Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Optimization > Linear programming
Optimization is the act of obtaining the "best" result under given circumstances. In design, construction, and maintenance of any engineering system, engineers must make technological and managerial decisions to minimize either the effort or cost required or to maximize benefits. There is no single method available for solving all optimization problems efficiently. Several optimization methods have been developed for different types of problems. The optimum-seeking methods are mathematical programming techniques (specifically, nonlinear programming techniques). Nonlinear Optimization: Models and Applications presents the concepts in several ways to foster understanding. Geometric interpretation: is used to re-enforce the concepts and to foster understanding of the mathematical procedures. The student sees that many problems can be analyzed, and approximate solutions found before analytical solutions techniques are applied. Numerical approximations: early on, the student is exposed to numerical techniques. These numerical procedures are algorithmic and iterative. Worksheets are provided in Excel, MATLAB(R), and Maple(TM) to facilitate the procedure. Algorithms: all algorithms are provided with a step-by-step format. Examples follow the summary to illustrate its use and application. Nonlinear Optimization: Models and Applications: Emphasizes process and interpretation throughout Presents a general classification of optimization problems Addresses situations that lead to models illustrating many types of optimization problems Emphasizes model formulations Addresses a special class of problems that can be solved using only elementary calculus Emphasizes model solution and model sensitivity analysis About the author: William P. Fox is an emeritus professor in the Department of Defense Analysis at the Naval Postgraduate School. He received his Ph.D. at Clemson University and has taught at the United States Military Academy and at Francis Marion University where he was the chair of mathematics. He has written many publications, including over 20 books and over 150 journal articles. Currently, he is an adjunct professor in the Department of Mathematics at the College of William and Mary. He is the emeritus director of both the High School Mathematical Contest in Modeling and the Mathematical Contest in Modeling.
The 5th edition of this classic textbook covers the central concepts of practical optimization techniques, with an emphasis on methods that are both state-of-the-art and popular. One major insight is the connection between the purely analytical character of an optimization problem and the behavior of algorithms used to solve that problem. End-of-chapter exercises are provided for all chapters. The material is organized into three separate parts. Part I offers a self-contained introduction to linear programming. The presentation in this part is fairly conventional, covering the main elements of the underlying theory of linear programming, many of the most effective numerical algorithms, and many of its important special applications. Part II, which is independent of Part I, covers the theory of unconstrained optimization, including both derivations of the appropriate optimality conditions and an introduction to basic algorithms. This part of the book explores the general properties of algorithms and defines various notions of convergence. In turn, Part III extends the concepts developed in the second part to constrained optimization problems. Except for a few isolated sections, this part is also independent of Part I. As such, Parts II and III can easily be used without reading Part I and, in fact, the book has been used in this way at many universities. New to this edition are popular topics in data science and machine learning, such as the Markov Decision Process, Farkas' lemma, convergence speed analysis, duality theories and applications, various first-order methods, stochastic gradient method, mirror-descent method, Frank-Wolf method, ALM/ADMM method, interior trust-region method for non-convex optimization, distributionally robust optimization, online linear programming, semidefinite programming for sensor-network localization, and infeasibility detection for nonlinear optimization.
The relaxation method has enjoyed an intensive development during many decades and this new edition of this comprehensive text reflects in particular the main achievements in the past 20 years. Moreover, many further improvements and extensions are included, both in the direction of optimal control and optimal design as well as in numerics and applications in materials science, along with an updated treatment of the abstract parts of the theory.
One of the most frequently occurring types of optimization problems involves decision variables which have to take integer values. From a practical point of view, such problems occur in countless areas of management, engineering, administration, etc., and include such problems as location of plants or warehouses, scheduling of aircraft, cutting raw materials to prescribed dimensions, design of computer chips, increasing reliability or capacity of networks, etc. This is the class of problems known in the professional literature as "discrete optimization" problems. While these problems are of enormous applicability, they present many challenges from a computational point of view. This volume is an update on the impressive progress achieved by mathematicians, operations researchers, and computer scientists in solving discrete optimization problems of very large sizes. The surveys in this volume present a comprehensive overview of the state of the art in discrete optimization and are written by the most prominent researchers from all over the world.
