![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Optimization > Linear programming
This book gives a complete classification of all algebras with the Kadison-Singer property, when restricting to separable Hilbert spaces. The Kadison-Singer property deals with the following question: given a Hilbert space H and an abelian unital C*-subalgebra A of B(H), does every pure state on A extend uniquely to a pure state on B(H)? This question has deep connections to fundamental aspects of quantum physics, as is explained in the foreword by Klaas Landsman. The book starts with an accessible introduction to the concept of states and continues with a detailed proof of the classification of maximal Abelian von Neumann algebras, a very explicit construction of the Stone-Cech compactification and an account of the recent proof of the Kadison-Singer problem. At the end accessible appendices provide the necessary background material. This elementary account of the Kadison-Singer conjecture is very well-suited for graduate students interested in operator algebras and states, researchers who are non-specialists of the field, and/or interested in fundamental quantum physics.
Many mechanics and physics problems have variational formulations making them appropriate for numerical treatment by finite element techniques and efficient iterative methods. This book describes the mathematical background and reviews the techniques for solving problems, including those that require large computations such as transonic flows for compressible fluids and the Navier-Stokes equations for incompressible viscous fluids. Finite element approximations and non-linear relaxation, augmented Lagrangians, and nonlinear least square methods are all covered in detail, as are many applications. "Numerical Methods for Nonlinear Variational Problems," originally published in the Springer Series in Computational Physics, is a classic in applied mathematics and computational physics and engineering. This long-awaited softcover re-edition is still a valuable resource for practitioners in industry and physics and for advanced students.
Mathematical elegance is a constant theme in this treatment of linear programming and matrix games. Condensed tableau, minimal in size and notation, are employed for the simplex algorithm. In the context of these tableau the beautiful termination theorem of R.G. Bland is proven more simply than heretofore, and the important duality theorem becomes almost obvious. Examples and extensive discussions throughout the book provide insight into definitions, theorems, and applications. There is considerable informal discussion on how best to play matrix games. The book is designed for a one-semester undergraduate course. Readers will need a degree of mathematical sophistication and general tools such as sets, functions, and summation notation. No single college course is a prerequisite, but most students will do better with some prior college mathematics. This thorough introduction to linear programming and game theory will impart a deep understanding of the material and also increase the student's mathematical maturity.
Control Theory for Linear Systems deals with the mathematical theory of feedback control of linear systems. It treats a wide range of control synthesis problems for linear state space systems with inputs and outputs. The book provides a treatment of these problems using state space methods, often with a geometric flavour. Its subject matter ranges from controllability and observability, stabilization, disturbance decoupling, and tracking and regulation, to linear quadratic regulation, H2 and H-infinity control, and robust stabilization. Each chapter of the book contains a series of exercises, intended to increase the reader's understanding of the material. Often, these exercises generalize and extend the material treated in the regular text.
Nonlinear Optimization is an intriguing area of study where mathematical theory, algorithms and applications converge to calculate the optimal values of continuous functions. Within this subject, Global Optimization aims at finding global optima for difficult problems in which many local optima might exist. This book provides a compelling introduction to global and non-linear optimization providing interdisciplinary readers with a strong background to continue their studies into these and other related fields. The book offers insight in relevant concepts such as "region of attraction" and "Branch-and-Bound" by elaborating small numerical examples and exercises for the reader to follow.
This handbook aims to highlight fundamental, methodological and computational aspects of networks of queues to provide insights and to unify results that can be applied in a more general manner. The handbook is organized into five parts: Part 1 considers exact analytical results such as of product form type. Topics include characterization of product forms by physical balance concepts and simple traffic flow equations, classes of service and queue disciplines that allow a product form, a unified description of product forms for discrete time queueing networks, insights for insensitivity, and aggregation and decomposition results that allow sub networks to be aggregated into single nodes to reduce computational burden. "" Part 2 looks at monotonicity and comparison results such as for computational simplification by either of two approaches: stochastic monotonicity and ordering results based on the ordering of the process generators, and comparison results and explicit error bounds based on an underlying Markov reward structure leading to ordering of expectations of performance measures. "" Part 3 presents diffusion and fluid results. It specifically looks at the fluid regime and the diffusion regime. Both of these are illustrated through fluid limits for the analysis of system stability, diffusion approximations for multi-server systems, and a system fed by Gaussian traffic. Part 4 illustrates computational and approximate results through the classical MVA (mean value analysis) and QNA (queueing network analyzer) for computing mean and variance of performance measures such as queue lengths and sojourn times; numerical approximation of response time distributions; and approximate decomposition results for large open queueing networks. "" Part 5 enlightens selected applications as loss networks originating from circuit switched telecommunications applications, capacity sharing originating from packet switching in data networks, and a hospital application that is of growing present day interest. The book shows that the intertwined progress of theory and practice will remain to be most intriguing and will continue to be the basis of further developments in queueing networks."
