![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Optimization > Linear programming
Mechanism design is an analytical framework for thinking clearly and carefully about what exactly a given institution can achieve when the information necessary to make decisions is dispersed and privately held. This analysis provides an account of the underlying mathematics of mechanism design based on linear programming. Three advantages characterize the approach. The first is simplicity: arguments based on linear programming are both elementary and transparent. The second is unity: the machinery of linear programming provides a way to unify results from disparate areas of mechanism design. The third is reach: the technique offers the ability to solve problems that appear to be beyond solutions offered by traditional methods. No claim is made that the approach advocated should supplant traditional mathematical machinery. Rather, the approach represents an addition to the tools of the economic theorist who proposes to understand economic phenomena through the lens of mechanism design.
ELEMENTARY LINEAR ALGEBRA, 8E, INTERNATIONAL METRIC EDITION's clear, careful, and concise presentation of material helps you fully understand how mathematics works. The author balances theory with examples, applications, and geometric intuition for a complete, step-by-step learning system. To engage you in the material, a new design highlights the relevance of the mathematics and makes the book easier to read. Data and applications reflect current statistics and examples, demonstrating the link between theory and practice. The companion website LarsonLinearAlgebra.com offers free access to multiple study tools and resources. CalcChat.com offers free step-by-step solutions to the odd-numbered exercises in the text.
To this reviewer's knowledge, this is the first book accessible to the upper division undergraduate or beginning graduate student that surveys linear programming.... Style is informal. ...Recommended highly for acquisition, since it is not only a textbook, but can also be used for independent reading and study. -Choice Reviews This is a textbook intended for advanced undergraduate or graduate students. It contains both theory and computational practice. -Zentralblatt Math
Classification and Examples of Differential Equations and their Applications is the sixth book within Ordinary Differential Equations with Applications to Trajectories and Vibrations, Six-volume Set. As a set, they are the fourth volume in the series Mathematics and Physics Applied to Science and Technology. This sixth book consists of one chapter (chapter 10 of the set). It contains 20 examples related to the preceding five books and chapters 1 to 9 of the set. It includes two recollections: the first with a classification of differential equations into 500 standards and the second with a list of 500 applications. The ordinary differential equations are classified in 500 standards concerning methods of solution and related properties, including: (i) linear differential equations with constant or homogeneous coefficients and finite difference equations; (ii) linear and non-linear single differential equations and simultaneous systems; (iii) existence, unicity and other properties; (iv) derivation of general, particular, special, analytic, regular, irregular, and normal integrals; (v) linear differential equations with variable coefficients including known and new special functions. The theory of differential equations is applied to the detailed solution of 500 physical and engineering problems including: (i) one- and multidimensional oscillators, with damping or amplification, with non-resonant or resonant forcing; (ii) single, non-linear, and parametric resonance; (iii) bifurcations and chaotic dynamical systems; (iv) longitudinal and transversal deformations and buckling of bars, beams, and plates; (v) trajectories of particles; (vi) oscillations and waves in non-uniform media, ducts, and wave guides. Provides detailed solution of examples of differential equations of the types covered in tomes l-5 of the set (Ordinary Differential Equations with Applications to Trajectories and Vibrations, Six -volume Set) Includes physical and engineering problems that extend those presented in the tomes 1-6 (Ordinary Differential Equations with Applications to Trajectories and Vibrations, Six-volume Set) Includes a classification of ordinary differential equations and their properties into 500 standards that can serve as a look-up table of methods of solution Covers a recollection of 500 physical and engineering problems and sub-cases that involve the solution of differential equations Presents the problems used as examples including formulation, solution, and interpretation of results
Der erste Kontakt.- Routenplanung, was ist das?- Gestatten, Graph.- Gewicht ist Pflicht.- Eine ungefahrliche Explosion.- Kurzstrecke oder nicht? Das ist hier die Frage - Lokal entscheiden, global optimieren.- Am Anfang war der Input.- Negativ ist negativ, - Gute Zeiten, schlechte Zeiten.- Weibliche Intuition.- Die Arbeit vor der Arbeit.- Baumchen wechsle dich - Prim, ohne Zahlen.- Nimm, was du kriegen kannst .- Arbor-was?.- Studieren geht uber flanieren.- Spannung ohne Strom.- Eulersch oder nicht, was fur ein Gedicht.- Euler und der Nikolaus.- Heute flaniert die Mullabfuhr.- Paarungszeit.- Post aus China.- Schach-Matt?.- Platonische Liebe?.- Notorisch Problematisch.- Not eines Handlungsreisenden.- Weniger ist mehr.-150-prozentig.- Bonsai.- Gar nicht so platonisch.- Der Erfolg des Handlungsreisenden.
