![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Optimization > Linear programming
In Linear Programming: A Modern Integrated Analysis, both boundary (simplex) and interior point methods are derived from the complementary slackness theorem and, unlike most books, the duality theorem is derived from Farkas's Lemma, which is proved as a convex separation theorem. The tedium of the simplex method is thus avoided. A new and inductive proof of Kantorovich's Theorem is offered, related to the convergence of Newton's method. Of the boundary methods, the book presents the (revised) primal and the dual simplex methods. An extensive discussion is given of the primal, dual and primal-dual affine scaling methods. In addition, the proof of the convergence under degeneracy, a bounded variable variant, and a super-linearly convergent variant of the primal affine scaling method are covered in one chapter. Polynomial barrier or path-following homotopy methods, and the projective transformation method are also covered in the interior point chapter. Besides the popular sparse Cholesky factorization and the conjugate gradient method, new methods are presented in a separate chapter on implementation. These methods use LQ factorization and iterative techniques.
A PRACTICAL GUIDE TO OPTIMIZATION PROBLEMS WITH DISCRETE OR INTEGER VARIABLES, REVISED AND UPDATED The revised second edition of Integer Programming explains in clear and simple terms how to construct custom-made algorithms or use existing commercial software to obtain optimal or near-optimal solutions for a variety of real-world problems. The second edition also includes information on the remarkable progress in the development of mixed integer programming solvers in the 22 years since the first edition of the book appeared. The updated text includes information on the most recent developments in the field such as the much improved preprocessing/presolving and the many new ideas for primal heuristics included in the solvers. The result has been a speed-up of several orders of magnitude. The other major change reflected in the text is the widespread use of decomposition algorithms, in particular column generation (branch-(cut)-and-price) and Benders' decomposition. The revised second edition: Contains new developments on column generation Offers a new chapter on Benders' algorithm Includes expanded information on preprocessing, heuristics, and branch-and-cut Presents several basic and extended formulations, for example for fixed cost network flows Also touches on and briefly introduces topics such as non-bipartite matching, the complexity of extended formulations or a good linear program for the implementation of lift-and-project Written for students of integer/mathematical programming in operations research, mathematics, engineering, or computer science, Integer Programming offers an updated edition of the basic text that reflects the most recent developments in the field.
Control Theory for Linear Systems deals with the mathematical theory of feedback control of linear systems. It treats a wide range of control synthesis problems for linear state space systems with inputs and outputs. The book provides a treatment of these problems using state space methods, often with a geometric flavour. Its subject matter ranges from controllability and observability, stabilization, disturbance decoupling, and tracking and regulation, to linear quadratic regulation, H2 and H-infinity control, and robust stabilization. Each chapter of the book contains a series of exercises, intended to increase the reader's understanding of the material. Often, these exercises generalize and extend the material treated in the regular text.
Linear programming represents one of the major applications of mathematics to business, industry, and economics. It provides a methodology for optimizing an output given that is a linear function of a number of inputs. George Dantzig is widely regarded as the founder of the subject with his invention of the simplex algorithm in the 1940's. This second volume is intended to add to the theory of the items discussed in the first volume. It also includes additional advanced topics such as variants of the simplex method, interior point methods (early and current methods), GUB, decomposition, integer programming, and game theory. Graduate students in the fields of operations research, industrial engineering, and applied mathematics will find this volume of particular interest.
This monograph deals with problems of dynamical reconstruction of unknown variable characteristics (distributed or boundary disturbances, coefficients ofoperator etc.) for various classes of systems with distributed parameters (parabolic and hyperbolic equations, evolutionary variational inequalities etc.).
Optimization techniques are at the core of data science, including data analysis and machine learning. An understanding of basic optimization techniques and their fundamental properties provides important grounding for students, researchers, and practitioners in these areas. This text covers the fundamentals of optimization algorithms in a compact, self-contained way, focusing on the techniques most relevant to data science. An introductory chapter demonstrates that many standard problems in data science can be formulated as optimization problems. Next, many fundamental methods in optimization are described and analyzed, including: gradient and accelerated gradient methods for unconstrained optimization of smooth (especially convex) functions; the stochastic gradient method, a workhorse algorithm in machine learning; the coordinate descent approach; several key algorithms for constrained optimization problems; algorithms for minimizing nonsmooth functions arising in data science; foundations of the analysis of nonsmooth functions and optimization duality; and the back-propagation approach, relevant to neural networks.
