![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Applied mathematics > Mathematical modelling
The use of mathematical modeling in engineering allows for a significant reduction of material costs associated with design, production, and operation of technical objects, but it is important for an engineer to use the available computational approaches in modeling correctly. Taking into account the level of modern computer technology, this new volume explains how an engineer should properly define the physical and mathematical problem statement, choose the computational approach, and solve the problem by proven reliable computational approach using computer and software applications during the solution of a particular problem. This work is the result of years of the authors' research and experience in the fields of power and rocket engineering where they put into practice the methods of mathematical modeling shown in this valuable volume. The examples in the book are based on two approaches. The first approach involves the use of the relatively simple mathematical system MathCad. The second one involves the solving of problems using Intel Visual Fortran compiler with IMSL Libraries. The use of other software packages (Maple, MathLab, Mathematica) or compilers ( , ++, Visual Basic) for code is equally acceptable in the solution of the problems given in the book. Intended for professors and instructors, scientific researchers, students, and industry professionals, the book will help readers to choose the most appropriate mathematical modeling method to solve engineering problems, and the authors also include methods that allow for the solving of nonmathematical problems as mathematical problems.
Includes over 250 solved problems to supplement graduate-level courses in fluid mechanics and turbomachinery. Enables students to practice applying key concepts of fluid mechanics and the governing conservation laws to solve real-world problems. Uses the physics-first approach, allowing for a good understanding of the problem physics and the results obtained. Covers problems on flowpath aerodynamics design. Covers problems on secondary air systems modeling of gas turbines.
This book investigates why economics makes less visible progress over time than scientific fields with a strong practical component, where interactions with physical technologies play a key role. The thesis of the book is that the main impediment to progress in economics is "false feedback", which it defines as the false result of an empirical study, such as empirical evidence produced by a statistical model that violates some of its assumptions. In contrast to scientific fields that work with physical technologies, false feedback is hard to recognize in economics. Economists thus have difficulties knowing where they stand in their inquiries, and false feedback will regularly lead them in the wrong directions. The book searches for the reasons behind the emergence of false feedback. It thereby contributes to a wider discussion in the field of metascience about the practices of researchers when pursuing their daily business. The book thus offers a case study of metascience for the field of empirical economics. The main strength of the book are the numerous smaller insights it provides throughout. The book delves into deep discussions of various theoretical issues, which it illustrates by many applied examples and a wide array of references, especially to philosophy of science. The book puts flesh on complicated and often abstract subjects, particularly when it comes to controversial topics such as p-hacking. The reader gains an understanding of the main challenges present in empirical economic research and also the possible solutions. The main audience of the book are all applied researchers working with data and, in particular, those who have found certain aspects of their research practice problematic.
Broadly speaking, there are two general approaches to teaching mathematical modeling: 1) the case study approach, and 2) the method based approach (that teaches mathematical techniques with applications to relevant mathematical models). This text emphasizes instead the scientific issues for modeling different phenomena. For the natural or harvested growth of a fish population, we may be interested in the evolution of the population, whether it reaches a steady state (equilibrium or cycle), stable or unstable with respect to a small perturbation from equilibrium, or whether a small change in the environment would cause a catastrophic change, etc. Each scientific issue requires an appropriate model and a different set of mathematical tools to extract information from the model. Models examined are chosen to help explain or justify empirical observations such as cocktail drug treatments are more effective and regenerations after injuries or illness are fast-tracked (compared to original developments).Volume I of this three-volume set limits its scope to phenomena and scientific issues that are modeled by ordinary differential equations (ODE). Scientific issues such as signal and wave propagation, diffusion, and shock formation involving spatial dynamics to be modeled by partial differential equations (PDE) will be treated in Vol. II. Scientific issues involving randomness and uncertainty are examined in Vol. III.
Wave or weak turbulence is a branch of science concerned with the evolution of random wave fields of all kinds and on all scales, from waves in galaxies to capillary waves on water surface, from waves in nonlinear optics to quantum fluids. In spite of the enormous diversity of wave fields in nature, there is a common conceptual and mathematical core which allows to describe the processes of random wave interactions within the same conceptual paradigm, and in the same language. The development of this core and its links with the applications is the essence of wave turbulence science (WT) which is an established integral part of nonlinear science. The book comprising seven reviews aims at discussing new challenges in WT and perspectives of its development. A special emphasis is made upon the links between the theory and experiment. Each of the reviews is devoted to a particular field of application (there is no overlap), or a novel approach or idea. The reviews cover a variety of applications of WT, including water waves, optical fibers, WT experiments on a metal plate and observations of astrophysical WT.