Linear programming (LP), modeling, and optimization are very much the fundamentals of OR, and no academic program is complete without them. No matter how highly developed one s LP skills are, however, if a fine appreciation for modeling isn t developed to make the best use of those skills, then the truly best solutions are often not realized, and efforts go wasted. Katta Murty studied LP with George Dantzig, the father of linear programming, and has written the graduate-level solution to that problem. While maintaining the rigorous LP instruction required, Murty's new book is unique in his focus on developing modeling skills to support valid decision making for complex real world problems. He describes the approach as 'intelligent modeling and decision making' to emphasize the importance of employing the best expression of actual problems and then applying the most computationally effective and efficient solution technique for that model."
Linear Programming provides an in-depth look at simplex based as well as the more recent interior point techniques for solving linear programming problems. Starting with a review of the mathematical underpinnings of these approaches, the text provides details of the primal and dual simplex methods with the primal-dual, composite, and steepest edge simplex algorithms. This then is followed by a discussion of interior point techniques, including projective and affine potential reduction, primal and dual affine scaling, and path following algorithms. Also covered is the theory and solution of the linear complementarity problem using both the complementary pivot algorithm and interior point routines. A feature of the book is its early and extensive development and use of duality theory. Audience: The book is written for students in the areas of mathematics, economics, engineering and management science, and professionals who need a sound foundation in the important and dynamic discipline of linear programming.
The present volume is a collective monograph devoted to applications of the optimal design theory in optimization and statistics. The chapters re?ect the topics discussed at the workshop "W-Optimum Design and Related Statistical Issues" that took place in Juan-les-Pins, France, in May 2005. The title of the workshop was chosen as a light-hearted celebration of the work of Henry Wynn. It was supported by the Laboratoire I3S (CNRS/Universit e de Nice, Sophia Antipolis), to which Henry is a frequent visitor. The topics covered partly re?ect the wide spectrum of Henry's research - terests. Algorithms for constructing optimal designs are discussed in Chap. 1, where Henry's contribution to the ?eld is acknowledged. Steepest-ascent - gorithms used to construct optimal designs are very much related to general gradientalgorithmsforconvexoptimization. Inthelasttenyears, asigni?cant part of Henry's research was devoted to the study of the asymptotic prop- ties of such algorithms. This topic is covered by Chaps. 2 and 3. The work by Alessandra Giovagnoli concentrates on the use of majorization and stoch- tic ordering, and Chap. 4 is a hopeful renewal of their collaboration. One of Henry's major recent interests is what is now called algebraic statistics, the application of computational commutative algebra to statistics, and he was partly responsible for introducing the experimental design sub-area, reviewed in Chap. 5. One other sub-area is the application to Bayesian networks and Chap. 6 covers this, with Chap. 7 being strongly related."
R.E. Miller: Parallel program schemata.- D.E. Muller: Theory of automata.- R. Karp: Computational complexity of combinatorial and graph-theoretic problems.
This book deals mainly with the study of convex functions and their behavior from the point of view of stability with respect to perturbations. We shall consider convex functions from the most modern point of view: a function is de?ned to be convex whenever its epigraph, the set of the points lying above the graph, is a convex set. Thus many of its properties can be seen also as properties of a certain convex set related to it. Moreover, we shall consider extended real valued functions, i. e. , functions taking possibly the values?? and +?. The reason for considering the value +? is the powerful device of including the constraint set of a constrained minimum problem into the objective function itself (by rede?ning it as +? outside the constraint set). Except for trivial cases, the minimum value must be taken at a point where the function is not +?, hence at a point in the constraint set. And the value ?? is allowed because useful operations, such as the inf-convolution, can give rise to functions valued?? even when the primitive objects are real valued. Observe that de?ning the objective function to be +? outside the closed constraint set preserves lower semicontinuity, which is the pivotal and mi- mal continuity assumption one needs when dealing with minimum problems. Variational calculus is usually based on derivatives.