The subject of this book is the reasoning under uncertainty based on sta tistical evidence, where the word reasoning is taken to mean searching for arguments in favor or against particular hypotheses of interest. The kind of reasoning we are using is composed of two aspects. The first one is inspired from classical reasoning in formal logic, where deductions are made from a knowledge base of observed facts and formulas representing the domain spe cific knowledge. In this book, the facts are the statistical observations and the general knowledge is represented by an instance of a special kind of sta tistical models called functional models. The second aspect deals with the uncertainty under which the formal reasoning takes place. For this aspect, the theory of hints [27] is the appropriate tool. Basically, we assume that some uncertain perturbation takes a specific value and then logically eval uate the consequences of this assumption. The original uncertainty about the perturbation is then transferred to the consequences of the assumption. This kind of reasoning is called assumption-based reasoning. Before going into more details about the content of this book, it might be interesting to look briefly at the roots and origins of assumption-based reasoning in the statistical context. In 1930, R. A. Fisher [17] defined the notion of fiducial distribution as the result of a new form of argument, as opposed to the result of the older Bayesian argument.
This book offers a comprehensive treatment of the exercises and case studies as well as summaries of the chapters of the book "Linear Optimization and Extensions" by Manfred Padberg. It covers the areas of linear programming and the optimization of linear functions over polyhedra in finite dimensional Euclidean vector spaces.Here are the main topics treated in the book: Simplex algorithms and their derivatives including the duality theory of linear programming. Polyhedral theory, pointwise and linear descriptions of polyhedra, double description algorithms, Gaussian elimination with and without division, the complexity of simplex steps. Projective algorithms, the geometry of projective algorithms, Newtonian barrier methods. Ellipsoids algorithms in perfect and in finite precision arithmetic, the equivalence of linear optimization and polyhedral separation. The foundations of mixed-integer programming and combinatorial optimization.
The articles in this proceedings volume reflect the current trends in the theory of approximation, optimization and mathematical economics, and include numerous applications. The book will be of interest to researchers and graduate students involved in functional analysis, approximation theory, mathematical programming and optimization, game theory, mathematical finance and economics.
The 9th Belgian-French-German Conference on Optimization has been held in Namur (Belgium) on September 7-11, 1998. This volume is a collection of papers presented at this Conference. Originally, this Conference was a French-German Conference but this year, in accordance with the organizers' wishes, a third country, Belgium, has joined the founding members of the Conference. Hence the name: Belgian French-German Conference on Optimization. Since the very beginning, the purpose of these Conferences has been to bring together researchers working in the area of Optimization and partic ularly to encourage young researchers to present their work. Most of the participants come from the organizing countries. However the general ten dancy is to invite outside researchers to attend the meeting. So this year, among the 101 participants at this Conference, twenty researchers came from other countries. The general theme of the Conference is everything that concerns the area of Optimization without specification of particular topics. So theoretical as pects of Optimization, in addition to applications and algorithms of Opti mization, will be developed. However, and this point was very important for the organizers, the Conference must retain its convivial character. No more than two parallel sessions are organized. This would allow useful contacts between researchers to be promoted. The editors express their sincere thanks to all those who took part in this Conference. Their invaluable discussions have made this volume possible."
