![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Inorganic chemistry
Spectroscopic Properties of Inorganic and Organometallic Compounds provides a unique source of information on an important area of chemistry. Divided into sections mainly according to the particular spectroscopic technique used, coverage in each volume includes: NMR (with reference to stereochemistry, dynamic systems, paramagnetic complexes, solid state NMR and Groups 13-18); nuclear quadrupole resonance spectroscopy; vibrational spectroscopy of main group and transition element compounds and coordinated ligands; and electron diffraction. Reflecting the growing volume of published work in this field, researchers will find this Specialist Periodical Report an invaluable source of information on current methods and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading experts in their specialist fields, this series is designed to help the chemistry community keep current with the latest developments in their field. Each volume in the series is published either annually or biennially and is a superb reference point for researchers. www.rsc.org/spr
This book is about how to avoid the accidents and injuries that may occur when batteries are abused or mishandled. It is the first book to deal specifically with this subject in a reasonably comprehensive manner accessible to readers ranging from regular consumers to technical specialists. Batteries and battery processes are described in sufficient detail to enable readers to understand why and how batteries cause accidents and what can be done to prevent them. Each year in the United States alone, thousands of individuals are injured by battery accidents, some of which are severely disabling. The tragedy is that such accidents need not occur. The book is intended to satisfy the needs of a varied group of readers: battery users in general, battery engineers, and designers of battery-operated equipment and consumer electronics. Since the book is a reference source of information on batteries and battery chemicals, we believe it may also be useful to those studying the environment as well as to medical personnel called upon to treat battery injuries. There are no prerequisites for an under standing of the text other than an interest in batteries and their safe usage."
The almost universal presence of water in our everyday lives and the very common' nature of its presence and properties possibly deflects attention from the fact that it has a number of very unusual characteristics which, furthermore, are found to be extremely sensitive to physical parameters, chemical environment and other influences. Hydrogen-bonding effects, too, are not restricted to water, so it is necessary to investigate other systems as well, in order to understand the characteristics in a wider context. Hydrogen Bond Networks reflects the diversity and relevance of water in subjects ranging from the fundamentals of condensed matter physics, through aspects of chemical reactivity to structure and function in biological systems.
Spectroscopic Properties of Inorganic and Organometallic Compounds provides a unique source of information on an important area of chemistry. Divided into sections mainly according to the particular spectroscopic technique used, coverage in each volume includes: NMR (with reference to stereochemistry, dynamic systems, paramagnetic complexes, solid state NMR and Groups 13-18); nuclear quadrupole resonance spectroscopy; vibrational spectroscopy of main group and transition element compounds and coordinated ligands; and electron diffraction. Reflecting the growing volume of published work in this field, researchers will find this Specialist Periodical Report an invaluable source of information on current methods and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading experts in their specialist fields, this series is designed to help the chemistry community keep current with the latest developments in their field. Each volume in the series is published either annually or biennially and is a superb reference point for researchers. www.rsc.org/spr
There is a certain fascination associated with words. The manipulation of strings of symbols according to mutually accepted rules allows a language to express history as well as to formulate challenges for the future. But language changes as old words are used in a new context and new words are created to describe changing situations. How many words has the computer revolution alone added to languages? "Inorganometallic" is a word you probably have never encountered before. It is one created from old words to express a new presence. A strange sounding word, it is also a term fraught with internal contradiction caused by the accepted meanings of its constituent parts. "In organic" is the name of a discipline of chemistry while "metallic" refers to a set of elements constituting a subsection of that discipline. Why then this Carrollian approach to entitling a set of serious academic papers? Organic, the acknowledged doyenne of chemistry, is distinguished from her brother, inorganic, by the prefix "in," i. e. , he gets everything not organic. Organometallic refers to compounds with carbon-metal bonds. It is simple! Inorganometallic is everything else, i. e. , compounds with noncarbon-metal element bonds. But why a new term? Is not inorganic sufficient? By virtue of training, limited time, resources, co-workers, and so on, chemists tend to work on a specific element class, on a particular compound type, or in a particular phase. Thus, one finds element-oriented chemists (e. g.
This volume differs somewhat from the previous volumes in the
series in that there is a strong emphasis on the physical aspects
and not so much on the chemical aspects of intermetallic compounds.
Two of the chapters are concerned with relatively new experimental
methods of studying rare earth metallic phases - high energy
neutron spectroscopy and light scattering. In these chapters the
authors explain the new kinds of information one obtains from these
techniques and how this complements the knowledge previously
gleaned from the more common measurements - such as NMR, heat
capacities, magnetic susceptibility, transport and elastic
properties. One of the remaining three chapters deals with NMR
studies of rare earth intermetallics and the final two chapters are
concerned, not so much with a particular experimental technique,
but with physical phenomena that occur in these compounds: the
electron-phonon interaction and heavy fermion behavior.