The term transport phenomena is used to describe processes in which mass, momentum, energy and entropy move about in matter. Advances in Transport Phenomena provide state-of-the-art expositions of major advances by theoretical, numerical and experimental studies from a molecular, microscopic, mesoscopic, macroscopic or megascopic point of view across the spectrum of transport p- nomena, from scientific enquiries to practical applications. The annual review series intends to fill the information gap between regularly published journals and university-level textbooks by providing in-depth review articles over a broader scope than in journals. The authoritative articles, contributed by international- leading scientists and practitioners, establish the state of the art, disseminate the latest research discoveries, serve as a central source of reference for fundamentals and applications of transport phenomena, and provide potential textbooks to senior undergraduate and graduate students. The series covers mass transfer, fluid mechanics, heat transfer and thermo- namics. The 2009 volume contains the four articles on biomedical, environmental and nanoscale transports. The editorial board expresses its appreciation to the c- tributing authors and reviewers who have maintained the standard associated with Advances in Transport Phenomena. We also would like to acknowledge the efforts of the staff at Springer who have made the professional and attractive pr- entation of the volume. Serial Editorial Board Editor-in-Chief Professor L. Q. Wang The University of Hong Kong, Hong Kong; lqwang@hku. hk Editors Professor A. R. Balakrishnan Indian Institute of Technology Madras, India Professor A.
The new edition of "Mathematical Modeling," the survey text of choice for mathematical modeling courses, adds ample instructor support and online delivery for solutions manuals and software ancillaries. From genetic engineering to hurricane prediction, mathematical
models guide much of the decision making in our society. If the
assumptions and methods underlying the modeling are flawed, the
outcome can be disastrously poor. With mathematical modeling
growing rapidly in so many scientific and technical disciplines,
"Mathematical Modeling, Fourth Edition" provides a rigorous
treatment of the subject. The book explores a range of approaches
including optimization models, dynamic models and probability
models.
Includes over 250 solved problems to supplement graduate-level courses in fluid mechanics and turbomachinery. Enables students to practice applying key concepts of fluid mechanics and the governing conservation laws to solve real-world problems. Uses the physics-first approach, allowing for a good understanding of the problem physics and the results obtained. Covers problems on flowpath aerodynamics design. Covers problems on secondary air systems modeling of gas turbines.
One cannot watch or read about the news these days without hearing about the models for COVID-19 or the testing that must occur to approve vaccines or treatments for the disease. The purpose of Mathematical Modeling in the Age of a Pandemic is to shed some light on the meaning and interpretations of many of the types of models that are or might be used in the presentation of analysis. Understanding the concepts presented is essential in the entire modeling process of a pandemic. From the virus itself and its infectious rates and deaths rates to explain the process for testing a vaccine or eventually a cure, the author builds, presents, and shows model testing. This book is an attempt, based on available data, to add some validity to the models developed and used, showing how close to reality the models are to predicting "results" from previous pandemics such as the Spanish flu in 1918 and more recently the Hong Kong flu. Then the author applies those same models to Italy, New York City, and the United States as a whole. Modeling is a process. It is essential to understand that there are many assumptions that go into the modeling of each type of model. The assumptions influence the interpretation of the results. Regardless of the modeling approach the results generally indicate approximately the same results. This book reveals how these interesting results are obtained.
First published in 1992, AY's Neuroanatomy of C. elegans for Computation provides the neural circuitry database of the nematode Caenorhabditis elegans, both in printed form and in ASCII files on 5.25-inch diskettes (for use on IBM (R) and compatible personal computers, Macintosh (R) computers, and higher level machines). Tables of connections among neuron classes, synapses among individual neurons, gap junctions among neurons, worm cells and their embryonic origin, and synthetically derived neuromuscular connections are presented together with the references from which the data were compiled and edited. Sample data files and source codes of FORTRAN and BASIC programs are provided to illustrate the use of mathematical tools for any researcher or student interested in examining a natural neural network and discovering what makes it tick.
