![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Inorganic chemistry
This book describes the origins and evolution of the chemical elements we and the cosmos are made of. The story starts with the discovery of the common elements on Earth and their subsequent discovery in space. How do we learn the composition of the distant stars? How did progress in quantum theory, nuclear physics, spectroscopy, stellar structure and evolution, together with observations of stars, converge to provide an incredibly detailed picture of the universe? How does research in the micro-world explain the macro-world? How does progress in one affect the other, or lack of knowledge in one inhibit progress in the other? In short, Shaviv describes how we discovered the various pieces of the jigsaw that form our present picture of the universe; and how we sometimes put these in the wrong place before finding in the right one. En route we meet some fascinating personalities and learn about heated controversies. Shaviv shows how science lurched from one dogma to the next, time and again shattering much of what had been considered solid knowledge, until eventually a stable understanding arose. Beginning with generally accepted science, the book ends in today's terra incognita of nuclear physics, astrophysics and cosmology. A monumental work that will fascinate scientists, philosophers, historians and lay readers alike.
MILS-14 provides a most up-to-date view of the exciting biogeochemistry of gases in our environment as driven mostly by microorganisms. These employ a machinery of sophisticated metalloenzymes, where especially transition metals (such as Fe, Ni, Cu, Mo, W) play a fundamental role, that is, in the activation, transformation and syntheses of gases like dihydrogen, methane, carbon monoxide, acetylene and those of the biological nitrogen and sulfur cycles. The Metal-Driven Biogeochemistry of Gaseous Compounds in the Environment is a vibrant research area based mainly on structural and microbial biology, inorganic biological chemistry and environmental biochemistry. All this is covered in an authoritative manner in 11 stimulating chapters, written by 26 internationally recognized experts and supported by nearly 1200 references, informative tables and about 100 illustrations (two thirds in color). MILS-14 also provides excellent information for teaching. Peter M. H. Kroneck is a bioinorganic chemist who is exploring the role of transition metals in biology, with a focus on functional and structural aspects of microbial iron, copper and molybdenum enzymes and their impact on the biogeochemical cycles of nitrogen and sulfur. Martha E. Sosa Torres is an inorganic chemist, with special interests in magnetic properties of newly synthesized transition metal complexes and their reactivity towards molecular oxygen, applying kinetic, electrochemical and spectroscopic techniques.
This book focuses on a variety of photochemical reaction processes in the crystalline state. The crystalline state reaction is a new category of solid state reaction, in which a reaction occurs with retention of the single crystal form. The whole reaction processes were observed directly by X-ray and neutron diffractions. In this book, not only the structures of metastable intermediates, such as radicals, carbenes, and nitrenes, but also the unstable species of photochromic compounds and photo-excited structures are shown with colored figures of the molecular structures, with more than 200 figures. The book is an indispensable resource not only for organic, inorganic and physical chemists but also for graduate students, as it furnishes more than 300 references.
This thesis describes the first and long-sought successful synthesis of a new pyrazole-expanded porphyrin, a higher analog of porphyrin. This "Siamese-Twin Porphyrin" provides two conjoined porphyrin-like coordination spheres, thus being able to accommodate two metal ions within the same ligand. In her thesis, Lina Blusch not only explains the challenging synthesis and characterization of the ligand system, but also its application to the synthesis of homo- and hetero-bimetallic Ni and Cu complexes. She observes interesting metal-metal-interactions in the complexes, that lead to a non-innocent multistep redox chemistry. The ligand system and its complexes show an intriguing twisted geometry, giving rise to helical chirality and other fascinating properties. This study explores the first steps and opens up a new chemistry of expanded porphyrins with the potential to biomimetic applications.
