Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Chemistry > Inorganic chemistry
This book extends the development of the thermodynamic theory of specific intermolecular interactions to element-organic and specific organometallic compounds. The fundamentals of an unconventional approach to the theory of H-bonding and specific interactions are formulated, based on a concept of pentacoordinate carbon atoms. Prof. Baev has introduced the theory already in his successful books "Specific Intermolecular Interactions of Organic Compounds" and "Specific Intermolecular Interactions of Nitrogenated and Bioorganic Compounds". In this book he also demonstrates it for element organic and specific organometallic compounds, a class of substances which is of great importance in synthetic chemistry and catalysis. Furthermore, organic compound classes, that have not been treated in the previous books, are included. New types of hydrogen bonds and specific interactions are substantiated and their energies are determined on the basis of the developed methodology. In this way, the influence of the molecular structure on the energy and on intermolecular interactions can be discussed for these particular compound classes.
[2,3]-Sigmatropic RearrangementsofAllylic Sulfur Compounds M. Reggelin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 [2,3]-SigmatropicRearrangementsofPropargylicandAllenicSystems S. Braverman.M. Cherkinsky. . . . . . . . . . . . . . . . . . . . . . . 67 SulfurParticipation in[3,3]-Sigmatropic Rearrangements R. FernandezdelaPradilla.M. Tortosa.A. Viso. . . . . . . . . . . . . 103 Thione ThiolRearrangement: Miyazaki Newman KwartRearrangementandOthers C. Zonta.O. DeLucchi.R. Volpicelli.L. Cotarca. . . . . . . . . . . . . 131 TheSmilesRearrangement andtheJulia Kocienski Ole?nationReaction K. Plesniak.A. Zarecki.J. Wicha . . . . . . . . . . . . . . . . . . . . . 163 AuthorIndexVolumes251 275. . . . . . . . . . . . . . . . . . . . . . 251 Subject Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 ContentsofVolume274 Sulfur-MediatedRearrangementsI Volume Editor: Ernst Schaumann ISBN: 978-3-540-68097-0 SulfurisMoreThantheFatBrotherofOxygen. AnOverviewofOrganosulfurChemistry E."
This book discusses recent progress in endohedral fullerenes - their production and separation techniques, as well as their characterization and properties. Furthermore, the book delves into the all-important issue of stability by investigating electron transfer between the encapsulated metal species and the carbon cage. It also reviews spin-based phenomena caused by the shielding of endohedral spin by the fullerene, and analyzes formation of the spin states by charge transfer as studied by electron spin resonance. Tuning of charge states of endohedral species and of spin states of both the cage and the cluster are explained. Finally, the book considers the recent discovery of magnetism in some endohedral fullerenes, and the potential for quantum computing.
In his thesis, Sohail Shahzad carefully investigates carbon nucleophiles in selenocyclisations, as well as reaction protocols for performing such reactions catalytically. After a comprehensive introduction to the element selenium, the author goes on to report the synthesis of several substrates for carbocyclisation reactions and the use of selenium reagents for the preparation of dihydronaphthalenes. Further chapters detail electrophilic selenium-mediated reactions, and novel strategies using selenium catalysts together with stoichiometric amounts of hypervalent iodine reagents as oxidants to convert stilbene carbosylic acids into the corresponding isocoumarins. This thesis outlines some excellent new synthetic routes which will be useful tools for synthetic organic chemistry in the future.
The rare earths represent a group of chemical elements, the lanthanides, together with scandium and yttrium, which exhibit similar chemical properties. They are strategically important to developed and developing nations as they have a wide variety of applications in catalysis, the defense industry, aerospace, the materials and life sciencesand in sustainable energy technologies. The Handbook on the Physics and Chemistry of the Rare Earths is
acontinuing authoritative series that deals with thescience and
technology of the rare earth elements in an integrated manner. Each
chapter is a comprehensive, up-to-date, critical review of a
particular segment of the field. The work offers the researcher and
graduate student a complete and thorough coverage of this
fascinating field.