The 5th edition of this classic textbook covers the central concepts of practical optimization techniques, with an emphasis on methods that are both state-of-the-art and popular. One major insight is the connection between the purely analytical character of an optimization problem and the behavior of algorithms used to solve that problem. End-of-chapter exercises are provided for all chapters. The material is organized into three separate parts. Part I offers a self-contained introduction to linear programming. The presentation in this part is fairly conventional, covering the main elements of the underlying theory of linear programming, many of the most effective numerical algorithms, and many of its important special applications. Part II, which is independent of Part I, covers the theory of unconstrained optimization, including both derivations of the appropriate optimality conditions and an introduction to basic algorithms. This part of the book explores the general properties of algorithms and defines various notions of convergence. In turn, Part III extends the concepts developed in the second part to constrained optimization problems. Except for a few isolated sections, this part is also independent of Part I. As such, Parts II and III can easily be used without reading Part I and, in fact, the book has been used in this way at many universities. New to this edition are popular topics in data science and machine learning, such as the Markov Decision Process, Farkas' lemma, convergence speed analysis, duality theories and applications, various first-order methods, stochastic gradient method, mirror-descent method, Frank-Wolf method, ALM/ADMM method, interior trust-region method for non-convex optimization, distributionally robust optimization, online linear programming, semidefinite programming for sensor-network localization, and infeasibility detection for nonlinear optimization.
This book focuses largely on constrained optimization. It begins with a substantial treatment of linear programming and proceeds to convex analysis, network flows, integer programming, quadratic programming, and convex optimization. Along the way, dynamic programming and the linear complementarity problem are touched on as well. This book aims to be the first introduction to the topic. Specific examples and concrete algorithms precede more abstract topics. Nevertheless, topics covered are developed in some depth, a large number of numerical examples worked out in detail, and many recent results are included, most notably interior-point methods. The exercises at the end of each chapter both illustrate the theory, and, in some cases, extend it. Optimization is not merely an intellectual exercise: its purpose is to solve practical problems on a computer. Accordingly, the book comes with software that implements the major algorithms studied. At this point, software for the following four algorithms is available: The two-phase simplex method The primal-dual simplex method The path-following interior-point method The homogeneous self-dual methods.GBP/LISTGBP.
This collection of 188 nonlinear programming test examples is a supplement of the test problem collection published by Hock and Schittkowski [2]. As in the former case, the intention is to present an extensive set of nonlinear programming problems that were used by other authors in the past to develop, test or compare optimization algorithms. There is no distinction between an "easy" or "difficult" test problem, since any related classification must depend on the underlying algorithm and test design. For instance, a nonlinear least squares problem may be solved easily by a special purpose code within a few iterations, but the same problem can be unsolvable for a general nonlinear programming code due to ill-conditioning. Thus one should consider both collections as a possible offer to choose some suitable problems for a specific test frame. One difference between the new collection and the former one pub lished by Hock and Schittkowski [2], is the attempt to present some more realistic or "real world" problems. Moreover a couple of non linear least squares test problems were collected which can be used e. g. to test data fitting algorithms. The presentation of the test problems is somewhat simplified and numerical solutions are computed only by one nonlinear programming code, the sequential quadratic programming algorithm NLPQL of Schittkowski [3]. But both test problem collections are implemeted in the same way in form of special FORTRAN subroutines, so that the same test programs can be used.
From the foreword: "This volume contains most of the 113 papers presented during the Eighth International Conference on Analysis and Optimization of Systems organized by the Institut National de Recherche en Informatique et en Automatique. Papers were presented by speakers coming from 21 different countries. These papers deal with both theoretical and practical aspects of Analysis and Optimization of Systems. Most of the topics of System Theory have been covered and five invited speakers of international reputation have presented the new trends of the field."
This monograph is aimed at presenting smooth and unified generalized fractional programming (or a program with a finite number of constraints). Under the current interdisciplinary computer-oriented research environment, these programs are among the most rapidly expanding research areas in terms of its multi-facet applications and empowerment for real world problems that can be handled by transforming them into generalized fractional programming problems. Problems of this type have been applied for the modeling and analysis of a wide range of theoretical as well as concrete, real world, practical problems. More specifically, generalized fractional programming concepts and techniques have found relevance and worldwide applications in approximation theory, statistics, game theory, engineering design (earthquake-resistant design of structures, design of control systems, digital filters, electronic circuits, etc.), boundary value problems, defect minimization for operator equations, geometry, random graphs, graphs related to Newton flows, wavelet analysis, reliability testing, environmental protection planning, decision making under uncertainty, geometric programming, disjunctive programming, optimal control problems, robotics, and continuum mechanics, among others. It is highly probable that among all industries, especially for the automobile industry, robots are about to revolutionize the assembly plants forever. That would change the face of other industries toward rapid technical innovation as well. The main focus of this monograph is to empower graduate students, faculty and other research enthusiasts for more accelerated research advances with significant applications in the interdisciplinary sense without borders. The generalized fractional programming problems have a wide range of real-world problems, which can be transformed in some sort of a generalized fractional programming problem. Consider fractional programs that arise from management decision science; by analyzing system efficiency in an economical sense, it is equivalent to maximizing system efficiency leading to fractional programs with occurring objectives: Maximizing productivity; Maximizing return on investment; Maximizing return/ risk; Minimizing cost/time; Minimizing output/input. The authors envision that this monograph will uniquely present the interdisciplinary research for the global scientific community (including graduate students, faculty, and general readers). Furthermore, some of the new concepts can be applied to duality theorems based on the use of a new class of multi-time, multi-objective, variational problems as well.