This book underscores the essential principles of photocatalysis and provides an update on its scientific foundations, research advances, and current opinions, and interpretations. It consists of an introduction to the concepts that form the backbone of photocatalysis, from the principles of solid-state chemistry and physics to the role of reactive oxidizing species. Having recognised the organic link with chemical kinetics, part of the book describes kinetic concepts as they apply to photocatalysis. The dependence of rate on the reaction conditions and parameters is detailed, the retrospective and prospective aspects of the mechanism of photocatalysis are highlighted, and the adsorption models, photocatalytic rate expressions, and kinetic disguises are examined. This book also discusses the structure, property, and activity relationship of prototypical semiconductor photocatalysts and reviews how to extend their spectral absorption to the visible region to enable the effective use of visible solar spectrum. Lastly, it presents strategies for deriving substantially improved photoactivity from semiconductor materials to support the latest applications and potential trends.
The commercial availability and decreasing cost of polyhedral oligomeric silsesquioxanes in recent years has opened up the field to everybody who wishes to apply these unique properties in their own technologies. This is the first book to provide a comprehensive overview of these applications, and covers the synthesis, characterization and history of polyhedral oligomeric silsesquioxanes, their use as metallasilsesquioxane catalysts, their effect upon polymer properties and plastics performance, and their use in superhydrophobic nanocomposites, and electronics, energy, space and biomedical applications. "Applications of Polyhedral Oligomeric Silsesquioxanes" is a valuable reference for those working across a range of disciplines, including chemists, materials scientists, polymer physicists, plastics engineers, surface scientists, and anybody with a commercial or academic interest in plastics, composite materials, space materials, dental materials, tissue engineering, drug delivery, lithography, fuel cells, batteries, lubricants, or liquid crystal, LED, sensor, photovoltaic or biomedical devices.
Despite the fact that chemical applications of ultrasound are now widely acknowledged, a detailed presentation of inorganic systems covering nano-particles, catalysis, aqueous chemistry of metallic solutions and their redox characteristics, both from a theoretical and experimental perspective has eluded researchers of this field. "Theoretical and Experimental Sonochemistry Involving Inorganic Systems" fills this gap and presents a concise and thorough review of this fascinating area of Sonochemistry in a single volume.
In this thesis, Claudia Backes guides the reader through her multidisciplinary research into the non-covalent functionalization of carbon nanotubes in water. Although one of the most remarkable materials of the 21st century, carbon nanotubes often have limited application because of their intrinsically low solubility and polydispersity. The author shows that rational surfactant design is a powerful tool for chemists because it can unmask the key to solubilization and allow us to tailor nanotube surface and optical properties in a fully reversible fashion. Aspects of organic, physical and analytical chemistry, as well as colloidal sciences are covered in this outstanding work which brings us one step closer to exploiting this super-material to its full potential.
Volume 15 in this series continues the voyage of discovery started almost a decade ago. Chapter 98 adds significantly to an evaluation of systematic, experimental low-temperature studies of the ambivalent behaviours of cerium (ferromagnetism, antiferromagnetism, spin glass, superconductivity etc.) which depend upon its environment in materials. The conclusions arrived at should provide new data against which the theory can be advanced. The next chapter provides a review of rare earth carbides, emphasizing the thermodynamics, phase diagrams, crystal structures and physical properties. The binary rare earth carbides present an exceptionally wide range of compositions and structures both as solids and gas-phase molecules. Complex carbides with additional metal and non-metal components also receive attention. Metal-rich halides (i.e. compounds with an X/R ratio <2) are the subject of the next chapter. The compounds are classified according to their structure and chemical bonding characteristics and their electrical and magnetic properties are also reviewed. Chapter 101 deals with the preparation, structure, chemical and physical properties of heavy-metal fluoride glasses. Large amounts of rare earths can be added into these, and they possess a great potential for optical applications in the mid-infrared range as fiber optic glasses for communication and transmission of information, optical wave guides, fiber lasers and sensors. The following chapter explores the chemical kinetics of solvent and ligand exchange in aqueous lanthanide solutions. A wealth of tabulated information on rate and equilibrium constants is provided in textual and tabular form. Chapter 103 considers the fundamentally important reactions of the lanthanide ions with water. These interactions are discussed for both solids and solutions. The hydrated species are considered in detail for the aqueous solution, revealing the consequences of the lanthanide series sequence. The concluding chapter reviews macrocyclic complexes formed by rare earth and dioxouranium ions as templates. Synthetic trends and reactivity are considered as well as potential uses of these intriguing wrap-around structures.
