Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Optimization > Linear programming
The present volume is a collective monograph devoted to applications of the optimal design theory in optimization and statistics. The chapters re?ect the topics discussed at the workshop "W-Optimum Design and Related Statistical Issues" that took place in Juan-les-Pins, France, in May 2005. The title of the workshop was chosen as a light-hearted celebration of the work of Henry Wynn. It was supported by the Laboratoire I3S (CNRS/Universit e de Nice, Sophia Antipolis), to which Henry is a frequent visitor. The topics covered partly re?ect the wide spectrum of Henry's research - terests. Algorithms for constructing optimal designs are discussed in Chap. 1, where Henry's contribution to the ?eld is acknowledged. Steepest-ascent - gorithms used to construct optimal designs are very much related to general gradientalgorithmsforconvexoptimization. Inthelasttenyears, asigni?cant part of Henry's research was devoted to the study of the asymptotic prop- ties of such algorithms. This topic is covered by Chaps. 2 and 3. The work by Alessandra Giovagnoli concentrates on the use of majorization and stoch- tic ordering, and Chap. 4 is a hopeful renewal of their collaboration. One of Henry's major recent interests is what is now called algebraic statistics, the application of computational commutative algebra to statistics, and he was partly responsible for introducing the experimental design sub-area, reviewed in Chap. 5. One other sub-area is the application to Bayesian networks and Chap. 6 covers this, with Chap. 7 being strongly related."
R.E. Miller: Parallel program schemata.- D.E. Muller: Theory of automata.- R. Karp: Computational complexity of combinatorial and graph-theoretic problems.
This book deals mainly with the study of convex functions and their behavior from the point of view of stability with respect to perturbations. We shall consider convex functions from the most modern point of view: a function is de?ned to be convex whenever its epigraph, the set of the points lying above the graph, is a convex set. Thus many of its properties can be seen also as properties of a certain convex set related to it. Moreover, we shall consider extended real valued functions, i. e. , functions taking possibly the values?? and +?. The reason for considering the value +? is the powerful device of including the constraint set of a constrained minimum problem into the objective function itself (by rede?ning it as +? outside the constraint set). Except for trivial cases, the minimum value must be taken at a point where the function is not +?, hence at a point in the constraint set. And the value ?? is allowed because useful operations, such as the inf-convolution, can give rise to functions valued?? even when the primitive objects are real valued. Observe that de?ning the objective function to be +? outside the closed constraint set preserves lower semicontinuity, which is the pivotal and mi- mal continuity assumption one needs when dealing with minimum problems. Variational calculus is usually based on derivatives.
To this reviewer's knowledge, this is the first book accessible to the upper division undergraduate or beginning graduate student that surveys linear programming.... Style is informal. ...Recommended highly for acquisition, since it is not only a textbook, but can also be used for independent reading and study. -Choice Reviews This is a textbook intended for advanced undergraduate or graduate students. It contains both theory and computational practice. -Zentralblatt Math
Classification and Examples of Differential Equations and their Applications is the sixth book within Ordinary Differential Equations with Applications to Trajectories and Vibrations, Six-volume Set. As a set, they are the fourth volume in the series Mathematics and Physics Applied to Science and Technology. This sixth book consists of one chapter (chapter 10 of the set). It contains 20 examples related to the preceding five books and chapters 1 to 9 of the set. It includes two recollections: the first with a classification of differential equations into 500 standards and the second with a list of 500 applications. The ordinary differential equations are classified in 500 standards concerning methods of solution and related properties, including: (i) linear differential equations with constant or homogeneous coefficients and finite difference equations; (ii) linear and non-linear single differential equations and simultaneous systems; (iii) existence, unicity and other properties; (iv) derivation of general, particular, special, analytic, regular, irregular, and normal integrals; (v) linear differential equations with variable coefficients including known and new special functions. The theory of differential equations is applied to the detailed solution of 500 physical and engineering problems including: (i) one- and multidimensional oscillators, with damping or amplification, with non-resonant or resonant forcing; (ii) single, non-linear, and parametric resonance; (iii) bifurcations and chaotic dynamical systems; (iv) longitudinal and transversal deformations and buckling of bars, beams, and plates; (v) trajectories of particles; (vi) oscillations and waves in non-uniform media, ducts, and wave guides. Provides detailed solution of examples of differential equations of the types covered in tomes l-5 of the set (Ordinary Differential Equations with Applications to Trajectories and Vibrations, Six -volume Set) Includes physical and engineering problems that extend those presented in the tomes 1-6 (Ordinary Differential Equations with Applications to Trajectories and Vibrations, Six-volume Set) Includes a classification of ordinary differential equations and their properties into 500 standards that can serve as a look-up table of methods of solution Covers a recollection of 500 physical and engineering problems and sub-cases that involve the solution of differential equations Presents the problems used as examples including formulation, solution, and interpretation of results
Der erste Kontakt.- Routenplanung, was ist das?- Gestatten, Graph.- Gewicht ist Pflicht.- Eine ungefahrliche Explosion.- Kurzstrecke oder nicht? Das ist hier die Frage - Lokal entscheiden, global optimieren.- Am Anfang war der Input.- Negativ ist negativ, - Gute Zeiten, schlechte Zeiten.- Weibliche Intuition.- Die Arbeit vor der Arbeit.- Baumchen wechsle dich - Prim, ohne Zahlen.- Nimm, was du kriegen kannst .- Arbor-was?.- Studieren geht uber flanieren.- Spannung ohne Strom.- Eulersch oder nicht, was fur ein Gedicht.- Euler und der Nikolaus.- Heute flaniert die Mullabfuhr.- Paarungszeit.- Post aus China.- Schach-Matt?.- Platonische Liebe?.- Notorisch Problematisch.- Not eines Handlungsreisenden.- Weniger ist mehr.-150-prozentig.- Bonsai.- Gar nicht so platonisch.- Der Erfolg des Handlungsreisenden.