This book combines, in a novel and general way, an extensive development of the theory of families of commuting matrices with applications to zero-dimensional commutative rings, primary decompositions and polynomial system solving. It integrates the Linear Algebra of the Third Millennium, developed exclusively here, with classical algorithmic and algebraic techniques. Even the experienced reader will be pleasantly surprised to discover new and unexpected aspects in a variety of subjects including eigenvalues and eigenspaces of linear maps, joint eigenspaces of commuting families of endomorphisms, multiplication maps of zero-dimensional affine algebras, computation of primary decompositions and maximal ideals, and solution of polynomial systems. This book completes a trilogy initiated by the uncharacteristically witty books Computational Commutative Algebra 1 and 2 by the same authors. The material treated here is not available in book form, and much of it is not available at all. The authors continue to present it in their lively and humorous style, interspersing core content with funny quotations and tongue-in-cheek explanations.
This textbook provides concise coverage of the basics of linear and integer programming which, with megatrends toward optimization, machine learning, big data, etc., are becoming fundamental toolkits for data and information science and technology. The authors' approach is accessible to students from almost all fields of engineering, including operations research, statistics, machine learning, control system design, scheduling, formal verification and computer vision. The presentations enables the basis for numerous approaches to solving hard combinatorial optimization problems through randomization and approximation. Readers will learn to cast various problems that may arise in their research as optimization problems, understand the cases where the optimization problem will be linear, choose appropriate solution methods and interpret results appropriately.
This book provides a handy, unified introduction to the theory of compact extended formulations of exponential-size integer linear programming (ILP) models. Compact extended formulations are equally powerful, but polynomial-sized, models whose solutions do not require the implementation of separation and pricing procedures. The book is written in a general, didactic form, first developing the background theoretical concepts (polyhedra, projections, linear and integer programming) and then delving into the various techniques for compact extended reformulations. The techniques are illustrated through a wealth of examples touching on many application areas, such as classical combinatorial optimization, network design, timetabling, scheduling, routing, computational biology and bioinformatics. The book is intended for graduate or PhD students - either as an advanced course on selected topics or within a more general course on ILP and mathematical programming - as well as for practitioners and software engineers in industry exploring techniques for developing optimization models for their specific problems.
This text covers the basic theory and computation for mathematical modeling in linear programming. It provides a strong background on how to set up mathematical proofs and high-level computation methods, and includes substantial background material and direction. Paris presents an intuitive and novel discussion of what it means to solve a system of equations that is a crucial stepping stone for solving any linear program. The discussion of the simplex method for solving linear programs gives an economic interpretation to every step of the simplex algorithm. The text combines in a unique and novel way the microeconomics of production with the structure of linear programming to give students and scholars of economics a clear notion of what it means, formulating a model of economic equilibrium and the computation of opportunity cost in the presence of many outputs and inputs.
This book introduces the reader to the field of multiobjective optimization through problems with simple structures, namely those in which the objective function and constraints are linear. Fundamental notions as well as state-of-the-art advances are presented in a comprehensive way and illustrated with the help of numerous examples. Three of the most popular methods for solving multiobjective linear problems are explained, and exercises are provided at the end of each chapter, helping students to grasp and apply key concepts and methods to more complex problems. The book was motivated by the fact that the majority of the practical problems we encounter in management science, engineering or operations research involve conflicting criteria and therefore it is more convenient to formulate them as multicriteria optimization models, the solution concepts and methods of which cannot be treated using traditional mathematical programming approaches.
This unified volume is a collection of invited chapters presenting recent developments in the field of data analysis, with applications to reliability and inference, data mining, bioinformatics, lifetime data, and neural networks. The book is a useful reference for graduate students, researchers, and practitioners in statistics, mathematics, engineering, economics, social science, bioengineering, and bioscience.
"Discrete-Time Linear Systems: Theory and Design with Applications "combines system theory and design in order to show the importance of system theory and its role in system design. The book focuses on system theory (including optimal state feedback and optimal state estimation) and system design (with applications to feedback control systems and wireless transceivers, plus system identification and channel estimation).
This book presents an overview of the differential evolution algorithm. In the last few years the evolutionary computation domain has developed rapidly, and differential evolution is one of the representatives of this domain. It is a recently invented evolutionary algorithm that is gaining more and more popularity. Originally proposed for continuous unconstraint optimization, it was enlarged both for mixed optimization and for handling nonlinear constraints. Later on, new strategies, tuning, and adaptation of control parameters, ways of hybridization were elaborated. Attempts at theoretical analysis were accomplished as well. Moreover, the algorithm has a huge number of practical applications in different areas of science and industry.
