![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Applied mathematics > Mathematical modelling
This book is particularly concerned with heuristic state-space search for combinatorial optimization. Its two central themes are the average-case complexity of state-space search algorithms and the applications of the results notably to branch-and-bound techniques. Primarily written for researchers in computer science, the author presupposes a basic familiarity with complexity theory, and it is assumed that the reader is familiar with the basic concepts of random variables and recursive functions. Two successful applications are presented in depth: one is a set of state-space transformation methods which can be used to find approximate solutions quickly, and the second is forward estimation for constructing more informative evaluation functions.
This book presents a selection of Prof. Matteo Campanella's writings on the interpretative aspects of quantum mechanics and on a possible derivation of Born's rule - one of the key principles of the probabilistic interpretation of quantum mechanics - that is independent of any priori probabilistic interpretation. This topic is of fundamental interest, and as such is currently an active area of research. Starting from a natural method of defining such a state, Campanella found that it can be characterized through a partial density operator, which occurs as a consequence of the formalism and of a number of reasonable assumptions connected with the notion of a state. The book demonstrates that the density operator arises as an orbit invariant that has to be interpreted as probabilistic, and that its quantitative implementation is equivalent to Born's rule. The appendices present various mathematical details, which would have interrupted the continuity of the discussion if they had been included in the main text. For instance, they discuss baricentric coordinates, mapping between Hilbert spaces, tensor products between linear spaces, orbits of vectors of a linear space under the action of its structure group, and the class of Hilbert space as a category.
"Examines classic algorithms, geometric diagrams, and mechanical principles for enhances visualization of statistical estimation procedures and mathematical concepts in physics, engineering, and computer programming."
This research aims to achieve a fundamental understanding of synchronization and its interplay with the topology of complex networks. Synchronization is a ubiquitous phenomenon observed in different contexts in physics, chemistry, biology, medicine and engineering. Most prominently, synchronization takes place in the brain, where it is associated with several cognitive capacities but is - in abundance - a characteristic of neurological diseases. Besides zero-lag synchrony, group and cluster states are considered, enabling a description and study of complex synchronization patterns within the presented theory. Adaptive control methods are developed, which allow the control of synchronization in scenarios where parameters drift or are unknown. These methods are, therefore, of particular interest for experimental setups or technological applications. The theoretical framework is demonstrated on generic models, coupled chemical oscillators and several detailed examples of neural networks.
This book speaks about physics discoveries that intertwine mathematical reasoning, modeling, and scientific inquiry. It offers ways of bringing together the structural domain of mathematics and the content of physics in one coherent inquiry. Teaching and learning physics is challenging because students lack the skills to merge these learning paradigms. The purpose of this book is not only to improve access to the understanding of natural phenomena but also to inspire new ways of delivering and understanding the complex concepts of physics. To sustain physics education in college classrooms, authentic training that would help develop high school students' skills of transcending function modeling techniques to reason scientifically is needed and this book aspires to offer such training The book draws on current research in developing students' mathematical reasoning. It identifies areas for advancements and proposes a conceptual framework that is tested in several case studies designed using that framework. Modeling Newton's laws using limited case analysis, Modeling projectile motion using parametric equations and Enabling covariational reasoning in Einstein formula for the photoelectric effect represent some of these case studies. A wealth of conclusions that accompany these case studies, drawn from the realities of classroom teaching, is to help physics teachers and researchers adopt these ideas in practice.
"Optimization on Metric and Normed Spaces" is devoted to the recent progress in optimization on Banach spaces and complete metric spaces. Optimization problems are usually considered on metric spaces satisfying certain compactness assumptions which guarantee the existence of solutions and convergence of algorithms. This book considers spaces that do not satisfy such compactness assumptions. In order to overcome these difficulties, the book uses the Baire category approach and considers approximate solutions. Therefore, it presents a number of new results concerning penalty methods in constrained optimization, existence of solutions in parametric optimization, well-posedness of vector minimization problems, and many other results obtained in the last ten years. The book is intended for mathematicians interested in optimization and applied functional analysis.
It isn't that they can't see Approach your problems from the solution. the right end and begin with It is that they can't see the the answers. Then one day, problem. perhaps you will find the final qu~stion. G. K. Chesterton. The Scandal of Father Brown ITh~ Point of 'The Hermit Clad in Crane Feathers' in R. van Gulik's a Pin'. The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. HowQvQr, thQ "tree" of knowledge of mathematics and related field does not grow only by putting forth new branches. It also happ~ns, quit~ often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathe matics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces.