This book provides an in-depth analysis of investment problems pertaining to electric energy infrastructure, including both generation and transmission facilities. The analysis encompasses decision-making tools for expansion planning, reinforcement, and the selection and timing of investment options. In this regard, the book provides an up-to-date description of analytical tools to address challenging investment questions such as: How can we expand and/or reinforce our aging electricity transmission infrastructure? How can we expand the transmission network of a given region to integrate significant amounts of renewable generation? How can we expand generation facilities to achieve a low-carbon electricity production system? How can we expand the generation system while ensuring appropriate levels of flexibility to accommodate both demand-related and production-related uncertainties? How can we choose among alternative production facilities? What is the right time to invest in a given production or transmission facility? Written in a tutorial style and modular format, the book includes a wealth of illustrative examples to facilitate comprehension. It is intended for advanced undergraduate and graduate students in the fields of electric energy systems, operations research, management science, and economics. Practitioners in the electric energy sector will also benefit from the concepts and techniques presented here.
Wavelet Analysis: Basic Concepts and Applications provides a basic and self-contained introduction to the ideas underpinning wavelet theory and its diverse applications. This book is suitable for master's or PhD students, senior researchers, or scientists working in industrial settings, where wavelets are used to model real-world phenomena and data needs (such as finance, medicine, engineering, transport, images, signals, etc.). Features: Offers a self-contained discussion of wavelet theory Suitable for a wide audience of post-graduate students, researchers, practitioners, and theorists Provides researchers with detailed proofs Provides guides for readers to help them understand and practice wavelet analysis in different areas
Mathematical Modeling using Fuzzy Logic has been a dream project for the author. Fuzzy logic provides a unique method of approximate reasoning in an imperfect world. This text is a bridge to the principles of fuzzy logic through an application-focused approach to selected topics in engineering and management. The many examples point to the richer solutions obtained through fuzzy logic and to the possibilities of much wider applications. There are relatively very few texts available at present in fuzzy logic applications. The style and content of this text is complementary to those already available. New areas of application, like application of fuzzy logic in modeling of sustainability, are presented in a graded approach in which the underlying concepts are first described. The text is broadly divided into two parts: the first treats processes, materials, and system applications related to fuzzy logic, and the second delves into the modeling of sustainability with the help of fuzzy logic. This book offers comprehensive coverage of the most essential topics, including: Treating processes, materials, system applications related to fuzzy logic Highlighting new areas of application of fuzzy logic Identifying possibilities of much wider applications of fuzzy logic Modeling of sustainability with the help of fuzzy logic The level enables a selection of the text to be made for the substance of undergraduate-, graduate-, and postgraduate-level courses. There is also sufficient volume and quality for the basis of a postgraduate course. A more restricted and judicious selection can provide the material for a professional short course and various university-level courses.
Mathematical modeling is both a skill and an art and must be practiced in order to maintain and enhance the ability to use those skills. Though the topics covered in this book are the typical topics of most mathematical modeling courses, this book is best used for individuals or groups who have already taken an introductory mathematical modeling course. Advanced Mathematical Modeling with Technology will be of interest to instructors and students offering courses focused on discrete modeling or modeling for decision making. Each chapter begins with a problem to motivate the reader. The problem tells "what" the issue is or problem that needs to be solved. In each chapter, the authors apply the principles of mathematical modeling to that problem and present the steps in obtaining a model. The key focus is the mathematical model and the technology is presented as a method to solve that model or perform sensitivity analysis. We have selected , where applicable to the content because of their wide accessibility. The authors utilize technology to build, compute, or implement the model and then analyze the it. Features: MAPLE (c), Excel (c), and R (c) to support the mathematical modeling process. Excel templates, macros, and programs are available upon request from authors. Maple templates and example solution are also available. Includes coverage of mathematical programming. The power and limitations of simulations is covered. Introduces multi-attribute decision making (MADM) and game theory for solving problems. The book provides an overview to the decision maker of the wide range of applications of quantitative approaches to aid