This book studies the methods for solving non-linear, partial differential equations that have physical meaning, and soliton theory with applications. Specific descriptions on the formation mechanism of soliton solutions of non-linear, partial differential equations are given, and some methods for solving this kind of solution such as the Inverse Scattering Transform method, Backlund Transformation method, Similarity Reduction method and several kinds of function transformation methods are introduced. Integrability of non-linear, partial differential equations is also discussed. This book is suitable for graduate students whose research fields are in applied mathematics, applied physics and non-linear science-related directions as a textbook or a research reference book. This book is also useful for non-linear science researchers and teachers as a reference book. The characteristics of this book are: 1. The author provides clear concepts, rigorous derivation, thorough reasoning, and rigorous logic in the book. Since the research boom of non-linear, partial differential equations was rising in the 1960s, the research on non-linear, partial differential equations and soliton theory has only been several decades, which can be described as a very young discipline compared to the other branches in mathematics. Although there are a few related books, they are mostly in highly specialised interdisciplinary areas. There is no book which is suitable for cross-disciplines and for people with college level mathematics and college physics background. This book fills that gap; 2. The book is easy to be understood by readers since it provides step-by-step approaches. All results in the book have been deduced and collated by the author to make sure that they are correct and perfect; 3. The derivation from the physical models to mathematical models is emphasised in the book. In mathematical physics, we cannot just simply consider the mathematical problems without a physical image, which often plays the key role for understanding the mathematical problems; 4. Mathematical transformation methods are provided. The basic idea of various methods for solving non-linear, partial differential equations is to simplify the complex equations into simple ones through some transformations or decompositions. However, we cannot find any patterns for using such transformations or decompositions, and certain conjectures and assumptions have to be used. However, the skill and the logic of using the transformations and decompositions are very important to researchers in this field.
The 5th edition of Model Building in Mathematical Programming discusses the general principles of model building in mathematical programming and demonstrates how they can be applied by using several simplified but practical problems from widely different contexts. Suggested formulations and solutions are given together with some computational experience to give the reader a feel for the computational difficulty of solving that particular type of model. Furthermore, this book illustrates the scope and limitations of mathematical programming, and shows how it can be applied to real situations. By emphasizing the importance of the building and interpreting of models rather than the solution process, the author attempts to fill a gap left by the many works which concentrate on the algorithmic side of the subject. In this article, H.P. Williams explains his original motivation and objectives in writing the book, how it has been modified and updated over the years, what is new in this edition and why it has maintained its relevance and popularity over the years: http://www.statisticsviews.com/details/feature/4566481/Model-Building-in-Mathematical-Programming-published-in-fifth-edition.html
Linear programming (LP), as a specific case of mathematical programming, has been widely encountered in a broad class of scientific disciplines and engineering applications. In view of its fundamental role, the solution of LP has been investigated extensively for the past decades. Due to the parallel-distributed processing nature and circuit-implementation convenience, the neurodynamic solvers based on recurrent neural network (RNN) have been regarded as powerful alternatives to online computation. This book discusses how linear programming is used to plan and schedule the workforce in an emergency room; the neurodynamic solvers, robotic applications, and solution non-uniqueness of linear programming; the mathematical equivalence of simple recourse and chance constraints in linear stochastic programming; and provides a decomposable linear programming model for energy supply chains.