This volume contains the courses given at the Sixth Summer School on Complex Systems held at Facultad de Ciencias Fisicas y Maternaticas, Universidad de Chile at Santiago, Chile, from 14th to 18th December 1998. This school was addressed to graduate students and researchers working on areas related with recent trends in Complex Systems, including dynamical systems, cellular automata, complexity and cutoff in Markov chains. Each contribution is devoted to one of these subjects. In some cases they are structured as surveys, presenting at the same time an original point of view and showing mostly new results. The paper of Pierre Arnoux investigates the relation between low complex systems and chaotic systems, showing that they can be put into relation by some re normalization operations. The case of quasi-crystals is fully studied, in particular the Sturmian quasi-crystals. The paper of Franco Bagnoli and Raul Rechtman establishes relations be tween Lyapunov exponents and synchronization processes in cellular automata. The principal goal is to associate tools, usually used in physical problems, to an important problem in cellularautomata and computer science, the synchronization problem. The paper of Jacques Demongeot and colleagues gives a presentation of at tractors of dynamical systems appearing in biological situations. For instance, the relation between positive or negative loops and regulation systems."
Power System Operation and Planning under Uncertainty provides the mathematical models and tools needed to plan and operate future power systems. It discusses the challenging task of the integration of a high penetration of renewable energies and electric vehicles within existing power systems. This book explores the uncertainty faced by power systems that is associated with the evolution of capital costs, technical developments of immature renewable technologies and energy storage systems, the number of electrical vehicles, and the participation of electricity end users in demand response programs. It helps provide solutions, and points to areas of further research that will help resolve. The models, tools and techniques described in this book are of interest for researches of energy systems, professionals working as power system planners or operators, and for graduate students in power engineering and operations research.
This volume of lecture notes briefly introduces the basic concepts needed in any computational physics course: software and hardware, programming skills, linear algebra, and differential calculus. It then presents more advanced numerical methods to tackle the quantum many-body problem: it reviews the numerical renormalization group and then focuses on tensor network methods, from basic concepts to gauge invariant ones. Finally, in the last part, the author presents some applications of tensor network methods to equilibrium and out-of-equilibrium correlated quantum matter. The book can be used for a graduate computational physics course. After successfully completing such a course, a student should be able to write a tensor network program and can begin to explore the physics of many-body quantum systems. The book can also serve as a reference for researchers working or starting out in the field.
This monograph presents a graduate-level treatment of partial differential equations (PDEs) for engineers. The book begins with a review of the geometrical interpretation of systems of ODEs, the appearance of PDEs in engineering is motivated by the general form of balance laws in continuum physics. Four chapters are devoted to a detailed treatment of the single first-order PDE, including shock waves and genuinely non-linear models, with applications to traffic design and gas dynamics. The rest of the book deals with second-order equations. In the treatment of hyperbolic equations, geometric arguments are used whenever possible and the analogy with discrete vibrating systems is emphasized. The diffusion and potential equations afford the opportunity of dealing with questions of uniqueness and continuous dependence on the data, the Fourier integral, generalized functions (distributions), Duhamel's principle, Green's functions and Dirichlet and Neumann problems. The target audience primarily comprises graduate students in engineering, but the book may also be beneficial for lecturers, and research experts both in academia in industry.
The articles collected in this volume represent the contributions presented at the IMA workshop on "Dynamics of Algorithms" which took place in November 1997. The workshop was an integral part of the 1997 -98 IMA program on "Emerging Applications of Dynamical Systems." The interaction between algorithms and dynamical systems is mutually beneficial since dynamical methods can be used to study algorithms that are applied repeatedly. Convergence, asymptotic rates are indeed dynamical properties. On the other hand, the study of dynamical systems benefits enormously from having efficient algorithms to compute dynamical objects.
This monograph develops techniques for equational reasoning in higher-order logic. Due to its expressiveness, higher-order logic is used for specification and verification of hardware, software, and mathematics. In these applica tions, higher-order logic provides the necessary level of abstraction for con cise and natural formulations. The main assets of higher-order logic are quan tification over functions or predicates and its abstraction mechanism. These allow one to represent quantification in formulas and other variable-binding constructs. In this book, we focus on equational logic as a fundamental and natural concept in computer science and mathematics. We present calculi for equa tional reasoning modulo higher-order equations presented as rewrite rules. This is followed by a systematic development from general equational rea soning towards effective calculi for declarative programming in higher-order logic and A-calculus. This aims at integrating and generalizing declarative programming models such as functional and logic programming. In these two prominent declarative computation models we can view a program as a logical theory and a computation as a deduction."
This book describes the rapidly developing field of interior point methods (IPMs). An extensive analysis is given of path-following methods for linear programming, quadratic programming and convex programming. These methods, which form a subclass of interior point methods, follow the central path, which is an analytic curve defined by the problem. Relatively simple and elegant proofs for polynomiality are given. The theory is illustrated using several explicit examples. Moreover, an overview of other classes of IPMs is given. It is shown that all these methods rely on the same notion as the path-following methods: all these methods use the central path implicitly or explicitly as a reference path to go to the optimum. For specialists in IPMs as well as those seeking an introduction to IPMs. The book is accessible to any mathematician with basic mathematical programming knowledge.