This handbook aims to highlight fundamental, methodological and computational aspects of networks of queues to provide insights and to unify results that can be applied in a more general manner. The handbook is organized into five parts: Part 1 considers exact analytical results such as of product form type. Topics include characterization of product forms by physical balance concepts and simple traffic flow equations, classes of service and queue disciplines that allow a product form, a unified description of product forms for discrete time queueing networks, insights for insensitivity, and aggregation and decomposition results that allow sub networks to be aggregated into single nodes to reduce computational burden. "" Part 2 looks at monotonicity and comparison results such as for computational simplification by either of two approaches: stochastic monotonicity and ordering results based on the ordering of the process generators, and comparison results and explicit error bounds based on an underlying Markov reward structure leading to ordering of expectations of performance measures. "" Part 3 presents diffusion and fluid results. It specifically looks at the fluid regime and the diffusion regime. Both of these are illustrated through fluid limits for the analysis of system stability, diffusion approximations for multi-server systems, and a system fed by Gaussian traffic. Part 4 illustrates computational and approximate results through the classical MVA (mean value analysis) and QNA (queueing network analyzer) for computing mean and variance of performance measures such as queue lengths and sojourn times; numerical approximation of response time distributions; and approximate decomposition results for large open queueing networks. "" Part 5 enlightens selected applications as loss networks originating from circuit switched telecommunications applications, capacity sharing originating from packet switching in data networks, and a hospital application that is of growing present day interest. The book shows that the intertwined progress of theory and practice will remain to be most intriguing and will continue to be the basis of further developments in queueing networks."
In February 2002, the Industrial and Systems Engineering (ISE) De partment at the University of Florida hosted a National Science Founda tion Workshop on Collaboration and Negotiation in Supply Chain Man agement and E Commerce. This workshop focused on characterizing the challenges facing leading edge firms in supply chain management and electronic commerce, and identifying research opportunities for de veloping new technological and decision support capabilities sought by industry. The audience included practitioners in the areas of supply chain management and E Commerce, as well as academic researchers working in these areas. The workshop provided a unique setting that has facilitated ongoing dialog between academic researchers and industry practitioners. This book codifies many of the important themes and issues around which the workshop discussions centered. The editors of this book, all faculty members in the ISE Department at the University of Florida, also served as the workshop's coordinators. In addition to workshop participants, we also invited contributions from leading academics and practitioners who were not able to attend. As a result, the chapters herein represent a collection of research contributions, monographs, and case studies from a variety of disciplines and viewpoints. On the aca demic side alone, chapter authors include faculty members in supply chain and operations management, marketing, industrial engineering, economics, computer science, civil and environmental engineering, and building construction departments.
The original edition of this book was celebrated for its coverage of the central concepts of practical optimization techniques. This updated edition expands and illuminates the connection between the purely analytical character of an optimization problem, expressed by properties of the necessary conditions, and the behavior of algorithms used to solve a problem. Incorporating modern theoretical insights, this classic text is even more useful.
This book opens the door to multiobjective optimization for students in fields such as engineering, management, economics and applied mathematics. It offers a comprehensive introduction to multiobjective optimization, with a primary emphasis on multiobjective linear programming and multiobjective integer/mixed integer programming. A didactic book, it is mainly intended for undergraduate and graduate students, but can also be useful for researchers and practitioners. Further, it is accompanied by an interactive software package - developed by the authors for Windows platforms - which can be used for teaching and decision-making support purposes in multiobjective linear programming problems. Thus, besides the textbook's coverage of the essential concepts, theory and methods, complemented with illustrative examples and exercises, the computational tool enables students to experiment and enhance their technical skills, as well as to capture the essential characteristics of real-world problems.
This book introduces several topics related to linear model theory: multivariate linear models, discriminant analysis, principal components, factor analysis, time series in both the frequency and time domains, and spatial data analysis. The second edition adds new material on nonparametric regression, response surface maximization, and longitudinal models. The book provides a unified approach to these disparate subject and serves as a self-contained companion volume to the author's Plane Answers to Complex Questions: The Theory of Linear Models. Ronald Christensen is Professor of Statistics at the University of New Mexico. He is well known for his work on the theory and application of linear models having linear structure. He is the author of numerous technical articles and several books and he is a Fellow of the American Statistical Association and the Institute of Mathematical Statistics. Also Available: Christensen, Ronald. Plane Answers to Complex Questions: The Theory of Linear Models, Second Edition (1996). New York: Springer-Verlag New York, Inc. Christensen, Ronald. Log-Linear Models and Logistic Regression, Second Edition (1997). New York: Springer-Verlag New York, Inc.