For a long time the techniques of solving linear optimization (LP) problems improved only marginally. Fifteen years ago, however, a revolutionary discovery changed everything. A new golden age' for optimization started, which is continuing up to the current time. What is the cause of the excitement? Techniques of linear programming formed previously an isolated body of knowledge. Then suddenly a tunnel was built linking it with a rich and promising land, part of which was already cultivated, part of which was completely unexplored. These revolutionary new techniques are now applied to solve conic linear problems. This makes it possible to model and solve large classes of essentially nonlinear optimization problems as efficiently as LP problems. This volume gives an overview of the latest developments of such High Performance Optimization Techniques'. The first part is a thorough treatment of interior point methods for semidefinite programming problems. The second part reviews today's most exciting research topics and results in the area of convex optimization. Audience: This volume is for graduate students and researchers who are interested in modern optimization techniques.
* What is the essence of the similarity between linearly
independent sets of columns of a matrix and forests in a graph?
Presenting a strong and clear relationship between theory and practice, Linear and Integer Optimization: Theory and Practice is divided into two main parts. The first covers the theory of linear and integer optimization, including both basic and advanced topics. Dantzig's simplex algorithm, duality, sensitivity analysis, integer optimization models, and network models are introduced. More advanced topics also are presented including interior point algorithms, the branch-and-bound algorithm, cutting planes, complexity, standard combinatorial optimization models, the assignment problem, minimum cost flow, and the maximum flow/minimum cut theorem. The second part applies theory through real-world case studies. The authors discuss advanced techniques such as column generation, multiobjective optimization, dynamic optimization, machine learning (support vector machines), combinatorial optimization, approximation algorithms, and game theory. Besides the fresh new layout and completely redesigned figures, this new edition incorporates modern examples and applications of linear optimization. The book now includes computer code in the form of models in the GNU Mathematical Programming Language (GMPL). The models and corresponding data files are available for download and can be readily solved using the provided online solver. This new edition also contains appendices covering mathematical proofs, linear algebra, graph theory, convexity, and nonlinear optimization. All chapters contain extensive examples and exercises. This textbook is ideal for courses for advanced undergraduate and graduate students in various fields including mathematics, computer science, industrial engineering, operations research, and management science.
The chapters of this Handbook volume covers nine main topics that
are representative of recent
Many systems architecture optimization problems are characterized by a variable number of optimization variables. Many classical optimization algorithms are not suitable for such problems. The book presents recently developed optimization concepts that are designed to solve such problems. These new concepts are implemented using genetic algorithms and differential evolution. The examples and applications presented show the effectiveness of the use of these new algorithms in optimizing systems architectures. The book focuses on systems architecture optimization. It covers new algorithms and its applications, besides reviewing fundamental mathematical concepts and classical optimization methods. It also provides detailed modeling of sample engineering problems. The book is suitable for graduate engineering students and engineers. The second part of the book includes numerical examples on classical optimization algorithms, which are useful for undergraduate engineering students. While focusing on the algorithms and their implementation, the applications in this book cover the space trajectory optimization problem, the optimization of earth orbiting satellites orbits, and the optimization of the wave energy converter dynamic system: architecture and control. These applications are illustrated in the starting of the book, and are used as case studies in later chapters for the optimization methods presented in the book.
This book discusses an important area of numerical optimization, called interior-point method. This topic has been popular since the 1980s when people gradually realized that all simplex algorithms were not convergent in polynomial time and many interior-point algorithms could be proved to converge in polynomial time. However, for a long time, there was a noticeable gap between theoretical polynomial bounds of the interior-point algorithms and efficiency of these algorithms. Strategies that were important to the computational efficiency became barriers in the proof of good polynomial bounds. The more the strategies were used in algorithms, the worse the polynomial bounds became. To further exacerbate the problem, Mehrotra's predictor-corrector (MPC) algorithm (the most popular and efficient interior-point algorithm until recently) uses all good strategies and fails to prove the convergence. Therefore, MPC does not have polynomiality, a critical issue with the simplex method. This book discusses recent developments that resolves the dilemma. It has three major parts. The first, including Chapters 1, 2, 3, and 4, presents some of the most important algorithms during the development of the interior-point method around the 1990s, most of them are widely known. The main purpose of this part is to explain the dilemma described above by analyzing these algorithms' polynomial bounds and summarizing the computational experience associated with them. The second part, including Chapters 5, 6, 7, and 8, describes how to solve the dilemma step-by-step using arc-search techniques. At the end of this part, a very efficient algorithm with the lowest polynomial bound is presented. The last part, including Chapters 9, 10, 11, and 12, extends arc-search techniques to some more general problems, such as convex quadratic programming, linear complementarity problem, and semi-definite programming.
The goal of this book is to present the main ideas and techniques in the field of continuous smooth and nonsmooth optimization. Starting with the case of differentiable data and the classical results on constrained optimization problems, and continuing with the topic of nonsmooth objects involved in optimization theory, the book concentrates on both theoretical and practical aspects of this field. This book prepares those who are engaged in research by giving repeated insights into ideas that are subsequently dealt with and illustrated in detail.