In their analysis of experiments and in their planning of syntheses, organic chemistsconsciouslyorunconsciouslytendtousetheprincipleofleastmotion, thechemicalequivalentofOccam'srazor. Inrearrangementreactionsthispr- ciple is violated and may make rearrangements problematic reactions. At the sametime, thereisalwaysfascinationintheunexpectedandsorearrangement reactionsarealsoanattractive?eldofstudy. Consequently, ourunderstanding of rearrangement reactions is now quite advanced and allows strategic uses in organic synthesis. Here, a helpful tool that may easily be overlooked is thein?uence oforganosulfurfunctionalitiesontheserearrangements. Infact, the presence of sulfur may make rearrangements predictable and productive or allow speci?c transformations which would otherwise require a tedious synthetic detour. The present account is meant to spread this knowledge. In addition, an introductory chapter gives a survey of the basics of organosulfur chemistry to put the information in the individual chapters into perspective and to help readers who are less familiar with the peculiarities of sulfur in an organicenvironment. Theamountofmaterialrequiringcoveragewassovastthatthevolumehadto besplitintotwoparts. Wehopethatreaderswillappreciatethecomprehensive and up-to-date information on sulfur-mediated rearrangements. Fortunately, leading experts were available to write the individual chapters and provide state-of-the-artreviews ofthecurrent researchonsulfur-mediated rearran- ments. It was a pleasure to work with these colleagues and I appreciate their involvement in spite of many other obligations. This volume should help the chemical community in their synthetic workand so it was worththe effort. Clausthal-Zellerfeld, October 2006 Ernst Schaumann Contents SulfurisMoreThantheFatBrotherofOxygen. AnOverviewofOrganosulfurChemistry E. Schaumann. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 RecentAdvancesinPummererReactions S. Akai.Y. Kita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 1,2-SulfurMigrations A. W. Sromek.V. Gevorgyan. . . . . . . . . . . . . . . . . . . . . . . . 77 1,3-SulfurShifts: MechanismandSyntheticUtility S. K. Bur. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 AuthorIndexVolumes251-274. . . . . . . . . . . . . . . . . . . . . . 173 Subject Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 ContentsofVolume275 Sulfur-MediatedRearrangementsII Volume Editor: Ernst Schaumann ISBN: 978-3-540-68099-4 2,3]-Sigmatropic RearrangementsofAllylic Sulfur Compounds M. Reggelin 2,3]Sigmatropic RearrangementsofPropargylic andAllenicSystems S. Braverman .M."
This book is an excellent compilation of cutting-edge research in heterogeneous catalysis and related disciplines - surface science, organometallic catalysis, and enzymatic catalysis. In 23 chapters by noted experts, the volume demonstrates varied approaches using model systems and their successes in understanding aspects of heterogeneous catalysis, both metal- and metal oxide-based catalysis in extended single crystal and nanostructured catalytic materials. To truly appreciate the astounding advances of modern heterogeneous catalysis, let us first consider the subject from a historical perspective. Heterogeneous catalysis had its beginnings in England and France with the work of scientists such as Humphrey Davy (1778-1829), Michael Faraday (1791-1867), and Paul Sabatier (1854-1941). Sabatier postulated that surface compounds, si- lar to those familiar in bulk to chemists, were the intermediate species leading to catalytic products. Sabatier proposed, for example, that NiH moieties on a Ni sur- 2 face were able to hydrogenate ethylene, whereas NiH was not. In the USA, Irving Langmuir concluded just the opposite, namely, that chemisorbed surface species are chemically bound to surfaces and are unlike known molecules. These chemisorbed species were the active participants in catalysis. The equilibrium between gas-phase molecules and adsorbed chemisorbed species (yielding an adsorption isotherm) produced a monolayer by simple site-filling kinetics.
Failure by the international community to make substantive progress in reducing CO2 emissions, coupled with recent evidence of accelerating climate change, has brought increasing urgency to the search for additional remediation approaches. This book presents a selection of state-of-the-art geoengineering methods for deliberately reducing the effects of anthropogenic climate change, either by actively removing greenhouse gases from the atmosphere or by decreasing the amount of sunlight absorbed at the Earth's surface. These methods contrast with more conventional mitigation approaches which focus on reducing emissions of greenhouse gases, especially carbon dioxide. Geoengineering technologies could become a key tool to be used in conjunction with emissions reduction to limit the magnitude of climate change. Featuring authoritative, peer-reviewed entries from the Encyclopedia of Sustainability Science and Technology, this book presents a wide range of climate change remediation technologies.
This series provides an unequalled source of information on an area of chemistry that continues to grow in importance. Divided into sections mainly according to the particular spectroscopic technique used, coverage in each volume includes: NMR (with reference to stereochemistry, dynamic systems, paramagnetic complexes, solid state NMR and Groups 13-18); nuclear quadrupole resonance spectroscopy; vibrational spectroscopy of main group and transition element compounds and coordinated ligands; and electron diffraction. Reflecting the growing volume of published work in the field, researchers will find this an invaluable source of information on current methods and applications. Volume 39 provides a critical review of the literature published up to late 2004.