Mechanism design is an analytical framework for thinking clearly and carefully about what exactly a given institution can achieve when the information necessary to make decisions is dispersed and privately held. This analysis provides an account of the underlying mathematics of mechanism design based on linear programming. Three advantages characterize the approach. The first is simplicity: arguments based on linear programming are both elementary and transparent. The second is unity: the machinery of linear programming provides a way to unify results from disparate areas of mechanism design. The third is reach: the technique offers the ability to solve problems that appear to be beyond solutions offered by traditional methods. No claim is made that the approach advocated should supplant traditional mathematical machinery. Rather, the approach represents an addition to the tools of the economic theorist who proposes to understand economic phenomena through the lens of mechanism design.
ELEMENTARY LINEAR ALGEBRA, 8E, INTERNATIONAL METRIC EDITION's clear, careful, and concise presentation of material helps you fully understand how mathematics works. The author balances theory with examples, applications, and geometric intuition for a complete, step-by-step learning system. To engage you in the material, a new design highlights the relevance of the mathematics and makes the book easier to read. Data and applications reflect current statistics and examples, demonstrating the link between theory and practice. The companion website LarsonLinearAlgebra.com offers free access to multiple study tools and resources. CalcChat.com offers free step-by-step solutions to the odd-numbered exercises in the text.
To this reviewer's knowledge, this is the first book accessible to the upper division undergraduate or beginning graduate student that surveys linear programming.... Style is informal. ...Recommended highly for acquisition, since it is not only a textbook, but can also be used for independent reading and study. -Choice Reviews This is a textbook intended for advanced undergraduate or graduate students. It contains both theory and computational practice. -Zentralblatt Math
Der erste Kontakt.- Routenplanung, was ist das?- Gestatten, Graph.- Gewicht ist Pflicht.- Eine ungefahrliche Explosion.- Kurzstrecke oder nicht? Das ist hier die Frage - Lokal entscheiden, global optimieren.- Am Anfang war der Input.- Negativ ist negativ, - Gute Zeiten, schlechte Zeiten.- Weibliche Intuition.- Die Arbeit vor der Arbeit.- Baumchen wechsle dich - Prim, ohne Zahlen.- Nimm, was du kriegen kannst .- Arbor-was?.- Studieren geht uber flanieren.- Spannung ohne Strom.- Eulersch oder nicht, was fur ein Gedicht.- Euler und der Nikolaus.- Heute flaniert die Mullabfuhr.- Paarungszeit.- Post aus China.- Schach-Matt?.- Platonische Liebe?.- Notorisch Problematisch.- Not eines Handlungsreisenden.- Weniger ist mehr.-150-prozentig.- Bonsai.- Gar nicht so platonisch.- Der Erfolg des Handlungsreisenden.