Originally published in 1987. This collection of original papers deals with various issues of specification in the context of the linear statistical model. The volume honours the early econometric work of Donald Cochrane, late Dean of Economics and Politics at Monash University in Australia. The chapters focus on problems associated with autocorrelation of the error term in the linear regression model and include appraisals of early work on this topic by Cochrane and Orcutt. The book includes an extensive survey of autocorrelation tests; some exact finite-sample tests; and some issues in preliminary test estimation. A wide range of other specification issues is discussed, including the implications of random regressors for Bayesian prediction; modelling with joint conditional probability functions; and results from duality theory. There is a major survey chapter dealing with specification tests for non-nested models, and some of the applications discussed by the contributors deal with the British National Accounts and with Australian financial and housing markets.
The subject of this book is the reasoning under uncertainty based on sta tistical evidence, where the word reasoning is taken to mean searching for arguments in favor or against particular hypotheses of interest. The kind of reasoning we are using is composed of two aspects. The first one is inspired from classical reasoning in formal logic, where deductions are made from a knowledge base of observed facts and formulas representing the domain spe cific knowledge. In this book, the facts are the statistical observations and the general knowledge is represented by an instance of a special kind of sta tistical models called functional models. The second aspect deals with the uncertainty under which the formal reasoning takes place. For this aspect, the theory of hints [27] is the appropriate tool. Basically, we assume that some uncertain perturbation takes a specific value and then logically eval uate the consequences of this assumption. The original uncertainty about the perturbation is then transferred to the consequences of the assumption. This kind of reasoning is called assumption-based reasoning. Before going into more details about the content of this book, it might be interesting to look briefly at the roots and origins of assumption-based reasoning in the statistical context. In 1930, R. A. Fisher [17] defined the notion of fiducial distribution as the result of a new form of argument, as opposed to the result of the older Bayesian argument.
Uniquely blends mathematical theory and algorithm design for understanding and modeling real-world problems Optimization modeling and algorithms are key components to problem-solving across various fields of research, from operations research and mathematics to computer science and engineering. Addressing the importance of the algorithm design process. "Deterministic Operations Research" focuses on the design of solution methods for both continuous and discrete linear optimization problems. The result is a clear-cut resource for understanding three cornerstones of deterministic operations research: modeling real-world problems as linear optimization problem; designing the necessary algorithms to solve these problems; and using mathematical theory to justify algorithmic development. Treating real-world examples as mathematical problems, the author begins with an introduction to operations research and optimization modeling that includes applications form sports scheduling an the airline industry. Subsequent chapters discuss algorithm design for continuous linear optimization problems, covering topics such as convexity. Farkas' Lemma, and the study of polyhedral before culminating in a discussion of the Simplex Method. The book also addresses linear programming duality theory and its use in algorithm design as well as the Dual Simplex Method. Dantzig-Wolfe decomposition, and a primal-dual interior point algorithm. The final chapters present network optimization and integer programming problems, highlighting various specialized topics including label-correcting algorithms for the shortest path problem, preprocessing and probing in integer programming, lifting of valid inequalities, and branch and cut algorithms. Concepts and approaches are introduced by outlining examples that demonstrate and motivate theoretical concepts. The accessible presentation of advanced ideas makes core aspects easy to understand and encourages readers to understand how to think about the problem, not just what to think. Relevant historical summaries can be found throughout the book, and each chapter is designed as the continuation of the "story" of how to both model and solve optimization problems by using the specific problems-linear and integer programs-as guides. The book's various examples are accompanied by the appropriate models and calculations, and a related Web site features these models along with Maple(TM) and MATLAB(R) content for the discussed calculations. Thoroughly class-tested to ensure a straightforward, hands-on approach, "Deterministic Operations Research" is an excellent book for operations research of linear optimization courses at the upper-undergraduate and graduate levels. It also serves as an insightful reference for individuals working in the fields of mathematics, engineering, computer science, and operations research who use and design algorithms to solve problem in their everyday work.