Advances in Inorganic Chemistry presents timely and informative summaries of the current progress in a variety of subject areas within inorganic chemistry, ranging from bioinorganic to solid state. This acclaimed serial features reviews written by experts in the area and is an indispensable reference to advanced researchers. Each volume of Advances in Inorganic Chemistry contains an index, and each chapter is fully referenced.
This continuing authoritative series deals with the chemistry,
materials science, physics and technology of the rare earth
elements. Volume 38 of the Handbook on the Physics and Chemistry of
Rare Earth incorporates a recapitulation of the scientific
achievements and contributions made by the late Professor LeRoy
Eyring (1919-2005) to the science of the lanthanide oxides in which
the lanthanide element has a valence equal to or greater than
three.
The book starts with an introduction on silicon isotopes and related analytical methods, and explains the mechanisms of silicon isotope fractionation. Silicon isotope distributions in lithosphere, hydrosphere and biosphere are shown based on results from field studies, and silicon isotope relevance for applications are presented.
The nature and directionality of halogen bonding; the sigma hole, by Timothy Clark, Peter Politzer, Jane S. Murray Solid-state NMR study of halogen-bonded adducts, by David Bryce Infrared and Raman measurements of halogen bonding in cryogenic solutions, by Wouter Herrebout Halogen bonding in the gas phase, by Anthony C. Legon Halogen bonding in solution, Mate Erdelyi Unconventional motifs for halogen bonding, by Kari Rissanen Halogen bonding in supramolecular synthesis, Christer Aakeroey Halogen bond in synthetic organic chemistry, Stefan M. Huber Anion recognition in solution via halogen bonding, Mark S. Taylor Anion transport with halogen bonds, by Stefan Matile Halogen bonding in silico drug design, by Pavel Hobza, Kevin Riley Biological halogen bonds: An old dog with new tricks, by P. Shing Ho Principles and applications of halogen bonding in medicinal chemistry, by Frank M. Boeckler Halogen bond in molecular conductors and magnets, by Marc Foumigue Halogen bonding towards design of organic phosphors, by Wei Jun Jin Halogen bond in photoresponsive materials, by Pierangelo Metrangolo, Giuseppe Resnati, Arri Priimagi
This book covers the latest progress in the field of transparent ceramics, emphasizing their processing as well as solid-state lasers. It consists of 10 chapters covering the synthesis, characterization and compaction, fundamentals of sintering, densification of transparent ceramics by different methods as well as transparent ceramic applications. This book can be used as a reference for senior undergraduate to postgraduate students, researchers, engineers and material scientists working in solid-state physics.
Ruthenium Oxidation Complexes explores ruthenium complexes, particularly those in higher oxidation states, which function as useful and selective organic oxidation catalysts. Particular emphasis is placed on those systems which are of industrial significance. The preparation, properties and applications of the ruthenium complexes are described, followed by a presentation of their oxidative properties and summary of the different mechanisms involved in the organic oxidations (e.g. oxidations of alcohols, alkenes, arenes and alkynes, alkanes, amines, ethers, phopshines and miscellaneous substrates). Moreover, future trends and developments in the area are discussed. This monograph is aimed at inorganic, organic, industrial and catalysis chemists, especially those who wish to carry out specific organic oxidations using catalytic methods.
The series Structure and Bonding publishes critical reviews on
topics of research concerned with chemical structure and bonding.
The scope of the series spans the entire Periodic Table and
addresses structure and bonding issues associated with all of the
elements. It also focuses attention on new and developing areas of
modern structural and theoretical chemistry such as nanostructures,
molecular electronics, designed molecular solids, surfaces, metal
clusters and supramolecular structures. Physical and spectroscopic
techniques used to determine, examine and model structures fall
within the purview of Structure and Bonding to the extent that the
focus is on the scientific results obtained and not on specialist
information concerning the techniques themselves. Issues associated
with the development of bonding models and generalizations that
illuminate the reactivity pathways and rates of chemical processes
are also relevant.The individual volumes in the series are
thematic. The goal of each volume is to give the reader, whether at
a university or in industry, a comprehensive overview of an area
where new insights are emerging that are of interest to a larger
scientific audience. Thus each review within the volume critically
surveys one aspect of that topic and places it within the context
of the volume as a whole. The most significant developments of the
last 5 to 10 years should be presented using selected examples to
illustrate the principles discussed. A description of the physical
basis of the experimental techniques that have been used to provide
the primary data may also be appropriate, if it has not been
covered in detail elsewhere. The coverage need not be exhaustive in
data, but should rather be conceptual, concentrating on the new
principles being developed that will allow the reader, who is not a
specialist in the area covered, to understand the data presented.