Filling the need for an introductory book on linear programming that discusses the important ways to mitigate parameter uncertainty, Introduction to Linear Optimization and Extensions with MATLAB(r) provides a concrete and intuitive yet rigorous introduction to modern linear optimization. In addition to fundamental topics, the book discusses current linear optimization technologies such as predictor-path following interior point methods for both linear and quadratic optimization as well as the inclusion of linear optimization of uncertainty i.e. stochastic programming with recourse and robust optimization. The author introduces both stochastic programming and robust optimization as frameworks to deal with parameter uncertainty. The author s unusual approach developing these topics in an introductory book highlights their importance. Since most applications require decisions to be made in the face of uncertainty, the early introduction of these topics facilitates decision making in real world environments. The author also includes applications and case studies from finance and supply chain management that involve the use of MATLAB. Even though there are several LP texts in the marketplace, most do not cover data uncertainty using stochastic programming and robust optimization techniques. Most emphasize the use of MS Excel, while this book uses MATLAB which is the primary tool of many engineers, including financial engineers. The book focuses on state-of-the-art methods for dealing with parameter uncertainty in linear programming, rigorously developing theory and methods. But more importantly, the author s meticulous attention to developing intuition before presenting theory makes the material come alive. "
This self-contained book provides the reader with a comprehensive presentation of recent investigations on operator theory over non-Archimedean Banach and Hilbert spaces. This includes, non-archimedean valued fields, bounded and unbounded linear operators, bilinear forms, functions of linear operators and one-paramter families of bounded linear operators on free branch spaces.
The late George B. Dantzig, widely known as the father of linear
programming, was a major influence in mathematics, operations
research, and economics. As Professor Emeritus at Stanford
University, he continued his decades of research on linear
programming and related subjects. Dantzig was awarded eight
honorary doctorates, the National Medal of Science, and the John
von Neumann Theory Prize from the Institute for Operations Research
and the Management Sciences.
This book provides an introduction to the use of nonlinear modelling in medical statistics, including worked through examples in most areas where such techniques are used. It is suitable for both professional and academic statisticians working in medical research. The data and computer code for the examples will be available on the authors web site.
Optimal Transport Methods in Economics is the first textbook on the subject written especially for students and researchers in economics. Optimal transport theory is used widely to solve problems in mathematics and some areas of the sciences, but it can also be used to understand a range of problems in applied economics, such as the matching between job seekers and jobs, the determinants of real estate prices, and the formation of matrimonial unions. This is the first text to develop clear applications of optimal transport to economic modeling, statistics, and econometrics. It covers the basic results of the theory as well as their relations to linear programming, network flow problems, convex analysis, and computational geometry. Emphasizing computational methods, it also includes programming examples that provide details on implementation. Applications include discrete choice models, models of differential demand, and quantile-based statistical estimation methods, as well as asset pricing models. Authoritative and accessible, Optimal Transport Methods in Economics also features numerous exercises throughout that help you develop your mathematical agility, deepen your computational skills, and strengthen your economic intuition. * The first introduction to the subject written especially for economists* Includes programming examples* Features numerous exercises throughout* Ideal for students and researchers alike
Written in a conversational tone, this classroom-tested text introduces the fundamentals of linear programming and game theory, showing readers how to apply serious mathematics to practical real-life questions by modelling linear optimization problems and strategic games. The treatment of linear programming includes two distinct graphical methods. The game theory chapters include a novel proof of the minimax theorem for 2x2 zero-sum games. In addition to zero-sum games, the text presents variable-sum games, ordinal games, and n-player games as the natural result of relaxing or modifying the assumptions of zero-sum games. All concepts and techniques are derived from motivating examples, building in complexity, which encourages students to think creatively and leads them to understand how the mathematics is applied. With no prerequisite besides high school algebra, the text will be useful to motivated high school students and undergraduates studying business, economics, mathematics, and the social sciences. |
![]() ![]() You may like...
Compact Extended Linear Programming…
Giuseppe Lancia, Paolo Serafini
Hardcover
R3,097
Discovery Miles 30 970
Discrete Optimization, Volume 11 - The…
E. Boros, P. L Hammer
Hardcover
R2,520
Discovery Miles 25 200
Linear and Integer Programming Made Easy
T.C. Hu, Andrew B. Kahng
Hardcover
R2,185
Discovery Miles 21 850
Differential Evolution - In Search of…
Vitaliy Feoktistov
Hardcover
Interior Point Methods for Linear…
Cornelis Roos, Tamas Terlaky, …
Hardcover
R1,726
Discovery Miles 17 260
|