![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Applied mathematics > Mathematical modelling
Volume I of this two-volume, interdisciplinary work is a unified presentation of a broad range of state-of-the-art topics in the rapidly growing field of mathematical modeling in the biological sciences. The chapters are thematically organized into the following main areas: cellular biophysics, regulatory networks, developmental biology, biomedical applications, data analysis and model validation. The work will be an excellent reference text for a broad audience of researchers, practitioners, and advanced students in this rapidly growing field at the intersection of applied mathematics, experimental biology and medicine, computational biology, biochemistry, computer science, and physics.
This book goes into a detailed investigation of adapting artificial neural network (ANN) and structural equation modeling (SEM) techniques in marketing and consumer research. The aim of using a dual-stage SEM and ANN approach is to obtain linear and non-compensated relationships because the ANN method captures non-compensated relationships based on the black box technology of artificial intelligence. Hence, the ANN approach validates the results of the SEM method. In addition, such the novel emerging approach increases the validity of the prediction by determining the importance of the variables. Consequently, the number of studies using SEM-ANN has increased, but the different types of study cases that show customization of different processes in ANNs method combination with SEM are still unknown, and this aspect will be affecting to the generation results. Thus, there is a need for further investigation in marketing and consumer research. This book bridges the significant gap in this research area. The adoption of SEM and ANN techniques in social commerce and consumer research is massive all over the world. Such an expansion has generated more need to learn how to capture linear and non-compensatory relationships in such area. This book would be a valuable reading companion mainly for business and management students in higher academic organizations, professionals, policy-makers, and planners in the field of marketing. This book would also be appreciated by researchers who are keenly interested in social commerce and consumer research.
The book is mainly addressed to young graduate students in engineering and natural sciences who start to face numerical simulation, either at a research level or in the field of industrial applications. The main subjects covered are: Biomechanics, Stochastic Calculus, Geophysical flow simulation and Shock-Capturing numerical methods for Hyperbolic Systems of Partial Differential Equations. The book can also be useful to researchers or even technicians working at an industrial environment, who are interested in the state-of-the-art numerical techniques in these fields. Moreover, it gives an overview of the researchdeveloped at the French and Spanish universities and in some European scientific institutions. This book can be also useful as a textbook at master courses in Mathematics, Physics or Engineering."
This text presents a wide variety of common types of models found in other mathematical modeling texts, as well as some new types. However, the models are presented in a very unique format. A typical section begins with a general description of the scenario being modeled. The model is then built using the appropriate mathematical tools. Then it is implemented and analyzed in Excel via step-by-step instructions. In the exercises, we ask students to modify or refine the existing model, analyze it further, or adapt it to similar scenarios.
Problem Solving is essential to solve real-world problems. Advanced Problem Solving with Maple: A First Course applies the mathematical modeling process by formulating, building, solving, analyzing, and criticizing mathematical models. It is intended for a course introducing students to mathematical topics they will revisit within their further studies. The authors present mathematical modeling and problem-solving topics using Maple as the computer algebra system for mathematical explorations, as well as obtaining plots that help readers perform analyses. The book presents cogent applications that demonstrate an effective use of Maple, provide discussions of the results obtained using Maple, and stimulate thought and analysis of additional applications. Highlights: The book's real-world case studies prepare the student for modeling applications Bridges the study of topics and applications to various fields of mathematics, science, and engineering Features a flexible format and tiered approach offers courses for students at various levels The book can be used for students with only algebra or calculus behind them About the authors: Dr. William P. Fox is an emeritus professor in the Department of Defense Analysis at the Naval Postgraduate School. Currently, he is an adjunct professor, Department of Mathematics, the College of William and Mary. He received his Ph.D. at Clemson University and has many publications and scholarly activities including twenty books and over one hundred and fifty journal articles. William C. Bauldry, Prof. Emeritus and Adjunct Research Prof. of Mathematics at Appalachian State University, received his PhD in Approximation Theory from Ohio State. He has published many papers on pedagogy and technology, often using Maple, and has been the PI of several NSF-funded projects incorporating technology and modeling into math courses. He currently serves as Associate Director of COMAP's Math Contest in Modeling (MCM). *Please note that the Maple package, "PSM", is now on the public area of the Maple Cloud. To access it: * From the web: 1. Go to the website https://maple.cloud 2. Click on "packages" in the left navigation pane 3. Click on "PSM" in the list of packages. 4. Click the "Download" button to capture the package. * From Maple: 1. Click on the Maple Cloud icon (far right in the Maple window toolbar). Or click on the Maple Cloud button on Maple's Start page to go to the website. 2. Click on the "packages" in the navigation pane 3. Click on "PSM" in the list of packages. The package then downloads into Maple directly.