Quantitative Modeling of Derivative Securities demonstrates how to take the basic ideas of arbitrage theory and apply them - in a very concrete way - to the design and analysis of financial products. Based primarily (but not exclusively) on the analysis of derivatives, the book emphasizes relative-value and hedging ideas applied to different financial instruments. Using a "financial engineering approach," the theory is developed progressively, focusing on specific aspects of pricing and hedging and with problems that the technical analyst or trader has to consider in practice.
This proceedings volume is based on papers presented at the First Annual Workshop on Inverse Problems which was held in June 2011 at the Department of Mathematics, Chalmers University of Technology. The purpose of the workshop was to present new analytical developments and numerical methods for solutions of inverse problems. State-of-the-art and future challenges in solving inverse problems for a broad range of applications was also discussed. The contributions in this volume are reflective of these themes and will be beneficial to researchers in this area.
This the second volume of five from the 28th IMAC on Structural Dynamics and Renewable Energy, 2010, bringing together 17 chapters on Applications of Non-Linear Dynamics. It presents early findings from experimental and computational investigations on Non-Linear Dynamics including studies on Dynamics of a System of Coupled Oscillators with Geometrically Nonlinear Damping, Assigning the Nonlinear Distortions of a Two-input Single-output System, A Multi-harmonic Approach to Updating Locally Nonlinear Structures, A Block Rocking on a Seesawing Foundation, and Enhanced Order Reduction of Forced Nonlinear Systems Using New Ritz Vectors.
Sixty-five papers cover a wide range of topics from engineering applications to theoretical developments in the areas of embankment and slope stability, underground cavity design and mining; dynamic analysis, soil and structure interaction, and coupled processes and fluid flow.
In this volume a number of developments on a variety of topics have been reported. These topics include: partially saturated soil; instabilities in soil behaviour; environmental geomechanics; parallel computing; and applications to tunnels, embankments, slopes, foundations and anchors.
Mathematical Analysis for Modeling is intended for those who want to understand the substance of mathematics, rather than just having familiarity with its techniques. It provides a thorough understanding of how mathematics is developed for and applies to solving scientific and engineering problems. The authors stress the construction of mathematical descriptions of scientific and engineering situations, rather than rote memorizations of proofs and formulas. Emphasis is placed on algorithms as solutions to problems and on insight rather than formal derivations.
This book investigates the latest modeling and control technologies in the context of air-conditioning systems. Firstly, it introduces the state-space method for developing dynamic models of all components in a central air-conditioning system. The models are primarily nonlinear and based on the fundamental principle of energy and mass conservation, and are transformed into state-space form through linearization. The book goes on to describe and discuss the state-space models with the help of graph theory and the structure-matrix theory. Subsequently, virtual sensor calibration and virtual sensing methods (which are very useful for real system control) are illustrated together with a case study. Model-based predictive control and state-space feedback control are applied to air-conditioning systems to yield better local control, while the air-side synergic control scheme and a global optimization strategy based on the decomposition-coordination method are developed so as to achieve energy conservation in the central air-conditioning system. Lastly, control strategies for VAV systems including total air volume control and trim & response static pressure control are investigated in practice.
This book provides a comprehensive treatment of linear mixed models for continuous longitudinal data. Next to model formulation, this edition puts major emphasis on exploratory data analysis for all aspects of the model, such as the marginal model, subject-specific profiles, and residual covariance structure. Further, model diagnostics and missing data receive extensive treatment. Sensitivity analysis for incomplete data is given a prominent place. Several variations to the conventional linear mixed model are discussed (a heterogeity model, condional linear mid models). This book will be of interest to applied statisticians and biomedical researchers in industry, public health organizations, contract research organizations, and academia. The book is explanatory rather than mathematically rigorous. Most analyses were done with the MIXED procedure of the SAS software package, and many of its features are clearly elucidated. How3ever, some other commercially available packages are discussed as well. Great care has been taken in presenting the data analyses in a software-independent fashion. Geert Verbeke is Assistant Professor at the Biostistical Centre of the Katholieke Universiteit Leuven in Belgium. He received the B.S. degree in mathematics (1989) from the Katholieke Universiteit Leuven, the M.S. in biostatistics (1992) from the Limburgs Universitair Centrum, and earned a Ph.D. in biostatistics (1995) from the Katholieke Universiteit Leuven. Dr. Verbeke wrote his dissertation, as well as a number of methodological articles, on various aspects of linear mixed models for longitudinal data analysis. He has held visiting positions at the Gerontology Research Center and the Johns Hopkins University. Geert Molenberghs is Assistant Professor of Biostatistics at the Limburgs Universitair Centrum in Belgium. He received the B.S. degree in mathematics (1988) and a Ph.D. in biostatistics (1993) from the Universiteit Antwerpen. Dr. Molenberghs published methodological work on the analysis of non-response in clinical and epidemiological studies. He serves as an associate editor for Biometrics, Applied Statistics, and Biostatistics, and is an officer of the Belgian Statistical Society. He has held visiting positions at the Harvard School of Public Health.