Polyolefin is a major industry that is important for our economy and impacts every aspect of our lives. The discovery of new transition metal-based catalysts is one of the driving forces for the further advancement of this field. Whereas the classical heterogeneous Ziegler-Natta catalysts and homogeneous early transition metal metallocene catalysts remain the workhorses of the polyolefin industry, in roughly the last decade, tremendous progress has been made in developing non-metallocene-based olefin polymerization catalysts. Particularly, the discovery of late transition metal-based olefin polymerization catalysts heralds a new era for this field. These late transition metal complexes not only exhibit high activities rivaling their early metal counterparts, but more importantly they offer unique properties for polymer architectural control and copolymerization with polar olefins. In this book, the most recent major breakthroughs in the development of new olefin polymerization catalysts, including early metal metallocene and non-metallocene complexes and late transition metal complexes, are discussed by leading experts. The authors highlight the most important discoveries in catalysts and their applications in designing new polyolefin-based functional materials.
Spectroscopic Properties of Inorganic and Organometallic Compounds provides a unique source of information on an important area of chemistry. Divided into sections mainly according to the particular spectroscopic technique used, coverage in each volume includes: NMR (with reference to stereochemistry, dynamic systems, paramagnetic complexes, solid state NMR and Groups 13-18); nuclear quadrupole resonance spectroscopy; vibrational spectroscopy of main group and transition element compounds and coordinated ligands; and electron diffraction. Reflecting the growing volume of published work in this field, researchers will find this Specialist Periodical Report an invaluable source of information on current methods and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading experts in their specialist fields, this series is designed to help the chemistry community keep current with the latest developments in their field. Each volume in the series is published either annually or biennially and is a superb reference point for researchers. www.rsc.org/spr
Bioinorganic chemistry is primarily concerned with the role of metal atoms in biology and is a very active research field. However, even though such important structures of metalloenzymes are known, as the MoFeCo of nitrogenase, Cu or Mn superoxide dismutase and plastocyanin, the synthetic routes to the modelling of such centers remains a matter of acute scientific interest. Other metalloenzymes, such as the Mn center of the oxygen evolving complex of PSII, are still the focus of in-depth examination, both spectroscopic and structural. Another area of concern is the interaction between drugs and metals and metal ion antagonism. Understanding the chemistry of metal ions in biological systems will bring benefits in terms of understanding such problems as biomineralization and the production of advanced materials by micro-organisms. The 29 contributions to Bioinorganic Chemistry: An Inorganic Perspective of Life give an excellent summary of the state of the art in this field, covering areas from the NMR of paramagnetic molecules to the use of lanthanide porphyrins in artificial batteries.
Carbon is chemically versatile and is thus the body and soul of biological, geological, ecological and economic systems. Its appropriation by humans through diversion of its biogeochemical cycle has been a mainstay of development. This domestication is characterized by a number of thresholds: control of fire, development of agriculture, expansion of Europe, fossil-fuel use and biotechnology. All have exacted an environmental toll, not least being climatic change and biodiversity loss. Carbon management now and in the future is a hot' political issue.There is no existing book which focuses on the pivotal role of carbon in the environment and society and the ways in which carbon has been domesticated in time and space to generate wealth and political advantage. Students of environmental science, geography, biology and general science will find this work invaluable as a cross-disciplinary text.
In this reference, the author thoroughly reviews the current state of condensed phosphate chemistry. A unique feature of this volume is an examination of the recent developments in X-ray structural techniques, reporting on fundamental results obtained through their use. Enhanced by comprehensive tables reporting crystal data, chapters identify and characterize more than 2,000 compounds. Additional features include a concise survey of the historical development of condensed phosphate chemistry; the presently accepted classification system; a review of each family of condensed phosphates and much more.
This book outlines the interaction of cadmium with the proteome and signalling molecules of mammalian cells. Chapters from expert contributors cover topics such as cadmium chemical biology, membrane receptors and transporters for cadmium and cadmium complexes, and targets of cadmium toxicity. Students and researchers working in bioinorganic chemistry will find this book an important account.