Solid-state chemistry is becoming increasingly important as its relevance is recognized in subjects as diverse as superconductivity and heterogeneous catalysis. There has been a long-felt need for an authoritative account of the properties of inorganic solids and of the methods for studying them, written at a level suitable for final-year undergraduates studying the subject as a special topic or for first-year graduate students embarking on research in the field. This and the previous volume aim to fill that gap. This second volume deals with the electronic structure and bonding in solids, and then focuses on several important classes of inorganic compounds.
Electrochemical processes are long known but are becoming increasingly important again, due to modern applications, such as electro-mobility or energy storage. Thus, electrochemistry is not only a topic for chemists and physicists, but also for technical engineers. This book addresses all aspects of electrochemistry, which are important in these days: electrodes, corrosion, interphases, processes, energy storage, analytical methods, and sensors.
Fluorine Chemistry for Organic Chemists consists of 105 examples of surprising reactions. The reactions are shown as problems in the first part of the book. In the second part, explanations are offered and mechanisms of the reactions are discussed. Many of these reactions are real surprises, even for fluorine chemists.
This series provides an unequalled source of information on an area of chemistry that continues to grow in importance. Divided into sections mainly according to the particular spectroscopic technique used, coverage in each volume includes: NMR (with reference to stereochemistry, dynamic systems, paramagnetic complexes, solid state NMR and Groups 13-18); nuclear quadrupole resonance spectroscopy; vibrational spectroscopy of main group and transition element compounds and coordinated ligands; and electron diffraction. Reflecting the growing volume of published work in the field, researchers will find this an invaluable source of information on current methods and applications.
This thesis focuses on the development of gold- and non-classical platinum-based anti-cancer agents that display distinctively different anti-cancer mechanisms compared to the commonly used cisplatin. These metal complexes contain N-heterocyclic carbene (NHC) ligands which are able to form strong M-C(NHC) bonds, conferring high stability and favorable lipophilicity, reactivity and binding specificity of metal complexes on biomolecules. The author demonstrates significant advances made in anti-cancer gold(III), gold(I) and platinum(II) complexes. Detailed chemical synthesis, in vitro and/or in vivo anti-cancer activities are clearly presented including: (i) a class of Au(III) complexes containing a highly fluorescent N^N^N ligand and NHC ligand that simultaneously act as fluorescent thiol "switch-on" probes and anti-cancer agents; (ii) a dinuclear gold(I) complex with a mixed diphosphine and bis(NHC) ligand displaying favorable stability and showing significant inhibition of tumor growth in two independent mice models with no observable side effects; and (iii) a panel of stable luminescent cyclometalated platinum(II) complexes exhibiting high specificity to localize to the endoplasmic reticulum (ER) domain, inducing ER stress and cell apoptosis. These works highlight the clinical potential that gold and platinum complexes offer for cancer treatment.
The art of chemistry is to thoroughly understand the properties of molecular compounds and materials and to be able to prepare novel compounds with p- dicted and desirable properties. The basis for progress is to fully appreciate and fundamentally understand the intimate relation between structure and function. The thermodynamic properties (stability, selectivity, redox potential), reactivities (bond breaking and formation, catalysis, electron transfer) and electronic properties (spectroscopy, magnetism) depend on the structure of a compound. Nevertheless, the discovery of novel molecular compounds and materials with exciting prop- ties is often and to a large extent based on serendipity. For compounds with novel and exciting properties, a thorough analysis of experimental data - state-of-the-art spectroscopy, magnetism, thermodynamic properties and/or detailed mechanistic information - combined with sophisticated electronic structure calculations is p- formed to interpret the results and fully understand the structure, properties and their interrelation. From these analyses, new models and theories may emerge, and this has led to the development of ef cient models for the design and interpre- tion of new materials and important new experiments. The chapters in this book therefore describe various fundamental aspects of structures, dynamics and physics of molecules and materials. The approaches, data and models discussed include new theoretical developments, computational studies and experimental work from molecular chemistry to biology and materials science.