Discussion of possible future research directions in the area is
welcomed. Review articles for the individual volumes are invited by
the volume editors.
This book reviews some of the latest developments in the field of water treatment using multi-functional chitosan-based materials. It covers the production of chitosan beads and membranes from chitosan powder, as well as modification techniques for enhancing the material for commercial and industrial purposes. The book summarizes the results of experimental adsorption/desorption studies for elucidating the underlying reaction mechanism of heavy-metal removal from wastewater, presenting an advanced overview of an array of characterization techniques such as Fourier-transform infrared spectroscopy, thermogravimetric analysis, x-ray diffraction, and scanning electron microscopy. Additionally, it features a look at the development and application of specialized engineering software and image analysis for modelling the kinetics of adsorption. This book is ideal for scientists and engineers working in the broader field of environmental materials science. It is all well suited for chemists, as well as industrial and civil engineers, interested in wastewater treatment and mitigation of water pollution
This book is written for researchers and students interested in the function and role of chemical elements in biological or environmental systems. Experts have long known that the Periodic System of Elements (PSE) provides only an inadequate chemical description of elements of biological, environmental or medicinal importance. This book explores the notion of a Biological System of the Elements (BSE) established on accurate and precise multi-element data, including evolutionary aspects, representative sampling procedures, inter-element relationships, the physiological function of elements and uptake mechanisms. The book further explores the concept Stoichiometric Network Analysis (SNA) to analyze the biological roles of chemical species. Also discussed is the idea of ecotoxicological identity cards which give a first-hand description of properties relevant for biological and toxicological features of a certain chemical element and its geo biochemically plausible speciation form. The focus of this book goes beyond both classical bioinorganic chemistry and toxicology.
J.P. Dahl: Carl Johan Ballhausen (1926-2010).- J.R. Winkler and H.B. Gray: Electronic Structures of Oxo-Metal Ions.- C.D. Flint: Early Days in Kemisk Laboratorium IV and Later Studies.- J.H. Palmer: Transition Metal Corrole Coordination Chemistry. A Review Focusing on Electronic Structural Studies.- W.C. Trogler: Chemical Sensing with Semiconducting Metal Phthalocyanines.- K.M. Lancaster: Biological Outer-Sphere Coordination.- R.K. Hocking and E.I. Solomon: Ligand Field and Molecular Orbital Theories of Transition Metal X-ray Absorption Edge Transitions.- K.B. Moller and N.E. Henriksen: Time-resolved X-ray diffraction: The dynamics of the chemical bond.
Metal hydrides are of inestimable importance for the future of hydrogen energy. This unique monograph presents a clear and comprehensive description of the bulk properties of the metal-hydrogen system. The statistical thermodynamics is treated over a very wide range of pressure, temperature and composition. Another prominent feature of the book is its elucidation of the quantum mechanical behavior of interstitial hydrogen atoms, including their states and motion. The important topic of hydrogen interaction with lattice defects and its materials-science implications are also discussed thoroughly. This second edition has been substantially revised and updated.
This book is devoted to the synthetic and physical chemistry of aromatic thiols and their closest derivatives, sulfides, sulfoxides, sulfones, including those substituted by various functional groups such as acyl and thioacyl, alkoxide, ester, hydroxyl and halogens. In some cases, for comparison, selenium and oxygen analogues are also detailed. The main focus of the book is on synthetic methods, both traditional and new, based on the use of transition metals as catalysts, as well as the reactivity of the compounds obtained. Its addition to the influence of conformational and electronic factors on spectral (NMR, IR, UV, NQR) and electrochemical characteristics of the compounds is presented. Finally, the book describes the application of aromatic thiols and their derivatives as drug precursors, high-tech materials, building blocks for organic synthesis, analytical reagents and additives for oils and fuels. It is a useful handbook for all those interested in organosulfur chemistry.