This book offers a comprehensive treatment of the exercises and case studies as well as summaries of the chapters of the book "Linear Optimization and Extensions" by Manfred Padberg. It covers the areas of linear programming and the optimization of linear functions over polyhedra in finite dimensional Euclidean vector spaces.Here are the main topics treated in the book: Simplex algorithms and their derivatives including the duality theory of linear programming. Polyhedral theory, pointwise and linear descriptions of polyhedra, double description algorithms, Gaussian elimination with and without division, the complexity of simplex steps. Projective algorithms, the geometry of projective algorithms, Newtonian barrier methods. Ellipsoids algorithms in perfect and in finite precision arithmetic, the equivalence of linear optimization and polyhedral separation. The foundations of mixed-integer programming and combinatorial optimization.
The articles in this proceedings volume reflect the current trends in the theory of approximation, optimization and mathematical economics, and include numerous applications. The book will be of interest to researchers and graduate students involved in functional analysis, approximation theory, mathematical programming and optimization, game theory, mathematical finance and economics.
The 9th Belgian-French-German Conference on Optimization has been held in Namur (Belgium) on September 7-11, 1998. This volume is a collection of papers presented at this Conference. Originally, this Conference was a French-German Conference but this year, in accordance with the organizers' wishes, a third country, Belgium, has joined the founding members of the Conference. Hence the name: Belgian French-German Conference on Optimization. Since the very beginning, the purpose of these Conferences has been to bring together researchers working in the area of Optimization and partic ularly to encourage young researchers to present their work. Most of the participants come from the organizing countries. However the general ten dancy is to invite outside researchers to attend the meeting. So this year, among the 101 participants at this Conference, twenty researchers came from other countries. The general theme of the Conference is everything that concerns the area of Optimization without specification of particular topics. So theoretical as pects of Optimization, in addition to applications and algorithms of Opti mization, will be developed. However, and this point was very important for the organizers, the Conference must retain its convivial character. No more than two parallel sessions are organized. This would allow useful contacts between researchers to be promoted. The editors express their sincere thanks to all those who took part in this Conference. Their invaluable discussions have made this volume possible."
This book focuses largely on constrained optimization. It begins with a substantial treatment of linear programming and proceeds to convex analysis, network flows, integer programming, quadratic programming, and convex optimization. Along the way, dynamic programming and the linear complementarity problem are touched on as well. This book aims to be the first introduction to the topic. Specific examples and concrete algorithms precede more abstract topics. Nevertheless, topics covered are developed in some depth, a large number of numerical examples worked out in detail, and many recent results are included, most notably interior-point methods. The exercises at the end of each chapter both illustrate the theory, and, in some cases, extend it. Optimization is not merely an intellectual exercise: its purpose is to solve practical problems on a computer. Accordingly, the book comes with software that implements the major algorithms studied. At this point, software for the following four algorithms is available: The two-phase simplex method The primal-dual simplex method The path-following interior-point method The homogeneous self-dual methods.GBP/LISTGBP.
Linear Optimization and Dualiyy: A Modern Exposition departs from convention in significant ways. Standard linear programming textbooks present the material in the order in which it was discovered. Duality is treated as a difficult add-on after coverage of formulation, the simplex method, and polyhedral theory. Students end up without knowing duality in their bones. This text brings in duality in Chapter 1 and carries duality all the way through the exposition. Chapter 1 gives a general definition of duality that shows the dual aspects of a matrix as a column of rows and a row of columns. The proof of weak duality in Chapter 2 is shown via the Lagrangian, which relies on matrix duality. The first three LP formulation examples in Chapter 3 are classic primal-dual pairs including the diet problem and 2-person zero sum games. For many engineering students, optimization is their first immersion in rigorous mathematics. Conventional texts assume a level of mathematical sophistication they don't have. This text embeds dozens of reading tips and hundreds of answered questions to guide such students. Features Emphasis on duality throughout Practical tips for modeling and computation Coverage of computational complexity and data structures Exercises and problems based on the learning theory concept of the zone of proximal development Guidance for the mathematically unsophisticated reader About the Author Craig A. Tovey is a professor in the H. Milton Stewart School of Industrial and Systems Engineering at Georgia Institute of Technology. Dr. Tovey received an AB from Harvard College, an MS in computer science and a PhD in operations research from Stanford University. His principal activities are in operations research and its interdisciplinary applications. He received a Presidential Young Investigator Award and the Jacob Wolfowitz Prize for research in heuristics. He was named an Institute Fellow at Georgia Tech, and was recognized by the ACM Special Interest Group on Electronic Commerce with the Test of Time Award. Dr. Tovey received the 2016 Golden Goose Award for his research on bee foraging behavior leading to the development of the Honey Bee Algorithm.