The series Structure and Bonding publishes critical reviews on
topics of research concerned with chemical structure and bonding.
The scope of the series spans the entire Periodic Table and
addresses structure and bonding issues associated with all of the
elements. It also focuses attention on new and developing areas of
modern structural and theoretical chemistry such as nanostructures,
molecular electronics, designed molecular solids, surfaces, metal
clusters and supramolecular structures. Physical and spectroscopic
techniques used to determine, examine and model structures fall
within the purview of Structure and Bonding to the extent that the
focus is on the scientific results obtained and not on specialist
information concerning the techniques themselves. Issues associated
with the development of bonding models and generalizations that
illuminate the reactivity pathways and rates of chemical processes
are also relevant.The individual volumes in the series are
thematic. The goal of each volume is to give the reader, whether at
a university or in industry, a comprehensive overview of an area
where new insights are emerging that are of interest to a larger
scientific audience. Thus each review within the volume critically
surveys one aspect of that topic and places it within the context
of the volume as a whole. The most significant developments of the
last 5 to 10 years should be presented using selected examples to
illustrate the principles discussed. A description of the physical
basis of the experimental techniques that have been used to provide
the primary data may also be appropriate, if it has not been
covered in detail elsewhere. The coverage need not be exhaustive in
data, but should rather be conceptual, concentrating on the new
principles being developed that will allow the reader, who is not a
specialist in the area covered, to understand the data presented.
Discussion of possible future research directions in the area is
welcomed. Review articles for the individual volumes are invited by
the volume editors.
[2,3]-Sigmatropic RearrangementsofAllylic Sulfur Compounds M. Reggelin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 [2,3]-SigmatropicRearrangementsofPropargylicandAllenicSystems S. Braverman.M. Cherkinsky. . . . . . . . . . . . . . . . . . . . . . . 67 SulfurParticipation in[3,3]-Sigmatropic Rearrangements R. FernandezdelaPradilla.M. Tortosa.A. Viso. . . . . . . . . . . . . 103 Thione ThiolRearrangement: Miyazaki Newman KwartRearrangementandOthers C. Zonta.O. DeLucchi.R. Volpicelli.L. Cotarca. . . . . . . . . . . . . 131 TheSmilesRearrangement andtheJulia Kocienski Ole?nationReaction K. Plesniak.A. Zarecki.J. Wicha . . . . . . . . . . . . . . . . . . . . . 163 AuthorIndexVolumes251 275. . . . . . . . . . . . . . . . . . . . . . 251 Subject Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 ContentsofVolume274 Sulfur-MediatedRearrangementsI Volume Editor: Ernst Schaumann ISBN: 978-3-540-68097-0 SulfurisMoreThantheFatBrotherofOxygen. AnOverviewofOrganosulfurChemistry E."
T. Ziegler: A Chronicle About the Development of Electronic Structure Theories for Transition Metal Complexes.- J. Linderberg: Orbital Models and Electronic Structure Theory.- J.S. and J.E. Avery: Sturmians and Generalized Sturmians in Quantum Theory.- B.T Sutcliffe: Chemistry as a "Manifestation of Quantum Phenomena" and the Born-Oppenheimer Approximation?- A.J. McCaffery: From Ligand Field Theory to Molecular Collision Dynamics: A Common Thread of Angular Momentum.- M. Atanasov, D. Ganyushin, K. Sivalingam and F. Neese: A Modern First-Principles View on Ligand Field Theory Through the Eyes of Correlated Multireference Wavefunctions.- R.S. Berry and B.M. Smirnov: The Phase Rule: Beyond Myopia to Understanding.