Residualplots 74 Normaland half-normal plots 77 2. 3. 10. TRANSFORMATIONS OF VARIABLES 80 2. 3. 11. WEIGHTED LEAST SQUARES 82 2. 4. Bibliography 84 Appendix A. 2. 1. Basic equation ofthe analysis ofvariance 84 Appendix A. 2. 2. Derivation of the simplified formulae (2. 1 0) and (2. 11) 85 Appendix A. 2. 3. Basic properties ofleast squares estimates 86 Appendix A. 2. 4. Sums ofsquares for tests for lack offit 88 Appendix A. 2. 5. Properties ofthe residuals 90 3. DESIGN OF REGRESSION EXPERIMENTS 96 3. 1. Introduction 96 3. 2. Variance-optimality of response surface designs 98 3. 3. Two Ievel full factorial designs 106 3. 3. 1. DEFINITIONS AND CONSTRUCTION 106 3. 3. 2. PROPERTIES OF TWO LEVEL FULL FACTORIAL DESIGNS 109 3. 3. 3. REGRESSION ANALYSIS OF DAT A OBT AlNED THROUGH TWO LEVEL FULL F ACTORIAL DESIGNS 113 Parameter estimation 113 Effects of factors and interactions 116 Statistical analysis of individual effects and test for lack of fit 118 3. 4. Two Ievel fractional factorial designs 123 3. 4. 1. CONSTRUCTION OF FRACTIONAL F ACTORIAL DESIGNS 123 3. 4. 2. FITTING EQUATIONS TO DATA OBTAlNED BY FRACTIONAL F ACTORIAL DESIGNS 130 3. 5. Bloclung 133 3. 6. Steepest ascent 135 3. 7. Second order designs 142 3. 7. 1. INTRODUCTION 142 3. 7. 2. COMPOSITE DESIGNS 144 Rotatable central composite designs 145 D-optimal composite designs 146 Hartley' s designs 146 3. 7. 3.
This contributed volume brings together research papers presented at the 4th International Conference on Dynamics in Logistics, held in Bremen, Germany in February 2014. The conference focused on the identification, analysis and description of the dynamics of logistics processes and networks. Topics covered range from the modeling and planning of processes, to innovative methods like autonomous control and knowledge management, to the latest technologies provided by radio frequency identification, mobile communication, and networking. The growing dynamic poses wholly new challenges: logistics processes and networks must be(come) able to rapidly and flexibly adapt to constantly changing conditions. The book primarily addresses the needs of researchers and practitioners from the field of logistics, but will also be beneficial for graduate students.
This volume offers a collection of carefully selected, peer-reviewed papers presented at the BIOMAT 2019 International Symposium, which was held at the University of Szeged, Bolyai Institute and the Hungarian Academy of Sciences, Hungary, October 21st-25th, 2019. The topics covered in this volume include tumor and infection modeling; dynamics of co-infections; epidemic models on networks; aspects of blood circulation modeling; multidimensional modeling approach via time-frequency analysis and Edge Based Compartmental Model; and more. This book builds upon the tradition of the previous BIOMAT volumes to foster interdisciplinary research in mathematical biology for students, researchers, and professionals. Held every year since 2001, the BIOMAT International Symposium gathers together, in a single conference, researchers from Mathematics, Physics, Biology, and affine fields to promote the interdisciplinary exchange of results, ideas and techniques, promoting truly international cooperation for problem discussion. The 2019 edition of BIOMAT International Symposium received contributions by authors from 14 countries: Brazil, Cameroon, Canada, Colombia, Czech Republic, Finland, Hungary, India, Italy, Russia, Senegal, Serbia, United Kingdom and the USA. Selected papers presented at the 2017 and 2018 editions of this Symposium were also published by Springer, in the volumes "Trends in Biomathematics: Modeling, Optimization and Computational Problems" (978-3-319-91091-8) and "Trends in Biomathematics: Mathematical Modeling for Health, Harvesting, and Population Dynamics" (978-3-030-23432-4). |
![]() ![]() You may like...
Dominion - The History of England Volume…
Peter Ackroyd
Paperback
![]()
Women, Community, and the Hormel Strike…
Neala J. Schleuning
Hardcover
R2,934
Discovery Miles 29 340
Denholms - The Story of Worcester's…
Christopher Sawyer, Patricia A Wolf
Paperback
|