![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Applied mathematics > Mathematical modelling
This book discusses heat transfer in underground energy systems. It covers a wide range of important and practical topics including the modeling and optimization of underground power cable systems, modeling of thermal energy storage systems utilizing waste heat from PV panels cooling. Modeling of PV pannels with cooling. While the performance of energy systems which utilize heat transfer in the ground is not yet fully understood, this book attempts to make sense of them. It provides mathematical modeling fundaments, as well as experimental investigation for underground energy systems. The book shows detailed examples, with solution procedures. The solutions are based on the Finite Element Method and the Finite Volume Method. The book allows the reader to perform a detailed design of various underground energy systems, as well as enables them to study the economic aspects and energy efficiency of underground energy systems. Therefore, this text is of interest to researchers, students, and lecturers alike.
Public-Private Partnerships (PPP or 3Ps) allow the public sector to seek alternative funding and expertise from the private sector during procurement processes. Such partnerships, if executed with due diligence, often benefit the public immensely. Unfortunately, Public-Private Partnerships can be vulnerable to corruption. This book looks at what measures we can put in place to check corruption during procurement and what good governance strategies the public sector can adopt to improve the performance of 3Ps. The book applies mathematical models to analyze 3Ps. It uses game theory to study the interaction and dynamics between the stakeholders and suggests strategies to reduce corruption risks in various 3Ps stages. The authors explain through game theory-based simulation how governments can adopt a evaluating process at the start of each procurement to weed out undesirable private partners and why the government should take a more proactive approach. Using a methodological framework rooted in mathematical models to illustrate how we can combat institutional corruption, this book is a helpful reference for anyone interested in public policymaking and public infrastructure management.
This volume tackles a variety of biological and medical questions using mathematical models to understand complex system dynamics. Working in collaborative teams of six, each with a senior research mentor, researchers developed new mathematical models to address questions in a range of application areas. Topics include retinal degeneration, biopolymer dynamics, the topological structure of DNA, ensemble analysis, multidrug-resistant organisms, tumor growth modeling, and geospatial modeling of malaria. The work is the result of newly formed collaborative groups begun during the Collaborative Workshop for Women in Mathematical Biology hosted by the Institute of Pure and Applied Mathematics at UCLA in June 2019. Previous workshops in this series have occurred at IMA, NIMBioS, and MBI.
Numerical simulation methods in all engineering disciplines gains more and more importance. The successful and efficient application of such tools requires certain basic knowledge about the underlying numerical techniques. The text gives a practice-oriented introduction in modern numerical methods as they typically are applied in mechanical, chemical, or civil engineering. Problems from heat transfer, structural mechanics, and fluid mechanics constitute a thematical focus of the text. For the basic understanding of the topic aspects of numerical mathematics, natural sciences, computer science, and the corresponding engineering area are simultaneously important. Usually, the necessary information is distributed in different textbooks from the individual disciplines. In the present text the subject matter is presented in a comprehensive multidisciplinary way, where aspects from the different fields are treated insofar as it is necessary for general understanding. Overarching aspects and important questions related to accuracy, efficiency, and cost effectiveness are discussed. The topics are presented in an introductory manner, such that besides basic mathematical standard knowledge in analysis and linear algebra no further prerequisites are necessary. The book is suitable either for self-study or as an accompanying textbook for corresponding lectures. It can be useful for students of engineering disciplines as well as for computational engineers in industrial practice.
The eigenvalue densities in various matrix models in quantum chromodynamics (QCD) are ultimately unified in this book by a unified model derived from the integrable systems. Many new density models and free energy functions are consequently solved and presented. The phase transition models including critical phenomena with fractional power-law for the discontinuities of the free energies in the matrix models are systematically classified by means of a clear and rigorous mathematical demonstration. The methods here will stimulate new research directions such as the important Seiberg-Witten differential in Seiberg-Witten theory for solving the mass gap problem in quantum Yang-Mills theory. The formulations and results will benefit researchers and students in the fields of phase transitions, integrable systems, matrix models and Seiberg-Witten theory.
Fifty years ago, a new approach to reaction kinetics began to emerge: one based on mathematical models of reaction kinetics, or formal reaction kinetics. Since then, there has been a rapid and accelerated development in both deterministic and stochastic kinetics, primarily because mathematicians studying differential equations and algebraic geometry have taken an interest in the nonlinear differential equations of kinetics, which are relatively simple, yet capable of depicting complex behavior such as oscillation, chaos, and pattern formation. The development of stochastic models was triggered by the fact that novel methods made it possible to measure molecules individually. Now it is high time to make the results of the last half-century available to a larger audience: students of chemistry, chemical engineering and biochemistry, not to mention applied mathematics. Based on recent papers, this book presents the most important concepts and results, together with a wealth of solved exercises. The book is accompanied by the authors' Mathematica package, ReactionKinetics, which helps both students and scholars in their everyday work, and which can be downloaded from http://extras.springer.com/ and also from the authors' websites. Further, the large set of unsolved problems provided may serve as a springboard for individual research.