In 1781, Gaspard Monge defined the problem of ""optimal transportation"", or the transferring of mass with the least possible amount of work, with applications to engineering in mind. In 1942, Leonid Kantorovich applied the newborn machinery of linear programming to Monge's problem, with applications to economics in mind. In 1987, Yann Brenier used optimal transportation to prove a new projection theorem on the set of measure preserving maps, with applications to fluid mechanics in mind. Each of these contributions marked the beginning of a whole mathematical theory, with many unexpected ramifications. Nowadays, the Monge-Kantorovich problem is used and studied by researchers from extremely diverse horizons, including probability theory, functional analysis, isoperimetry, partial differential equations, and even meteorology. Originating from a graduate course, the present volume is at once an introduction to the field of optimal transportation and a survey of the research on the topic over the last 15 years. The book is intended for graduate students and researchers, and it covers both theory and applications. Readers are only assumed to be familiar with the basics of measure theory and functional analysis.
Features Includes cutting edge applications in machine learning and data analytics. Suitable as a primary text for undergraduates studying linear algebra. Requires very little in the way of pre-requisites.
This book presents fundamental concepts of optimization problems and its real-world applications in various fields. The core concepts of optimization, formulations and solution procedures of various real-world problems are provided in an easy-to-read manner. The unique feature of this book is that it presents unified knowledge of the modelling of real-world decision-making problems and provides the solution procedure using the appropriate optimization techniques. The book will help students, researchers, and faculty members to understand the need for optimization techniques for obtaining optimal solution for the decision-making problems. It provides a sound knowledge of modelling of real-world problems using optimization techniques. It is a valuable compendium of several optimization techniques for solving real-world application problems using optimization software LINGO. The book is useful for academicians, practitioners, students and researchers in the field of OR. It is written in simple language with a detailed explanation of the core concepts of optimization techniques. Readers of this book will understand the formulation of real-world problems and their solution procedures obtained using the appropriate optimization techniques.
Linear and Nonlinear Programming is considered a classic textbook in Optimization. While it is a classic, it also reflects modern theoretical insights. These insights provide structure to what might otherwise be simply a collection of techniques and results, and this is valuable both as a means for learning existing material and for developing new results. One major insight of this type is the connection between the purely analytical character of an optimization problem, expressed perhaps by properties of the necessary conditions, and the behavior of algorithms used to solve a problem. This was a major theme of the first and second editions. Now the third edition has been completely updated with recent Optimization Methods. The new co-author, Yinyu Ye, has written chapters and chapter material on a number of these areas including Interior Point Methods.
Focuses on the latest research in the field of differential equations in engineering applications Discusses the most recent research findings that are occurring across different institutions Identifies the gaps in the knowledge of differential equations Presents the most fruitful areas for further research in advanced processes Offers the most forthcoming studies in modeling and simulation along with real-world case studies
This book focuses largely on constrained optimization. It begins with a substantial treatment of linear programming and proceeds to convex analysis, network flows, integer programming, quadratic programming, and convex optimization. Along the way, dynamic programming and the linear complementarity problem are touched on as well. This book aims to be the first introduction to the topic. Specific examples and concrete algorithms precede more abstract topics. Nevertheless, topics covered are developed in some depth, a large number of numerical examples worked out in detail, and many recent results are included, most notably interior-point methods. The exercises at the end of each chapter both illustrate the theory, and, in some cases, extend it. Optimization is not merely an intellectual exercise: its purpose is to solve practical problems on a computer. Accordingly, the book comes with software that implements the major algorithms studied. At this point, software for the following four algorithms is available: The two-phase simplex method The primal-dual simplex method The path-following interior-point method The homogeneous self-dual methods.GBP/LISTGBP.
Linear programming attracted the interest of mathematicians during and after World War II when the first computers were constructed and methods for solving large linear programming problems were sought in connection with specific practical problems for example, providing logistical support for the U.S. Armed Forces or modeling national economies. Early attempts to apply linear programming methods to solve practical problems failed to satisfy expectations. There were various reasons for the failure. One of them, which is the central topic of this book, was the inexactness of the data used to create the models. This phenomenon, inherent in most practical problems, has been dealt with in several ways. At first, linear programming models used average values of inherently vague coefficients, but the optimal solutions of these models were not always optimal for the original problem itself. Later researchers developed the stochastic linear programming approach, but this too has its limitations. Recently, interest has been given to linear programming problems with data given as intervals, convex sets and/or fuzzy sets. literature has not presented a unified theory. Linear Optimization Problems with Inexact Data attempts to present a comprehensive treatment of linear optimization with inexact data, summarizing existing results and presenting new ones within a unifying framework.