This book describes a series of contemporary techniques and their combinations used for CNTs solubilization, from physical to chemical and biological, applying inorganic and organic compounds, as well as some metal complexes. In some cases, successive steps can be applied, for instance the use of low and high-weight surfactants, or mineral acid treatment for creation of -OH and -COOH groups and their further interaction with organic molecules. Each discussed method leads to an improvement of CNT solubility, frequently a considerable one. The formed dispersions can be stable for long periods of time, from several weeks to some months, and they sometimes even remain stable after centrifugation. Several special studies have been carried out in the areas of influence of solvent and light on CNTs dispersibility, combinations and abilities of surfactants, CNT cytotoxicity, etc. Applications of solubilized CNTs are discussed in this book as well.
S.C. Singhal and X.-D. Zhou: Solid Oxide Fuel Cells.- H. Wang and H.D. Abruna/: Electrocatalysis of Direct Alcohol Fuel Cells: Quantitative DEMS Studies.- J. Benziger, A. Bocarsly, M.J. Cheah, P.Majsztrik, B. Satterfield and Q. Zhao: Mechanical and Transport Properties of Nafion: Effects of Temperature and Water Activity.- S. Sachdeva, J. A. Turner, J.L. Horana and A. M. Herring: The Use of Heteropoly Acids in Proton Exchange Fuel Cells.- M. T. Kelly: Perspective on the Storage of Hydrogen: Past and Future.-"
Written by a preeminent teacher and scientist in the field, this
book provides specialists, students, and general readers with an
understanding of the basic chemistry of interactions of inorganic
substances with biological systems at the molecular level. The
author presents bioinorganic concepts in context and brings a
distinct chemistry perspective to the subject.
This volume on iron-sulfur proteins includes chapters that describe the initial discovery of iron-sulfur proteins in the 1960s to elucidation of the roles of iron sulfur clusters as prosthetic groups of enzymes, such as the citric acid cycle enzyme, aconitase, and numerous other proteins, ranging from nitrogenase to DNA repair proteins. The capacity of iron sulfur clusters to accept and delocalize single electrons is explained by basic chemical principles, which illustrate why iron sulfur proteins are uniquely suitable for electron transport and other activities. Techniques used for detection and stabilization of iron-sulfur clusters, including EPR and Mossbauer spectroscopies, are discussed because they are important for characterizing unrecognized and elusive iron sulfur proteins. Recent insights into how nitrogenase works have arisen from multiple advances, described here, including studies of high-resolution crystal structures.
R. Bruce King: Structure and Bonding in Zintl Ions and Related Main Group Element Clusters Stefanie Gartner, Nikolaus Korber: Polyanions of Group 14 and Group 15 Elements in Alkali and Alkaline Earth Metal Solid State Compounds and Solvate Structures Bryan Eichhorn, Sanem Kocak: Dynamic Properties of the Group 14 Zintl Ions and Their Derivatives Thomas F. Fassler: Relationships between soluble Zintl anions, ligand-stabilized cage compounds, and intermetalloid clusters of tetrel (Si Pb) and pentel (P Bi) elements Gerasimos S. Armatas, Mercouri Kanatzidis: Germanium-Based Porous Semiconductors from Molecular Zintl Anions
This book is an excellent compilation of cutting-edge research in heterogeneous catalysis and related disciplines - surface science, organometallic catalysis, and enzymatic catalysis. In 23 chapters by noted experts, the volume demonstrates varied approaches using model systems and their successes in understanding aspects of heterogeneous catalysis, both metal- and metal oxide-based catalysis in extended single crystal and nanostructured catalytic materials. To truly appreciate the astounding advances of modern heterogeneous catalysis, let us first consider the subject from a historical perspective. Heterogeneous catalysis had its beginnings in England and France with the work of scientists such as Humphrey Davy (1778-1829), Michael Faraday (1791-1867), and Paul Sabatier (1854-1941). Sabatier postulated that surface compounds, si- lar to those familiar in bulk to chemists, were the intermediate species leading to catalytic products. Sabatier proposed, for example, that NiH moieties on a Ni sur- 2 face were able to hydrogenate ethylene, whereas NiH was not. In the USA, Irving Langmuir concluded just the opposite, namely, that chemisorbed surface species are chemically bound to surfaces and are unlike known molecules. These chemisorbed species were the active participants in catalysis. The equilibrium between gas-phase molecules and adsorbed chemisorbed species (yielding an adsorption isotherm) produced a monolayer by simple site-filling kinetics.