Boundary value problems are of interest to mathematicians, engineers, scientists and the technique of investigating these problems for time scales is unique. The key topics here are BVDs, ordinary and partial differential equations, difference equations, and integral equations and so has broad appeal. The techniques presented here are applicable to these topics and the teaching and research. This book is a different take on the topic than the competitors, most offered at a higher level. This book will be accessible to advanced undergraduates, graduate students, and appeal to researchers as well.
This book explains the concept of man-machine systems by using the mining industry. The goal is to use a mathematical model based approach to improve the quality of human life of the workers and operators with the enhancement of productivity by controlling the process variables. The book will illustrate the formulation of mathematical modelling for manual operations. It will provide details in the investigation of many machine systems through the case study approach and provide data analysis using the concept of mathematical modelling and sensitivity. It presents how to solve a field problem through a field data-based modelling concept and highlights the collection of anthropometry data and its behavior. The book will be useful for researchers, academic libraries, professionals, post graduate students of Industrial, Mechanical, and Manufacturing Engineering programs.
This book was inspired by the general observation that the great theories of modern physics are based on simple and transparent underlying mathematical structures - a fact not usually emphasized in standard physics textbooks - which makes it easy for mathematicians to understand their basic features. It is a textbook on quantum theory intended for advanced undergraduate or graduate students: mathematics students interested in modern physics, and physics students who are interested in the mathematical background of physics and are dissatisfied with the level of rigor in standard physics courses. More generally, it offers a valuable resource for all mathematicians interested in modern physics, and all physicists looking for a higher degree of mathematical precision with regard to the basic concepts in their field.
Introduction to the Theory of Optimization in Euclidean Space is intended to provide students with a robust introduction to optimization in Euclidean space, demonstrating the theoretical aspects of the subject whilst also providing clear proofs and applications. Students are taken progressively through the development of the proofs, where they have the occasion to practice tools of differentiation (Chain rule, Taylor formula) for functions of several variables in abstract situations. Throughout this book, students will learn the necessity of referring to important results established in advanced Algebra and Analysis courses. Features Rigorous and practical, offering proofs and applications of theorems Suitable as a textbook for advanced undergraduate students on mathematics or economics courses, or as reference for graduate-level readers Introduces complex principles in a clear, illustrative fashion
One cannot watch or read about the news these days without hearing about the models for COVID-19 or the testing that must occur to approve vaccines or treatments for the disease. The purpose of Mathematical Modeling in the Age of a Pandemic is to shed some light on the meaning and interpretations of many of the types of models that are or might be used in the presentation of analysis. Understanding the concepts presented is essential in the entire modeling process of a pandemic. From the virus itself and its infectious rates and deaths rates to explain the process for testing a vaccine or eventually a cure, the author builds, presents, and shows model testing. This book is an attempt, based on available data, to add some validity to the models developed and used, showing how close to reality the models are to predicting "results" from previous pandemics such as the Spanish flu in 1918 and more recently the Hong Kong flu. Then the author applies those same models to Italy, New York City, and the United States as a whole. Modeling is a process. It is essential to understand that there are many assumptions that go into the modeling of each type of model. The assumptions influence the interpretation of the results. Regardless of the modeling approach the results generally indicate approximately the same results. This book reveals how these interesting results are obtained.
This book surveys new algorithmic approaches and applications to natural and man-made disasters such as oil spills, hurricanes, earthquakes and wildfires. Based on the "Third International Conference on Dynamics of Disasters" held in Kalamata, Greece, July 2017, this Work includes contributions in evacuation logistics, disaster communications between first responders, disaster relief, and a case study on humanitarian logistics. Multi-disciplinary theories, tools, techniques and methodologies are linked with disasters from mitigation and preparedness to response and recovery. The interdisciplinary approach to problems in economics, optimization, government, management, business, humanities, engineering, medicine, mathematics, computer science, behavioral studies, emergency services, and environmental studies will engage readers from a wide variety of fields and backgrounds.
Accurate estimation, diagnosis, and prevention of COVID-19 is a global challenge for healthcare organizations. Innovative measures can introduce and implement AI, and Mathematical Modeling applications. This book provides insight into the recent advances of applications, statistical methods, and mathematical modeling for the healthcare industry. This book covers the state-of-the-art applications of AI and Machine Learning in past epidemics, pandemics, and COVID-19. It offers recent global case studies, and discusses how AI and statistical methods, initiatives, and applications such as Machine Learning, Deep Learning, Correlation and Regression Analysis play a major role in the prediction, diagnosis, and prevention of a pandemic. It will also focus on how AI and statistical applications can facilitate and restructure the healthcare system. This book is written for Researchers, Students, Professionals, Executives, and the general public.