Optimization is the act of obtaining the "best" result under given circumstances. In design, construction, and maintenance of any engineering system, engineers must make technological and managerial decisions to minimize either the effort or cost required or to maximize benefits. There is no single method available for solving all optimization problems efficiently. Several optimization methods have been developed for different types of problems. The optimum-seeking methods are mathematical programming techniques (specifically, nonlinear programming techniques). Nonlinear Optimization: Models and Applications presents the concepts in several ways to foster understanding. Geometric interpretation: is used to re-enforce the concepts and to foster understanding of the mathematical procedures. The student sees that many problems can be analyzed, and approximate solutions found before analytical solutions techniques are applied. Numerical approximations: early on, the student is exposed to numerical techniques. These numerical procedures are algorithmic and iterative. Worksheets are provided in Excel, MATLAB (R), and Maple (TM) to facilitate the procedure. Algorithms: all algorithms are provided with a step-by-step format. Examples follow the summary to illustrate its use and application. Nonlinear Optimization: Models and Applications: Emphasizes process and interpretation throughout Presents a general classification of optimization problems Addresses situations that lead to models illustrating many types of optimization problems Emphasizes model formulations Addresses a special class of problems that can be solved using only elementary calculus Emphasizes model solution and model sensitivity analysis About the author: William P. Fox is an emeritus professor in the Department of Defense Analysis at the Naval Postgraduate School. He received his Ph.D. at Clemson University and has taught at the United States Military Academy and at Francis Marion University where he was the chair of mathematics. He has written many publications, including over 20 books and over 150 journal articles. Currently, he is an adjunct professor in the Department of Mathematics at the College of William and Mary. He is the emeritus director of both the High School Mathematical Contest in Modeling and the Mathematical Contest in Modeling.
This book provides a clear understanding regarding the fundamentals of matrix and determinant from introduction to its real-life applications. The topic is considered one of the most important mathematical tools used in mathematical modelling. Matrix and Determinant: Fundamentals and Applications is a small self-explanatory and well synchronized book that provides an introduction to the basics along with well explained applications. The theories in the book are covered along with their definitions, notations, and examples. Illustrative examples are listed at the end of each covered topic along with unsolved comprehension questions, and real-life applications. This book provides a concise understanding of matrix and determinate which will be useful to students as well as researchers.
This book is for beginners who are struggling to understand and optimize non-linear problems. The content will help readers gain an understanding and learn how to formulate real-world problems and will also give insight to many researchers for their future prospects. It proposes a mind map for conceptual understanding and includes sufficient solved examples for reader comprehension. The theory is explained in a lucid way. The variety of examples are framed to raise the thinking level of the reader and the formulation of real-world problems are included in the last chapter along with applications. The book is self-explanatory, well synchronized and written for undergraduate, post graduate and research scholars.
This book discusses an important area of numerical optimization, called interior-point method. This topic has been popular since the 1980s when people gradually realized that all simplex algorithms were not convergent in polynomial time and many interior-point algorithms could be proved to converge in polynomial time. However, for a long time, there was a noticeable gap between theoretical polynomial bounds of the interior-point algorithms and efficiency of these algorithms. Strategies that were important to the computational efficiency became barriers in the proof of good polynomial bounds. The more the strategies were used in algorithms, the worse the polynomial bounds became. To further exacerbate the problem, Mehrotra's predictor-corrector (MPC) algorithm (the most popular and efficient interior-point algorithm until recently) uses all good strategies and fails to prove the convergence. Therefore, MPC does not have polynomiality, a critical issue with the simplex method. This book discusses recent developments that resolves the dilemma. It has three major parts. The first, including Chapters 1, 2, 3, and 4, presents some of the most important algorithms during the development of the interior-point method around the 1990s, most of them are widely known. The main purpose of this part is to explain the dilemma described above by analyzing these algorithms' polynomial bounds and summarizing the computational experience associated with them. The second part, including Chapters 5, 6, 7, and 8, describes how to solve the dilemma step-by-step using arc-search techniques. At the end of this part, a very efficient algorithm with the lowest polynomial bound is presented. The last part, including Chapters 9, 10, 11, and 12, extends arc-search techniques to some more general problems, such as convex quadratic programming, linear complementarity problem, and semi-definite programming.
Multidimensional continued fractions form an area of research within number theory. Recently the topic has been linked to research in dynamical systems, and mathematical physics, which means that some of the results discovered in this area have applications in describing physical systems. This book gives a comprehensive and up to date overview of recent research in the area. |
![]() ![]() You may like...
VBA and Macros for Microsoft Office…
Bill Jelen, Tracy Syrstad
Paperback
R1,265
Discovery Miles 12 650
Mathematical Modeling with Excel
Brian Albright, William P. Fox
Hardcover
R2,910
Discovery Miles 29 100
Microeconomics using Excel - Integrating…
Gerald Schwarz, Kurt Jechlitschka, …
Paperback
R1,973
Discovery Miles 19 730
Financial Modelling and Asset Valuation…
Morten Helbaek, Ragnar Lovaas, …
Hardcover
R5,855
Discovery Miles 58 550
|