Spectroscopic Properties of Inorganic and Organometallic Compounds provides a unique source of information on an important area of chemistry. Divided into sections mainly according to the particular spectroscopic technique used, coverage in each volume includes: NMR (with reference to stereochemistry, dynamic systems, paramagnetic complexes, solid state NMR and Groups 13-18); nuclear quadrupole resonance spectroscopy; vibrational spectroscopy of main group and transition element compounds and coordinated ligands; and electron diffraction. Reflecting the growing volume of published work in this field, researchers will find this Specialist Periodical Report an invaluable source of information on current methods and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading experts in their specialist fields, this series is designed to help the chemistry community keep current with the latest developments in their field. Each volume in the series is published either annually or biennially and is a superb reference point for researchers. www.rsc.org/spr
Spectroscopic Properties of Inorganic and Organometallic Compounds provides a unique source of information on an important area of chemistry. Divided into sections mainly according to the particular spectroscopic technique used, coverage in each volume includes: NMR (with reference to stereochemistry, dynamic systems, paramagnetic complexes, solid state NMR and Groups 13-18); nuclear quadrupole resonance spectroscopy; vibrational spectroscopy of main group and transition element compounds and coordinated ligands; and electron diffraction. Reflecting the growing volume of published work in this field, researchers will find this Specialist Periodical Report an invaluable source of information on current methods and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading experts in their specialist fields, this series is designed to help the chemistry community keep current with the latest developments in their field. Each volume in the series is published either annually or biennially and is a superb reference point for researchers. www.rsc.org/spr
Packed bed columns are largely employed for absorption, desorption,
rectification and direct heat transfer processes in chemical and
food industry, environmental protection and also processes in
thermal power stations like water purification, flue gas heat
utilization and SO2 removal.
Spectroscopic Properties of Inorganic and Organometallic Compounds provides a unique source of information on an important area of chemistry. Divided into sections mainly according to the particular spectroscopic technique used, coverage in each volume includes: NMR (with reference to stereochemistry, dynamic systems, paramagnetic complexes, solid state NMR and Groups 13-18); nuclear quadrupole resonance spectroscopy; vibrational spectroscopy of main group and transition element compounds and coordinated ligands; and electron diffraction. Reflecting the growing volume of published work in this field, researchers will find this Specialist Periodical Report an invaluable source of information on current methods and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading experts in their specialist fields, this series is designed to help the chemistry community keep current with the latest developments in their field. Each volume in the series is published either annually or biennially and is a superb reference point for researchers. www.rsc.org/spr
Spectroscopic Properties of Inorganic and Organometallic Compounds provides a unique source of information on an important area of chemistry. Divided into sections mainly according to the particular spectroscopic technique used, coverage in each volume includes: NMR (with reference to stereochemistry, dynamic systems, paramagnetic complexes, solid state NMR and Groups 13-18); nuclear quadrupole resonance spectroscopy; vibrational spectroscopy of main group and transition element compounds and coordinated ligands; and electron diffraction. Reflecting the growing volume of published work in this field, researchers will find this Specialist Periodical Report an invaluable source of information on current methods and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading experts in their specialist fields, this series is designed to help the chemistry community keep current with the latest developments in their field. Each volume in the series is published either annually or biennially and is a superb reference point for researchers. www.rsc.org/spr
Spectroscopic Properties of Inorganic and Organometallic Compounds provides a unique source of information on an important area of chemistry. Divided into sections mainly according to the particular spectroscopic technique used, coverage in each volume includes: NMR (with reference to stereochemistry, dynamic systems, paramagnetic complexes, solid state NMR and Groups 13-18); nuclear quadrupole resonance spectroscopy; vibrational spectroscopy of main group and transition element compounds and coordinated ligands; and electron diffraction. Reflecting the growing volume of published work in this field, researchers will find this Specialist Periodical Report an invaluable source of information on current methods and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading experts in their specialist fields, this series is designed to help the chemistry community keep current with the latest developments in their field. Each volume in the series is published either annually or biennially and is a superb reference point for researchers. www.rsc.org/spr
Hydrogen Bonding a " New Insights is an extensive text which takes numerous examples from experimental studies and uses these to illustrate theoretical investigations to allow a greater understanding of hydrogen bonding phenomenon. The most important topics in recent studies are considered including: Intra-molecular H-bonds Differences between H-bond and van der Waals interactions from one side and covalent bonds from the other Bader theory to analyze H-bonding Influence of weak H-bonds upon structure and function of biological molecules H-bonds in crystal structures With contributions from some of the foremost experts in this field this volume provides an invaluable resource for all members of the academic community looking for a comprehensive text on hydrogen bonding. It will be of particular interest to physical and theoretical chemists, spectroscopists, crystallographers and those involved with chemical physics.