Future predictions are always a topic of interest. Precise estimates are crucial in many activities as forecasting errors can lead to big financial loss. The sequential analysis of data and information gathered from past to present is call time series analysis. This book covers the recent advancements in time series forecasting. The book includes theoretical as well as recent applications of time series analysis. It focuses on the recent techniques used, discusses a combination of methodology and applications, presents traditional and advanced tools, new applications, and identifies the gaps in knowledge in engineering applications. This book is aimed at scientists, researchers, postgraduate students and engineers in the areas of supply chain management, production, inventory planning, and statistical quality control.
A comprehensive, step-by-step introduction to wavelets in statistics. What are wavelets? What makes them increasingly indispensable in statistical nonparametrics? Why are they suitable for "time-scale" applications? How are they used to solve such problems as denoising, regression, or density estimation? Where can one find up-to-date information on these newly "discovered" mathematical objects? These are some of the questions Brani Vidakovic answers in Statistical Modeling by Wavelets. Providing a much-needed introduction to the latest tools afforded statisticians by wavelet theory, Vidakovic compiles, organizes, and explains in depth research data previously available only in disparate journal articles. He carefully balances both statistical and mathematical techniques, supplementing the material with a wealth of examples, more than 100 illustrations, and extensive references—with data sets and S-Plus wavelet overviews made available for downloading over the Internet. Both introductory and data-oriented modeling topics are featured, including:
* Example-driven approach * Suitable as supplementary reading for a graduate or advanced undergraduate course in dynamical systems
* Example-driven approach * Suitable as supplementary reading for a graduate or advanced undergraduate course in dynamical systems
This volume presents a selection of advanced case studies that address a substantial range of issues and challenges arising in space engineering. The contributing authors are well-recognized researchers and practitioners in space engineering and in applied optimization. The key mathematical modeling and numerical solution aspects of each application case study are presented in sufficient detail. Classic and more recent space engineering problems including cargo accommodation and object placement, flight control of satellites, integrated design and trajectory optimization, interplanetary transfers with deep space manoeuvres, low energy transfers, magnetic cleanliness modeling, propulsion system design, sensor system placement, systems engineering, space traffic logistics, and trajectory optimization are discussed. Novel points of view related to computational global optimization and optimal control, and to multidisciplinary design optimization are also given proper emphasis. A particular attention is paid also to scenarios expected in the context of future interplanetary explorations. "Modeling and Optimization in Space Engineering" will benefit researchers and practitioners working on space engineering applications. Academics, graduate and post-graduate students in the fields of aerospace and other engineering, applied mathematics, operations research and optimal control will also find the book useful, since it discusses a range of advanced model development and solution techniques and tools in the context of real-world applications and new challenges."
Statistical modeling is a critical tool in scientific research. This book provides comprehensive explanations of the concepts and philosophy of statistical modeling, together with a wide range of practical and numerical examples. The authors expect this work to be of great value not just to statisticians but also to researchers and practitioners in various fields of research such as information science, computer science, engineering, bioinformatics, economics, marketing and environmental science. It 's a crucial area of study, as statistical models are used to understand phenomena with uncertainty and to determine the structure of complex systems. They re also used to control such systems, as well as to make reliable predictions in various natural and social science fields.
This book investigates why economics makes less visible progress over time than scientific fields with a strong practical component, where interactions with physical technologies play a key role. The thesis of the book is that the main impediment to progress in economics is "false feedback", which it defines as the false result of an empirical study, such as empirical evidence produced by a statistical model that violates some of its assumptions. In contrast to scientific fields that work with physical technologies, false feedback is hard to recognize in economics. Economists thus have difficulties knowing where they stand in their inquiries, and false feedback will regularly lead them in the wrong directions. The book searches for the reasons behind the emergence of false feedback. It thereby contributes to a wider discussion in the field of metascience about the practices of researchers when pursuing their daily business. The book thus offers a case study of metascience for the field of empirical economics. The main strength of the book are the numerous smaller insights it provides throughout. The book delves into deep discussions of various theoretical issues, which it illustrates by many applied examples and a wide array of references, especially to philosophy of science. The book puts flesh on complicated and often abstract subjects, particularly when it comes to controversial topics such as p-hacking. The reader gains an understanding of the main challenges present in empirical economic research and also the possible solutions. The main audience of the book are all applied researchers working with data and, in particular, those who have found certain aspects of their research practice problematic.