Supply Chain Optimization captures the latest results in a segment of current research activity in supply chain management. This research area focuses on applying optimization techniques to supply chain management problems. The research papers that make up the volume provide a snapshot of state-of-the-art optimization methods within the field. This book presents rigorous modelling approaches for supply chain operations problems with a goal of improving supply chain performance (or the performance of some segment thereof). It contains high-quality works from leading researchers in the field whose expertise fits within this scope. The book provides a diverse blend of research topics and novel modelling and solution approaches for difficult classes of supply chain operations, planning, and design problems.
The era of interior point methods (IPMs) was initiated by N. Karmarkar's 1984 paper, which triggered turbulent research and reshaped almost all areas of optimization theory and computational practice. This book offers comprehensive coverage of IPMs. It details the main results of more than a decade of IPM research. Numerous exercises are provided to aid in understanding the material.
Along with the traditional material concerning linear programming (the simplex method, the theory of duality, the dual simplex method), In-Depth Analysis of Linear Programming contains new results of research carried out by the authors. For the first time, the criteria of stability (in the geometrical and algebraic forms) of the general linear programming problem are formulated and proved. New regularization methods based on the idea of extension of an admissible set are proposed for solving unstable (ill-posed) linear programming problems. In contrast to the well-known regularization methods, in the methods proposed in this book the initial unstable problem is replaced by a new stable auxiliary problem. This is also a linear programming problem, which can be solved by standard finite methods. In addition, the authors indicate the conditions imposed on the parameters of the auxiliary problem which guarantee its stability, and this circumstance advantageously distinguishes the regularization methods proposed in this book from the existing methods. In these existing methods, the stability of the auxiliary problem is usually only presupposed but is not explicitly investigated. In this book, the traditional material contained in the first three chapters is expounded in much simpler terms than in the majority of books on linear programming, which makes it accessible to beginners as well as those more familiar with the area.
This monograph presents a collection of results, observations, and examples related to dynamical systems described by linear and nonlinear ordinary differential and difference equations. In particular, dynamical systems that are susceptible to analysis by the Liapunov approach are considered. The naive observation that certain "diagonal-type" Liapunov functions are ubiquitous in the literature attracted the attention of the authors and led to some natural questions. Why does this happen so often? What are the spe cial virtues of these functions in this context? Do they occur so frequently merely because they belong to the simplest class of Liapunov functions and are thus more convenient, or are there any more specific reasons? This monograph constitutes the authors' synthesis of the work on this subject that has been jointly developed by them, among others, producing and compiling results, properties, and examples for many years, aiming to answer these questions and also to formalize some of the folklore or "cul ture" that has grown around diagonal stability and diagonal-type Liapunov functions. A natural answer to these questions would be that the use of diagonal type Liapunov functions is frequent because of their simplicity within the class of all possible Liapunov functions. This monograph shows that, although this obvious interpretation is often adequate, there are many in stances in which the Liapunov approach is best taken advantage of using diagonal-type Liapunov functions. In fact, they yield necessary and suffi cient stability conditions for some classes of nonlinear dynamical systems."
In this book, the author considers separable programming and, in particular, one of its important cases - convex separable programming. Some general results are presented, techniques of approximating the separable problem by linear programming and dynamic programming are considered. Convex separable programs subject to inequality/ equality constraint(s) and bounds on variables are also studied and iterative algorithms of polynomial complexity are proposed. As an application, these algorithms are used in the implementation of stochastic quasigradient methods to some separable stochastic programs. Numerical approximation with respect to I1 and I4 norms, as a convex separable nonsmooth unconstrained minimization problem, is considered as well. Audience: Advanced undergraduate and graduate students, mathematical programming/ operations research specialists. |
You may like...
Nonlinear Analysis and Variational…
Panos M. Pardalos, Themistocles M. Rassias, …
Hardcover
Global Optimization - From Theory to…
Leo Liberti, Nelson Maculan
Hardcover
R3,047
Discovery Miles 30 470
Graphs and Algorithms in Communication…
Arie Koster, Xavier Munoz
Hardcover
Continuous-Time Markov Decision…
Xianping Guo, Onesimo Hernandez-Lerma
Hardcover
R3,031
Discovery Miles 30 310
|