This collection of 188 nonlinear programming test examples is a supplement of the test problem collection published by Hock and Schittkowski [2]. As in the former case, the intention is to present an extensive set of nonlinear programming problems that were used by other authors in the past to develop, test or compare optimization algorithms. There is no distinction between an "easy" or "difficult" test problem, since any related classification must depend on the underlying algorithm and test design. For instance, a nonlinear least squares problem may be solved easily by a special purpose code within a few iterations, but the same problem can be unsolvable for a general nonlinear programming code due to ill-conditioning. Thus one should consider both collections as a possible offer to choose some suitable problems for a specific test frame. One difference between the new collection and the former one pub lished by Hock and Schittkowski [2], is the attempt to present some more realistic or "real world" problems. Moreover a couple of non linear least squares test problems were collected which can be used e. g. to test data fitting algorithms. The presentation of the test problems is somewhat simplified and numerical solutions are computed only by one nonlinear programming code, the sequential quadratic programming algorithm NLPQL of Schittkowski [3]. But both test problem collections are implemeted in the same way in form of special FORTRAN subroutines, so that the same test programs can be used.
From the foreword: "This volume contains most of the 113 papers presented during the Eighth International Conference on Analysis and Optimization of Systems organized by the Institut National de Recherche en Informatique et en Automatique. Papers were presented by speakers coming from 21 different countries. These papers deal with both theoretical and practical aspects of Analysis and Optimization of Systems. Most of the topics of System Theory have been covered and five invited speakers of international reputation have presented the new trends of the field."
This comprehensive introduction to analyzing linear models with the SAS System examines the features and capabilities of the REG, ANOVA and GLM procedures. Readers will learn how to apply the appropriate procedure to data analysis problems and understand PROC GLM output. In-depth discussions are also included on multivariate linear models, lack-of-fit analysis, covariance and heterogeneity of slopes, a classification with both crossed and nested effects, and analysis of variance for balanced data.
The unique feature of this compact student's introduction to Mathematica (R) and the Wolfram Language (TM) is that the order of the material closely follows a standard mathematics curriculum. As a result, it provides a brief introduction to those aspects of the Mathematica (R) software program most useful to students. Used as a supplementary text, it will help bridge the gap between Mathematica (R) and the mathematics in the course, and will serve as an excellent tutorial for former students. There have been significant changes to Mathematica (R) since the second edition, and all chapters have now been updated to account for new features in the software, including natural language queries and the vast stores of real-world data that are now integrated through the cloud. This third edition also includes many new exercises and a chapter on 3D printing that showcases the new computational geometry capabilities that will equip readers to print in 3D.
Praise for the Second Edition: "This is quite a well-done book: very tightly organized,
better-than-average exposition, and numerous examples,
illustrations, and applications." An Introduction to Linear Programming and Game Theory, Third Edition presents a rigorous, yet accessible, introduction to the theoretical concepts and computational techniques of linear programming and game theory. Now with more extensive modeling exercises and detailed integer programming examples, this book uniquely illustrates how mathematics can be used in real-world applications in the social, life, and managerial sciences, providing readers with the opportunity to develop and apply their analytical abilities when solving realistic problems. This Third Edition addresses various new topics and improvements in the field of mathematical programming, and it also presents two software programs, LP Assistant and the Solver add-in for Microsoft Office Excel(R), for solving linear programming problems. LP Assistant, developed by coauthor Gerard Keough, allows readers to perform the basic steps of the algorithms provided in the book and is freely available via the book's related Web site. The use of the sensitivity analysis report and integer programming algorithm from the Solver add-in for Microsoft Office Excel(R) is introduced so readers can solve the book's linear and integer programming problems. A detailed appendix contains instructions for the use of both applications. Additional features of the Third Edition include: A discussion of sensitivity analysis for the two-variable problem, along with new examples demonstrating integerprogramming, non-linear programming, and make vs. buy models Revised proofs and a discussion on the relevance and solution of the dual problem A section on developing an example in Data Envelopment Analysis An outline of the proof of John Nash's theorem on the existence of equilibrium strategy pairs for non-cooperative, non-zero-sum games Providing a complete mathematical development of all presented concepts and examples, Introduction to Linear Programming and Game Theory, Third Edition is an ideal text for linear programming and mathematical modeling courses at the upper-undergraduate and graduate levels. It also serves as a valuable reference for professionals who use game theory in business, economics, and management science.