Classification and Examples of Differential Equations and their Applications is the sixth book within Ordinary Differential Equations with Applications to Trajectories and Vibrations, Six-volume Set. As a set, they are the fourth volume in the series Mathematics and Physics Applied to Science and Technology. This sixth book consists of one chapter (chapter 10 of the set). It contains 20 examples related to the preceding five books and chapters 1 to 9 of the set. It includes two recollections: the first with a classification of differential equations into 500 standards and the second with a list of 500 applications. The ordinary differential equations are classified in 500 standards concerning methods of solution and related properties, including: (i) linear differential equations with constant or homogeneous coefficients and finite difference equations; (ii) linear and non-linear single differential equations and simultaneous systems; (iii) existence, unicity and other properties; (iv) derivation of general, particular, special, analytic, regular, irregular, and normal integrals; (v) linear differential equations with variable coefficients including known and new special functions. The theory of differential equations is applied to the detailed solution of 500 physical and engineering problems including: (i) one- and multidimensional oscillators, with damping or amplification, with non-resonant or resonant forcing; (ii) single, non-linear, and parametric resonance; (iii) bifurcations and chaotic dynamical systems; (iv) longitudinal and transversal deformations and buckling of bars, beams, and plates; (v) trajectories of particles; (vi) oscillations and waves in non-uniform media, ducts, and wave guides. Provides detailed solution of examples of differential equations of the types covered in tomes l-5 of the set (Ordinary Differential Equations with Applications to Trajectories and Vibrations, Six -volume Set) Includes physical and engineering problems that extend those presented in the tomes 1-6 (Ordinary Differential Equations with Applications to Trajectories and Vibrations, Six-volume Set) Includes a classification of ordinary differential equations and their properties into 500 standards that can serve as a look-up table of methods of solution Covers a recollection of 500 physical and engineering problems and sub-cases that involve the solution of differential equations Presents the problems used as examples including formulation, solution, and interpretation of results
The subject of this book is the reasoning under uncertainty based on sta tistical evidence, where the word reasoning is taken to mean searching for arguments in favor or against particular hypotheses of interest. The kind of reasoning we are using is composed of two aspects. The first one is inspired from classical reasoning in formal logic, where deductions are made from a knowledge base of observed facts and formulas representing the domain spe cific knowledge. In this book, the facts are the statistical observations and the general knowledge is represented by an instance of a special kind of sta tistical models called functional models. The second aspect deals with the uncertainty under which the formal reasoning takes place. For this aspect, the theory of hints [27] is the appropriate tool. Basically, we assume that some uncertain perturbation takes a specific value and then logically eval uate the consequences of this assumption. The original uncertainty about the perturbation is then transferred to the consequences of the assumption. This kind of reasoning is called assumption-based reasoning. Before going into more details about the content of this book, it might be interesting to look briefly at the roots and origins of assumption-based reasoning in the statistical context. In 1930, R. A. Fisher [17] defined the notion of fiducial distribution as the result of a new form of argument, as opposed to the result of the older Bayesian argument.
This book offers a comprehensive treatment of the exercises and case studies as well as summaries of the chapters of the book "Linear Optimization and Extensions" by Manfred Padberg. It covers the areas of linear programming and the optimization of linear functions over polyhedra in finite dimensional Euclidean vector spaces.Here are the main topics treated in the book: Simplex algorithms and their derivatives including the duality theory of linear programming. Polyhedral theory, pointwise and linear descriptions of polyhedra, double description algorithms, Gaussian elimination with and without division, the complexity of simplex steps. Projective algorithms, the geometry of projective algorithms, Newtonian barrier methods. Ellipsoids algorithms in perfect and in finite precision arithmetic, the equivalence of linear optimization and polyhedral separation. The foundations of mixed-integer programming and combinatorial optimization.
Originally published in 1987. This collection of original papers deals with various issues of specification in the context of the linear statistical model. The volume honours the early econometric work of Donald Cochrane, late Dean of Economics and Politics at Monash University in Australia. The chapters focus on problems associated with autocorrelation of the error term in the linear regression model and include appraisals of early work on this topic by Cochrane and Orcutt. The book includes an extensive survey of autocorrelation tests; some exact finite-sample tests; and some issues in preliminary test estimation. A wide range of other specification issues is discussed, including the implications of random regressors for Bayesian prediction; modelling with joint conditional probability functions; and results from duality theory. There is a major survey chapter dealing with specification tests for non-nested models, and some of the applications discussed by the contributors deal with the British National Accounts and with Australian financial and housing markets.
The articles in this proceedings volume reflect the current trends in the theory of approximation, optimization and mathematical economics, and include numerous applications. The book will be of interest to researchers and graduate students involved in functional analysis, approximation theory, mathematical programming and optimization, game theory, mathematical finance and economics.
The 9th Belgian-French-German Conference on Optimization has been held in Namur (Belgium) on September 7-11, 1998. This volume is a collection of papers presented at this Conference. Originally, this Conference was a French-German Conference but this year, in accordance with the organizers' wishes, a third country, Belgium, has joined the founding members of the Conference. Hence the name: Belgian French-German Conference on Optimization. Since the very beginning, the purpose of these Conferences has been to bring together researchers working in the area of Optimization and partic ularly to encourage young researchers to present their work. Most of the participants come from the organizing countries. However the general ten dancy is to invite outside researchers to attend the meeting. So this year, among the 101 participants at this Conference, twenty researchers came from other countries. The general theme of the Conference is everything that concerns the area of Optimization without specification of particular topics. So theoretical as pects of Optimization, in addition to applications and algorithms of Opti mization, will be developed. However, and this point was very important for the organizers, the Conference must retain its convivial character. No more than two parallel sessions are organized. This would allow useful contacts between researchers to be promoted. The editors express their sincere thanks to all those who took part in this Conference. Their invaluable discussions have made this volume possible."