Mixed valency is one of various names used to describe compounds which contain ions of the same element in two different formal states of oxidation. The existence of mixed valency systems goes far back into the geological evolutionary history of the earth and other planets, while a plethora of mixed valency minerals has attracted attention since antiquity. Indeed, control of the oxidation states of Fe in its oxides (FeO, Fe304' Fe203) was elegantly used in vase painting by the ancient Greeks to produce the characteristic black and red Attic ceramics (Z. Goffer, "Archaeological Chemistry," Wiley, New York, 1980). It was, however, only 25 years ago that two reviews of mixed valency appeared in the literature almost simultaneously, signalling the first attempt to treat mixed valency systems as a separate class of compounds whose properties can be correlated with the molecular and the electronic structure of their members. Then mixed valency phenomena attracted the interest of disparate classes of scientists, ranging from synthetic chemists to solid state physicists and from biologists to geologists. This activity culminated with the NATO ASI meeting in Oxford in 1979. The 1980's saw again a continuing upsurge of interest in mixed valency. Its presence is a necessary factor in the search for highly conducting materials, including molecular metals and superconductors. The highly celebrated high T c ceramic superconducting oxides are indeed mixed valency compounds.
D. Santamaria-Perez and F. Liebau : Structural relationships between intermetallic clathrates, porous tectosilicates and clathrates hydrates Vladislav A. Blatov: Crystal structures of inorganic oxoacid salts perceived as cation arrays: a periodic graph approach Angel Vegas: FeLiPO4: Dissection of a crystal structure. The parts and the whole D. J. M. Bevan, R. L. Martin, Angel Vegas: Rationalisation of the substructures derived from the three fluorite-related [Li6(MVLi)N4] polymorphs: An analysis in terms of the "Barnighausen Trees" and of the "Extended Zintl-Klemm Concept" Angel Vegas: Concurrent pathways in the phase transitions of alloys and oxides: Towards an Unified Vision of Inorganic Solids
Since the discovery of ferrocene and the sandwich-type complexes, the development of organometallic chemistry took its course like an avalanche and became one of the scientific success stories of the second half of the twentieth century. Based on this development, the traditional boundaries between inorganic and organic chemistry gradually disappeared and a rebirth of the nowadays highly important field of homogeneous catalysis occurred. It is fair to say that despite the fact that the key discovery, which sparked it all off, was made more than 50 years ago, organometallic chemistry remains a young and lively discipline.
During the last decade there has been a renewed interest in under standing from a fundamental point of view the gasification of carbon. Basi cally there are two major issues in controlling the reactivity of carbon: i) reduction of the gasification rate of carbon materials in hostile environment ii) increase of the gasification rate in order to utilize carbonaceous compounds more effectively. Although these two objectives look somewhat contradictory, they are part of the general topics of understanding gasification reactivity of carbon. Refractory applications of carbon in furnace linings, seals and vanes, as well as the use of carbon-carbon or carbon-ceramic composites in struc tures able to withstand corrosion at high temperature require a better understanding of the fundamentals involved in carbon-oxidizing gas (02' CO, H 0) reactions. Furthermore a great interest of aluminium producers 2 2 is 10 extending the lifetime of carbon electrodes in alumina electrolysis which primarily depends on reducing their consumption rates by air or carbon dioxide. Proper control of gasification reactions is also of prime importance in manufacturing carbonaceous adsorbents like granular activated carbon clothes of high adsorption characteristics. The balance between increase of porosity and decrease in mechanical strength during activation is critical for developing new porous types of carbon materials in particular for carbon clothes and this can only be achieved by a careful control of the gasification reaction." |
You may like...
Education and the Kyoto School of…
Paul Standish, Naoko Saito
Hardcover
R2,669
Discovery Miles 26 690
Comprehensive Nuclear Materials
Rudy Konings, Roger Stoller
Hardcover
R78,910
Discovery Miles 789 100
Teaching-Learning dynamics
Monica Jacobs, Ntombizolile Vakalisa, …
Paperback
R618
Discovery Miles 6 180
The Yew Chung Approach to Early…
Stephanie C. Sanders-Smith, Sylvia Ya-Hsuan Yang, …
Hardcover
R3,785
Discovery Miles 37 850
Rethinking Education in the Context of…
Uma Pradhan, Karen Valentin, …
Hardcover
R3,919
Discovery Miles 39 190
Knowledge Management and Research…
Lawrence J. Jones-Esan, Mir Sayed Shah Danish, …
Hardcover
R5,253
Discovery Miles 52 530
Helping Students Become Powerful…
Alan Schoenfeld, Heather Fink, …
Hardcover
R3,942
Discovery Miles 39 420
|