in the decision making process, and present a framework for decision making. Table of Contents 1. Perfect Partners: Mathematical Modeling and Technology 2. Review of Modeling with Discrete Dynamical Systems and Modeling Systems of DDS 3. Modeling with Differential Equations 4. Modeling System of Ordinary Differential Equation 5. Regression and Advanced Regression Methods and Models 6. Linear, Integer and Mixed Integer Programming 7. Nonlinear Optimization Methods 8. Multivariable Optimization 9. Simulation Models 10. Modeling Decision Making with Multi-Attribute Decision Modeling with Technology 11. Modeling with Game Theory 12. Appendix Using R Index Biographies Dr. William P. Fox is currently a visiting professor of Computational Operations Research at the College of William and Mary. He is an emeritus professor in the Department of Defense Analysis at the Naval Postgraduate School and teaches a three-course sequence in mathematical modeling for decision making. He received his Ph.D. in Industrial Engineering from Clemson University. He has taught at the United States Military Academy for twelve years until retiring and at Francis Marion University where he was the chair of mathematics for eight years. He has many publications and scholarly activities including twenty plus books and one hundred and fifty journal articles. Colonel (R) Robert E. Burks, Jr., Ph.D. is an Associate Professor in the Defense Analysis Department of the Naval Postgraduate School (NPS) and the Director of the NPS' Wargaming Center. He holds a Ph.D. in Operations Research form the Air Force Institute of Technology. He is a retired logistics Army Colonel with more than thirty years of military experience in leadership, advanced analytics, decision modeling, and logistics operations who served as an Army Operations Research analyst at the Naval Postgraduate School, TRADOC Analysis Center, United States Military Academy, and the United States Army Recruiting Command.
This book is directed toward the numerical integration (solution) of a system of partial differential equations (PDEs) that describes a combination of chemical reaction and diffusion, that is, reaction-diffusion PDEs. The particular form of the PDEs corresponds to a system discussed by Alan Turing and is therefore termed a Turing model.Specifically, Turing considered how a reaction-diffusion system can be formulated that does not have the usual smoothing properties of a diffusion (dispersion) system, and can, in fact, develop a spatial variation that might be interpreted as a form of morphogenesis, so he termed the chemicals as morphogens.Turing alluded to the important impact computers would have in the study of a morphogenic PDE system, but at the time (1952), computers were still not readily available. Therefore, his paper is based on analytical methods. Although computers have since been applied to Turing models, computer-based analysis is still not facilitated by a discussion of numerical algorithms and a readily available system of computer routines.The intent of this book is to provide a basic discussion of numerical methods and associated computer routines for reaction-diffusion systems of varying form. The presentation has a minimum of formal mathematics. Rather, the presentation is in terms of detailed examples, presented at an introductory level. This format should assist readers who are interested in developing computer-based analysis for reaction-diffusion PDE systems without having to first study numerical methods and computer programming (coding).The numerical examples are discussed in terms of: (1) numerical integration of the PDEs to demonstrate the spatiotemporal features of the solutions and (2) a numerical eigenvalue analysis that corroborates the observed temporal variation of the solutions. The resulting temporal variation of the 2D and 3D plots demonstrates how the solutions evolve dynamically, including oscillatory long-term behavior.In all of the examples, routines in R are presented and discussed in detail. The routines are available through this link so that the reader can execute the PDE models to reproduce the reported solutions, then experiment with the models, including extensions and application to alternative models.
This book is intended for students of computational systems biology with only a limited background in mathematics. Typical books on systems biology merely mention algorithmic approaches, but without offering a deeper understanding. On the other hand, mathematical books are typically unreadable for computational biologists. The authors of the present book have worked hard to fill this gap. The result is not a book on systems biology, but on computational methods in systems biology. This book originated from courses taught by the authors at Freie Universitat Berlin. The guiding idea of the courses was to convey those mathematical insights that are indispensable for systems biology, teaching the necessary mathematical prerequisites by means of many illustrative examples and without any theorems. The three chapters cover the mathematical modelling of biochemical and physiological processes, numerical simulation of the dynamics of biological networks and identification of model parameters by means of comparisons with real data. Throughout the text, the strengths and weaknesses of numerical algorithms with respect to various systems biological issues are discussed. Web addresses for downloading the corresponding software are also included.