Advances in Inorganic Chemistry presents timely and informative summaries of the current progress in a variety of subject areas within inorganic chemistry, ranging from bioinorganic to solid state. This acclaimed serial features reviews written by experts in the area and is an indispensable reference to advanced researchers. Each volume of Advances in Inorganic Chemistry contains an index, and each chapter is fully referenced.
The series Structure and Bonding publishes critical reviews on topics of research concerned with chemical structure and bonding. The scope of the series spans the entire Periodic Table and addresses structure and bonding issues associated with all of the elements. It also focuses attention on new and developing areas of modern structural and theoretical chemistry such as nanostructures, molecular electronics, designed molecular solids, surfaces, metal clusters and supramolecular structures. Physical and spectroscopic techniques used to determine, examine and model structures fall within the purview of Structure and Bonding to the extent that the focus is on the scientific results obtained and not on specialist information concerning the techniques themselves. Issues associated with the development of bonding models and generalizations that illuminate the reactivity pathways and rates of chemical processes are also relevant. The individual volumes in the series are thematic. The goal of each volume is to give the reader, whether at a university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to a larger scientific audience. Thus each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years should be presented using selected examples to illustrate the principles discussed. A description of the physical basis of the experimental techniques that have been used to provide the primary data may also be appropriate, if it has not been covered in detail elsewhere. The coverage need not be exhaustive in data, but should rather be conceptual, concentrating on the new principles being developed that will allow the reader, who is not a specialist in the area covered, to understand the data presented. Discussion of possible future research directions in the area is welcomed. Review articles for the individual volumes are invited by the volume editors
Structure and Geometry.- Hierarchic structure.- The structure of quasicrystals: from diffraction patterns to atom positions.- Determination of quasi-crystal structures by higher dimensional analysis.- Six-dimensional atoms for a decorated three-dimensional Penrose tiling.- Metrical aspects of quasicrystal embedding in superspace.- Landau theory and direct methods for crystal structures analysis.- Geometry of films of amphiphile molecules: a curved space approach.- Geometrical approach of blue phases.- Electron microscopy and quasicrystals.- On the dark field imaging behaviour of icosahedral phases in rapidly cooled aluminium alloys.- Electron microscopy of modulated structures.- Models for Stability and Growth.- Physical models of perfect quasicrystal growth.- Generation and dynamics of defects in two-dimensional quasicrystals.- Intrinsic stability of quasicrystals and behavior under a load of Frenkel defects.- Reconstructive phase transition to the icosahedral phase.- Structure and growth of twoand three-dimensional hexatic liquid crystals.- The tiling structure of simple liquids: squares and triangles in two dimensions.- Does cholesteric blue phase III have an icosahedral structure ?.- Intrinsic frustration and space curvature in smectic A liquid crystals.- Critical behavior of polymorphic smectic-A liquid crystals.- Universal behavior in phospholipid multimembrane systems.- Pattern formation during the ordering processes in nematic liquid crystals.- Spatially modulated structures in models with competing interactions some new results.- Weakly periodic structures with a singular continuous spectrum.- The Anderson metal-insulator transition: incommensurate versus disordered systems.- Theory of phase transition between two incommensurate phases in NbTe4.- The origin of polytypes in SiC and ZnS.- Structural modulations in the high-temperature superconductor YBa2Cu3O7.? and semi conducting WO3-x, aspects of non-equilibrium behaviour.- Incommensurate modulations in bismuth-based high-Tc superconductors.- Incommensurate commensurate phase transition of Cu2-xTe. (x |
You may like...
Fire and Polymers - Materials and…
Charles A. Wilkie, Gordon L. Nelson, …
Hardcover
R2,961
Discovery Miles 29 610
ZIF-8 Based Materials for Water…
Awais Ahmad, Muhammad Pervaiz, …
Hardcover
R4,745
Discovery Miles 47 450
Practical Pharmaceutical In-Organic…
Bayya Subba Rao, Alagarsamy V
Hardcover
R1,468
Discovery Miles 14 680
The Science and Technology of Silicones…
Stephen J. Clarson, John J Fitzgerald, …
Hardcover
R2,525
Discovery Miles 25 250
Tools of Chemistry Education Research
Diane M Bunce, Renee S. Cole
Hardcover
R5,151
Discovery Miles 51 510
Ionic Liquids as Green Solvents…
Robin D. Rogers, Kenneth R. Seddon
Hardcover
R2,335
Discovery Miles 23 350
Fluorine-Related Nanoscience with Energy…
Donna Nelson, Christohpher Brammer
Hardcover
R2,685
Discovery Miles 26 850
|