumberg - one of the pioneers in modern relativistic celestial mechanics. Contributions include: M. Soffel: On the DSX-framework T. Damour: The general relativistic two body problem G. Schaefer: Hamiltonian dynamics of spinning compact binaries through high post-Newtonian approximations A. Petrov and S. Kopeikin: Post-Newtonian approximations in cosmology T. Futamase: On the backreaction problem in cosmology Y. Xie and S. Kopeikin: Covariant theory of the post-Newtonian equations of motion of extended bodies S. Kopeikin and P. Korobkov: General relativistic theory of light propagation in multipolar gravitational fields
This book deals with the theory and the applications of a new time domain, termed natural time domain, that has been forwarded by the authors almost a decade ago (P.A. Varotsos, N.V. Sarlis and E.S. Skordas, Practica of Athens Academy 76, 294-321, 2001; Physical Review E 66, 011902, 2002). In particular, it has been found that novel dynamical features hidden behind time series in complex systems can emerge upon analyzing them in this new time domain, which conforms to the desire to reduce uncertainty and extract signal information as much as possible. The analysis in natural time enables the study of the dynamical evolution of a complex system and identifies when the system enters a critical stage. Hence, natural time plays a key role in predicting impending catastrophic events in general. Relevant examples of data analysis in this new time domain have been published during the last decade in a large variety of fields, e.g., Earth Sciences, Biology and Physics. The book explains in detail a series of such examples including the identification of the sudden cardiac death risk in Cardiology, the recognition of electric signals that precede earthquakes, the determination of the time of an impending major mainshock in Seismology, and the analysis of the avalanches of the penetration of magnetic flux into thin films of type II superconductors in Condensed Matter Physics. In general, this book is concerned with the time-series analysis of signals emitted from complex systems by means of the new time domain and provides advanced students and research workers in diverse fields with a sound grounding in the fundamentals of current research work on detecting (long-range) correlations in complex time series. Furthermore, the modern techniques of Statistical Physics in time series analysis, for example Hurst analysis, the detrended fluctuation analysis, the wavelet transform etc., are presented along with their advantages when natural time domain is employed.
The book is comprised of lectures and selected contributions presented at the Enzo Levi and XVI Annual Meeting of the Fluid Dynamic Division of the Mexican Physical Society in 2010. It is aimed at fourth year undergraduate and graduate students, as well as scientists in the fields of physics, engineering and chemistry with an interest in fluid dynamics from the experimental and theoretical point of view. The lectures are introductory and avoid the use of complicated mathematics. The other selected contributions are also geared to fourth year undergraduate and graduate students. The fluid dynamics applications include multiphase flow, convection, diffusion, heat transfer, rheology, granular material, viscous flow, porous media flow, geophysics and astrophysics. The material contained in the book includes recent advances in experimental and theoretical fluid dynamics and will be of great use to those involved in either teaching and/or research.
This book contains the proceedings of a workshop held in Schloss Ringberg to assess developments in molecular cloud research over the last 25 years, and to discuss trends for future research in the field of molecular line astronomy. The topics include the morphology, formation, and lifetimes of molecular clouds, and their relation to star formation. Also, the chemical and isotopic content of these clouds is reviewed, and comparisons with molecular clouds in external galaxies are made. This rather complete survey of this important field of research addresses researchers in astronomy and students alike."
This is the first volume of a series on a regular up-to-date coverage of important developments in astronomy and astrophysics jointly published by ESO and Springer-Verlag. Here the reader finds a thorough review of the abundances of the elements up to Boron. Special emphasis is laid on primordial abundances of interest to cosmologists in particular, and on stellar production or destruction respectively. The articles written for researchers and graduate students cover theory and most recent data from telescope observations. |
You may like...
Tampa's Historic Cemeteries
Shelby Jean Roberson Bender, Elizabeth Laramie Dunham
Hardcover
|