Mankind now faces even more challenging environment- and health-related problems than ever before. Readily available transportation systems facilitate the swift spread of diseases as large populations migrate from one part of the world to another. Studies on the spread of the communicable diseases are very important. This book, Mathematical Population Dynamics and Epidemiology in Temporal and Spatio-Temporal Domains, provides a useful experimental tool for making practical predictions, building and testing theories, answering specific questions, determining sensitivities of the parameters, forming control strategies, and much more. This volume focuses on the study of population dynamics with special emphasis on the migration of populations and the spreading of epidemics among human and animal populations. It also provides the background needed to interpret, construct, and analyze a wide variety of mathematical models. Most of the techniques presented in the book can be readily applied to model other phenomena, in biology as well as in other disciplines.
Stochastic Communities presents a theory of biodiversity by analyzing the distribution of abundances among species in the context of a community. The basis of this theory is a distribution called the "J distribution." This distribution is a pure hyperbola and mathematically implied by the "stochastic species hypothesis" assigning equal probabilities of birth and death within the population of each species over varying periods of time. The J distribution in natural communities has strong empirical support resulting from a meta-study and strong theoretical support from a theorem that is mathematically implied by the stochastic species hypothesis.
Modeling and computing is becoming an essential part of the analysis and design of an engineered system. This is also true of "geotechnical systems", such as soil foundations, earth dams and other soil-structure systems. The general goal of modeling and computing is to predict and understand the behaviour of the system subjected to a variety of possible conditions/scenarios (with respect to both external stimuli and system parameters), which provides the basis for a rational design of the system. The essence of this is to predict the response of the system to a set of external forces. The modelling and computing essentially involve the following three phases: (a) Idealization of the actual physical problem, (b) Formulation of a mathematical model represented by a set of equations governing the response of the system, and (c) Solution of the governing equations (often requiring numerical methods) and graphical representation of the numerical results. This book will introduce these phases. MATLAB (R) codes and MAPLE (R) worksheets are available for those who have bought the book. Please contact the author at [email protected] or [email protected]. Kindly provide the invoice number and date of purchase.
Finite element analysis has become the most popular technique for studying engineering structures in detail. It is particularly useful whenever the complexity of the geometry or of the loading is such that alternative methods are inappropriate. The finite element method is based on the premise that a complex structure can be broken down into finitely many smaller pieces (elements), the behaviour of each of which is known or can be postulated. These elements might then be assembled in some sense to model the behaviour of the structure. Intuitively this premise seems reasonable, but there are many important questions that need to be answered. In order to answer them it is necessary to apply a degree of mathematical rigour to the development of finite element techniques. The approach that will be taken in this book is to develop the fundamental ideas and methodologies based on an intuitive engineering approach, and then to support them with appropriate mathematical proofs where necessary. It will rapidly become clear that the finite element method is an extremely powerful tool for the analysis of structures (and for other field problems), but that the volume of calculations required to solve all but the most trivial of them is such that the assistance of a computer is necessary. As stated above, many questions arise concerning finite element analysis. Some of these questions are associated with the fundamental mathematical formulations, some with numerical solution techniques, and others with the practical application of the method. In order to answer these questions, the engineer/analyst needs to understand both the nature and limitations of the finite element approximation and the fundamental behaviour of the structure. Misapplication of finite element analysis programs is most likely to arise when the analyst is ignorant of engineering phenomena.