As the Solutions Manual, this book is meant to accompany the main title, Nonlinear Programming: Theory and Algorithms, Third Edition. This book presents recent developments of key topics in nonlinear programming (NLP) using a logical and self-contained format. The volume is divided into three sections: convex analysis, optimality conditions, and dual computational techniques. Precise statements of algortihms are given along with convergence analysis. Each chapter contains detailed numerical examples, graphical illustrations, and numerous exercises to aid readers in understanding the concepts and methods discussed.
This book describes the theory of linear and integer programming and surveys the algorithms for linear and integer programming problems, focusing on complexity analysis. It aims at complementing the more practically oriented books in this field. A special feature is the author’s coverage of important recent developments in linear and integer programming. Applications to combinatorial optimization are given, and the author also includes extensive historical surveys and bibliographies. The book is intended for graduate students and researchers in operations research, mathematics and computer science. It will also be of interest to mathematical historians.
Filling the need for an introductory book on linear programming that discusses the important ways to mitigate parameter uncertainty, Introduction to Linear Optimization and Extensions with MATLAB(r) provides a concrete and intuitive yet rigorous introduction to modern linear optimization. In addition to fundamental topics, the book discusses current linear optimization technologies such as predictor-path following interior point methods for both linear and quadratic optimization as well as the inclusion of linear optimization of uncertainty i.e. stochastic programming with recourse and robust optimization. The author introduces both stochastic programming and robust optimization as frameworks to deal with parameter uncertainty. The author s unusual approach developing these topics in an introductory book highlights their importance. Since most applications require decisions to be made in the face of uncertainty, the early introduction of these topics facilitates decision making in real world environments. The author also includes applications and case studies from finance and supply chain management that involve the use of MATLAB. Even though there are several LP texts in the marketplace, most do not cover data uncertainty using stochastic programming and robust optimization techniques. Most emphasize the use of MS Excel, while this book uses MATLAB which is the primary tool of many engineers, including financial engineers. The book focuses on state-of-the-art methods for dealing with parameter uncertainty in linear programming, rigorously developing theory and methods. But more importantly, the author s meticulous attention to developing intuition before presenting theory makes the material come alive. "
This addition to the ISOR series introduces complementarity models in a straightforward and approachable manner and uses them to carry out an in-depth analysis of energy markets, including formulation issues and solution techniques. In a nutshell, complementarity models generalize: a. optimization problems via their Karush-Kuhn-Tucker conditions b. on-cooperative games in which each player may be solving a separate but related optimization problem with potentially overall system constraints (e.g., market-clearing conditions) c. conomic and engineering problems that aren't specifically derived from optimization problems (e.g., spatial price equilibria) d. roblems in which both primal and dual variables (prices) appear in the original formulation (e.g., The National Energy Modeling System (NEMS) or its precursor, PIES). As such, complementarity models are a very general and flexible modeling format. A natural question is why concentrate on energy markets for this complementarity approach? s it turns out, energy or other markets that have game theoretic aspects are best modeled by complementarity problems. The reason is that the traditional perfect competition approach no longer applies due to deregulation and restructuring of these markets and thus the corresponding optimization problems may no longer hold. Also, in some instances it is important in the original model formulation to involve both primal variables (e.g., production) as well as dual variables (e.g., market prices) for public and private sector energy planning. Traditional optimization problems can not directly handle this mixing of primal and dual variables but complementarity models can and this makes them all that more effective for decision-makers. |
You may like...
Compact Extended Linear Programming…
Giuseppe Lancia, Paolo Serafini
Hardcover
R2,968
Discovery Miles 29 680
Discrete Optimization, Volume 11 - The…
E. Boros, P. L Hammer
Hardcover
R2,406
Discovery Miles 24 060
Linear and Integer Programming Made Easy
T.C. Hu, Andrew B. Kahng
Hardcover
R2,096
Discovery Miles 20 960
Differential Evolution - In Search of…
Vitaliy Feoktistov
Hardcover
Interior Point Methods for Linear…
Cornelis Roos, Tamas Terlaky, …
Hardcover
R1,653
Discovery Miles 16 530
|