Includes over 250 solved problems to supplement graduate-level courses in fluid mechanics and turbomachinery. Enables students to practice applying key concepts of fluid mechanics and the governing conservation laws to solve real-world problems. Uses the physics-first approach, allowing for a good understanding of the problem physics and the results obtained. Covers problems on flowpath aerodynamics design. Covers problems on secondary air systems modeling of gas turbines.
Includes over 250 solved problems to supplement graduate-level courses in fluid mechanics and turbomachinery. Enables students to practice applying key concepts of fluid mechanics and the governing conservation laws to solve real-world problems. Uses the physics-first approach, allowing for a good understanding of the problem physics and the results obtained. Covers problems on flowpath aerodynamics design. Covers problems on secondary air systems modeling of gas turbines.
This book is based on a two-day symposium at the Paris Institute of Advanced Study titled "space-time geometries and movement in the brain and the arts". It includes over 20 chapters written by the leading scientists and artists who presented their related research studies at the symposium and includes six sections; the first three focus on space-time geometries in perception, action and memory while the last three focus on specific artistic domains: drawing and painting, dance, music, digital arts and robotics. The book is accompanied by a dedicated webpage including related images and videos. There is an ever-growing interest in the topics covered by this book. Space and time are of fundamental importance for our understanding of human perception, action, memory and cognition, and are entities which are equally important in physics, biology, neuroscience and psychology. Highly prominent scientists and mathematicians have expressed their belief that our bodies and minds shape the ways we perceive space and time and the physical laws we formulate. Understanding how the brain perceives motion and generates -bodily movements is of great significance. There is also growing interest in studying how space, time and movement subserve artistic creations in different artistic modalities (e.g., fine arts, digital and performing arts and music). This interest is inspired by the idea that artists make intuitive use of the principles and simplifying strategies used by the brain in movement generation and perception. Building upon new understanding of the spatio-temporal geometries subserving movement generation and perception by the brain we can start exploring how artists make use of such neuro --geometrical and neuro-dynamic representations in order to express artistic concepts and emotionally affect the human observers and listeners. Scientists have also started formulating new ideas of how aesthetic judgements emerge from the principles and brain mechanisms subserving motor control and motion perception. Covering novel and multidisciplinary topics, this advanced book will be of interest to neuroscientists, behavioral scientists, artificial intelligence and robotics experts, students and artists.
Inland Waterway (IW), or river vessels are in every respect different from the seagoing ships. The professional literature is mostly focused on conventional seagoing fleets, leaving a gap in the documentation of design practices for IW vessels. The principal attribute that differentiates river vessels from the seagoing ships is the low, or shallow, draught due to water depth restrictions. This book addresses key aspects for the design of contemporary, shallow draught IW vessels for the transport of dry cargo (containers and bulk cargo). Most of the logic that is presented is applicable to the design of river vessels for any river, but the material that is presented is focused on vessels for the River Danube and its tributaries. The term 'contemporary river vessel' assumes that the present-day technology and current Danube river infrastructure are taken into consideration in its design. It is believed that the technologies and concepts that are proposed here are applicable for all new vessel designs for the next 10 to 15 years. Other innovative technologies should be considered for designs beyond that horizon. Moreover, nowadays contemporary IW vessel must be in harmony with the Environmentally Sustainable Transport (EST) policies and hence special attention is paid to both ecology and efficiency. Note however that shipowners and ship operators usually tend to choose the conventional cost-effective transport technologies. Given that potential divergence of interests, the concepts and technologies treated here may be regarded as innovative.
Mankind now faces even more challenging environment- and health-related problems than ever before. Readily available transportation systems facilitate the swift spread of diseases as large populations migrate from one part of the world to another. Studies on the spread of the communicable diseases are very important. This book, Mathematical Population Dynamics and Epidemiology in Temporal and Spatio-Temporal Domains, provides a useful experimental tool for making practical predictions, building and testing theories, answering specific questions, determining sensitivities of the parameters, forming control strategies, and much more. This volume focuses on the study of population dynamics with special emphasis on the migration of populations and the spreading of epidemics among human and animal populations. It also provides the background needed to interpret, construct, and analyze a wide variety of mathematical models. Most of the techniques presented in the book can be readily applied to model other phenomena, in biology as well as in other disciplines. |
You may like...
The Hacker's Guide to OS X - Exploiting…
Robert Bathurst, Russ Rogers, …
Paperback
Ignition and Wave Processes in…
Nickolai M Rubtsov, Boris S. Seplyarskii, …
Hardcover
Compressibility, Turbulence and High…
Thomas B. Gatski, Jean-Paul Bonnet
Hardcover
R2,266
Discovery Miles 22 660
Oxyfuel Combustion for Clean Energy…
Medhat A. Nemitallah, Mohamed A. Habib, …
Hardcover
R3,383
Discovery Miles 33 830
Learn C on the Mac - For OS X and iOS
David Mark, James Bucanek
Paperback
|