In their analysis of experiments and in their planning of syntheses, organic chemistsconsciouslyorunconsciouslytendtousetheprincipleofleastmotion, thechemicalequivalentofOccam'srazor. Inrearrangementreactionsthispr- ciple is violated and may make rearrangements problematic reactions. At the sametime, thereisalwaysfascinationintheunexpectedandsorearrangement reactionsarealsoanattractive?eldofstudy. Consequently, ourunderstanding of rearrangement reactions is now quite advanced and allows strategic uses in organic synthesis. Here, a helpful tool that may easily be overlooked is thein?uence oforganosulfurfunctionalitiesontheserearrangements. Infact, the presence of sulfur may make rearrangements predictable and productive or allow speci?c transformations which would otherwise require a tedious synthetic detour. The present account is meant to spread this knowledge. In addition, an introductory chapter gives a survey of the basics of organosulfur chemistry to put the information in the individual chapters into perspective and to help readers who are less familiar with the peculiarities of sulfur in an organicenvironment. Theamountofmaterialrequiringcoveragewassovastthatthevolumehadto besplitintotwoparts. Wehopethatreaderswillappreciatethecomprehensive and up-to-date information on sulfur-mediated rearrangements. Fortunately, leading experts were available to write the individual chapters and provide state-of-the-artreviews ofthecurrent researchonsulfur-mediated rearran- ments. It was a pleasure to work with these colleagues and I appreciate their involvement in spite of many other obligations. This volume should help the chemical community in their synthetic workand so it was worththe effort. Clausthal-Zellerfeld, October 2006 Ernst Schaumann Contents SulfurisMoreThantheFatBrotherofOxygen. AnOverviewofOrganosulfurChemistry E. Schaumann. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 RecentAdvancesinPummererReactions S. Akai.Y. Kita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 1,2-SulfurMigrations A. W. Sromek.V. Gevorgyan. . . . . . . . . . . . . . . . . . . . . . . . 77 1,3-SulfurShifts: MechanismandSyntheticUtility S. K. Bur. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 AuthorIndexVolumes251-274. . . . . . . . . . . . . . . . . . . . . . 173 Subject Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 ContentsofVolume275 Sulfur-MediatedRearrangementsII Volume Editor: Ernst Schaumann ISBN: 978-3-540-68099-4 2,3]-Sigmatropic RearrangementsofAllylic Sulfur Compounds M. Reggelin 2,3]Sigmatropic RearrangementsofPropargylic andAllenicSystems S. Braverman .M." |
You may like...
Amazing Patterns - Adult Coloring Book…
Adult Coloring Books, Coloring Books for Adults, …
Paperback
R260
Discovery Miles 2 600
Cellular and Molecular Aspects of…
Niccolo Bartalucci, Lorenzo Galluzzi
Hardcover
R5,773
Discovery Miles 57 730
School-Based Behavioral Intervention…
Michael I. Axelrod, Melissa Coolong Chaffin, …
Paperback
R1,235
Discovery Miles 12 350
|