This book focuses largely on constrained optimization. It begins with a substantial treatment of linear programming and proceeds to convex analysis, network flows, integer programming, quadratic programming, and convex optimization. Along the way, dynamic programming and the linear complementarity problem are touched on as well. This book aims to be the first introduction to the topic. Specific examples and concrete algorithms precede more abstract topics. Nevertheless, topics covered are developed in some depth, a large number of numerical examples worked out in detail, and many recent results are included, most notably interior-point methods. The exercises at the end of each chapter both illustrate the theory, and, in some cases, extend it. Optimization is not merely an intellectual exercise: its purpose is to solve practical problems on a computer. Accordingly, the book comes with software that implements the major algorithms studied. At this point, software for the following four algorithms is available: The two-phase simplex method The primal-dual simplex method The path-following interior-point method The homogeneous self-dual methods.GBP/LISTGBP.
The 5th edition of this classic textbook covers the central concepts of practical optimization techniques, with an emphasis on methods that are both state-of-the-art and popular. One major insight is the connection between the purely analytical character of an optimization problem and the behavior of algorithms used to solve that problem. End-of-chapter exercises are provided for all chapters. The material is organized into three separate parts. Part I offers a self-contained introduction to linear programming. The presentation in this part is fairly conventional, covering the main elements of the underlying theory of linear programming, many of the most effective numerical algorithms, and many of its important special applications. Part II, which is independent of Part I, covers the theory of unconstrained optimization, including both derivations of the appropriate optimality conditions and an introduction to basic algorithms. This part of the book explores the general properties of algorithms and defines various notions of convergence. In turn, Part III extends the concepts developed in the second part to constrained optimization problems. Except for a few isolated sections, this part is also independent of Part I. As such, Parts II and III can easily be used without reading Part I and, in fact, the book has been used in this way at many universities. New to this edition are popular topics in data science and machine learning, such as the Markov Decision Process, Farkas' lemma, convergence speed analysis, duality theories and applications, various first-order methods, stochastic gradient method, mirror-descent method, Frank-Wolf method, ALM/ADMM method, interior trust-region method for non-convex optimization, distributionally robust optimization, online linear programming, semidefinite programming for sensor-network localization, and infeasibility detection for nonlinear optimization.
A comprehensive, up-to-date text on linear programming. Covers all practical modeling, mathematical, geometrical, algorithmic, and computational aspects. Surveys recent developments in the field, including the Ellipsoid method. Includes extensive examples and exercises. Designed for advanced undergraduates or graduates majoring in engineering, mathematics, or business administration.
This collection of 188 nonlinear programming test examples is a supplement of the test problem collection published by Hock and Schittkowski [2]. As in the former case, the intention is to present an extensive set of nonlinear programming problems that were used by other authors in the past to develop, test or compare optimization algorithms. There is no distinction between an "easy" or "difficult" test problem, since any related classification must depend on the underlying algorithm and test design. For instance, a nonlinear least squares problem may be solved easily by a special purpose code within a few iterations, but the same problem can be unsolvable for a general nonlinear programming code due to ill-conditioning. Thus one should consider both collections as a possible offer to choose some suitable problems for a specific test frame. One difference between the new collection and the former one pub lished by Hock and Schittkowski [2], is the attempt to present some more realistic or "real world" problems. Moreover a couple of non linear least squares test problems were collected which can be used e. g. to test data fitting algorithms. The presentation of the test problems is somewhat simplified and numerical solutions are computed only by one nonlinear programming code, the sequential quadratic programming algorithm NLPQL of Schittkowski [3]. But both test problem collections are implemeted in the same way in form of special FORTRAN subroutines, so that the same test programs can be used. |
![]() ![]() You may like...
Complex Analysis in One Variable
Raghavan Narasimhan, Yves Nievergelt
Hardcover
R2,673
Discovery Miles 26 730
|