This unique book is equally useful to both engineering-degree students and production engineers practicing in industry. The volume is designed to cover three aspects of manufacturing technology: (a) fundamental concepts, (b) engineering analysis/mathematical modeling of manufacturing operations, and (c) 250+ problems and their solutions. These attractive features render this book suitable for recommendation as a textbook for undergraduate as well as Master level programs in Mechanical/Materials/Industrial Engineering. There are 19 chapters in the book; each chapter first introduces readers to the technological importance of chapter-topic and definitions of terms and their explanation; and then the mathematical modeling/engineering analysis of the corresponding manufacturing operation is presented. The meanings of the terms along with their SI units in each mathematical model are clearly stated. There are over 320 mathematical models/equations. The book is divided into three parts. Part One introduces readers to manufacturing and basic manufacturing processes (metal casting, plastic molding, metal forming, ceramic processing, composite processing, heat treatment, surface finishing, welding & joining, and powder metallurgy) and their engineering analysis/mathematical modeling followed by worked examples (solved problem). Part Two covers non-traditional machining and computer aided manufacturing, including their mathematical modeling and the related solved problems. Finally, quality control (QC) and economic aspects of manufacturing are discussed in Part Three. Features Presents over 320 mathematical models and 250 worked examples Covers both conventional and non-traditional manufacturing Includes design problems and their solutions on engineering manufacturing processes Special emphasis on casting design and weld design in manufacturing Offers computer aided manufacturing, quality control, and economics of manufacturing
The main objective of the book is to highlight the modeling of magnetic particles with different shapes and magnetic properties, to provide graduate students and young researchers information on the theoretical aspects and actual techniques for the treatment of magnetic particles in particle-based simulations. In simulation, we focus on the Monte Carlo, molecular dynamics, Brownian dynamics, lattice Boltzmann and stochastic rotation dynamics (multi-particle collision dynamics) methods. The latter two simulation methods can simulate both the particle motion and the ambient flow field simultaneously. In general, specialized knowledge can only be obtained in an effective manner under the supervision of an expert. The present book is written to play such a role for readers who wish to develop the skill of modeling magnetic particles and develop a computer simulation program using their own ability. This book is therefore a self-learning book for graduate students and young researchers. Armed with this knowledge, readers are expected to be able to sufficiently enhance their skill for tackling any challenging problems they may encounter in future.
The book presents qualitative results for different classes of fractional equations, including fractional functional differential equations, fractional impulsive differential equations, and fractional impulsive functional differential equations, which have not been covered by other books. It manifests different constructive methods by demonstrating how these techniques can be applied to investigate qualitative properties of the solutions of fractional systems. Since many applications have been included, the demonstrated techniques and models can be used in training students in mathematical modeling and in the study and development of fractional-order models.
This book presents an in-depth treatment of various mathematical aspects of electromagnetism and Maxwell's equations: from modeling issues to well-posedness results and the coupled models of plasma physics (Vlasov-Maxwell and Vlasov-Poisson systems) and magnetohydrodynamics (MHD). These equations and boundary conditions are discussed, including a brief review of absorbing boundary conditions. The focus then moves to well-posedness results. The relevant function spaces are introduced, with an emphasis on boundary and topological conditions. General variational frameworks are defined for static and quasi-static problems, time-harmonic problems (including fixed frequency or Helmholtz-like problems and unknown frequency or eigenvalue problems), and time-dependent problems, with or without constraints. They are then applied to prove the well-posedness of Maxwell's equations and their simplified models, in the various settings described above. The book is completed with a discussion of dimensionally reduced models in prismatic and axisymmetric geometries, and a survey of existence and uniqueness results for the Vlasov-Poisson, Vlasov-Maxwell and MHD equations. The book addresses mainly researchers in applied mathematics who work on Maxwell's equations. However, it can be used for master or doctorate-level courses on mathematical electromagnetism as it requires only a bachelor-level knowledge of analysis.
Simulation-Based Engineering and Science (SBE&S) cuts across disciplines, showing tremendous promise in areas from storm prediction and climate modeling to understanding the brain and the behavior of numerous other complex systems.In this groundbreaking volume, nine distinguished leaders assess the latest research trends, as a result of 52 site visits in Europe and Asia and hundreds of hours of expert interviews, and discuss the implications of their findings for the US government.The authors conclude that while the US remains the quantitative leader in SBE&S research and development, it is very much in danger of losing that edge to Europe and Asia.Commissioned by the National Science Foundation, this multifaceted study will capture the attention of Fortune 500 companies and policymakers.Distinguished contributors: Sharon C Goltzer, University of Michigan, Ann Arbor, USA Sangtae Kim, Morgridge Institute for Research, USA Peter T Cummings, Vanderbilt University, USA and Oak Ridge National Laboratory, USA Abhijit Deshmukh, Texas A&M University, USA Martin Head-Gordon, University of California, Berkeley, USA George Em Karniadakis, Brown University, USA Linda Petzold, University of California, Santa Barbara, USA Celeste Sagui, North Carolina State University, USA Masanobu Shinozuka, University of California, Irvine, USA |
![]() ![]() You may like...
Handbook of Brain Connectivity
Viktor K. Jirsa, A. R. McIntosh
Hardcover
R5,697
Discovery Miles 56 970
|