While many financial engineering books are available, the statistical aspects behind the implementation of stochastic models used in the field are often overlooked or restricted to a few well-known cases. Statistical Methods for Financial Engineering guides current and future practitioners on implementing the most useful stochastic models used in financial engineering. After introducing properties of univariate and multivariate models for asset dynamics as well as estimation techniques, the book discusses limits of the Black-Scholes model, statistical tests to verify some of its assumptions, and the challenges of dynamic hedging in discrete time. It then covers the estimation of risk and performance measures, the foundations of spot interest rate modeling, Levy processes and their financial applications, the properties and parameter estimation of GARCH models, and the importance of dependence models in hedge fund replication and other applications. It concludes with the topic of filtering and its financial applications. This self-contained book offers a basic presentation of stochastic models and addresses issues related to their implementation in the financial industry. Each chapter introduces powerful and practical statistical tools necessary to implement the models. The author not only shows how to estimate parameters efficiently, but he also demonstrates, whenever possible, how to test the validity of the proposed models. Throughout the text, examples using MATLAB (R) illustrate the application of the techniques to solve real-world financial problems. MATLAB and R programs are available on the author's website.
Mathematical Modeling for Business Analytics is written for decision makers at all levels. This book presents the latest tools and techniques available to help in the decision process. The interpretation and explanation of the results are crucial to understanding the strengths and limitations of modeling. This book emphasizes and focuses on the aspects of constructing a useful model formulation, as well as building the skills required for decision analysis. The book also focuses on sensitivity analysis. The author encourages readers to formally think about solving problems by using a thorough process. Many scenarios and illustrative examples are provided to help solve problems. Each chapter is also comprehensively arranged so that readers gain an in-depth understanding of the subject which includes introductions, background information and analysis. Both undergraduate and graduate students taking methods courses in methods and discrete mathematical modeling courses will greatly benefit from using this book. Boasts many illustrative examples to help solve problems Provides many solutions for each chapter Emphasizes model formulation and helps create model building skills for decision analysis Provides the tools to support analysis and interpretation
This book is unique to be the only one completely dedicated for battery modeling for all components of battery management system (BMS) applications. The contents of this book compliment the multitude of research publications in this domain by providing coherent fundamentals. An explosive market of Li ion batteries has led to aggressive demand for mathematical models for battery management systems (BMS). Researchers from multi-various backgrounds contribute from their respective background, leading to a lateral growth. Risk of this runaway situation is that researchers tend to use an existing method or algorithm without in depth knowledge of the cohesive fundamentals-often misinterpreting the outcome. It is worthy to note that the guiding principles are similar and the lack of clarity impedes a significant advancement. A repeat or even a synopsis of all the applications of battery modeling albeit redundant, would hence be a mammoth task, and cannot be done in a single offering. The authors believe that a pivotal contribution can be made by explaining the fundamentals in a coherent manner. Such an offering would enable researchers from multiple domains appreciate the bedrock principles and forward the frontier. Battery is an electrochemical system, and any level of understanding cannot ellipse this premise. The common thread that needs to run across-from detailed electrochemical models to algorithms used for real time estimation on a microchip-is that it be physics based. Build on this theme, this book has three parts. Each part starts with developing a framework-often invoking basic principles of thermodynamics or transport phenomena-and ends with certain verified real time applications. The first part deals with electrochemical modeling and the second with model order reduction. Objective of a BMS is estimation of state and health, and the third part is dedicated for that. Rules for state observers are derived from a generic Bayesian framework, and health estimation is pursued using machine learning (ML) tools. A distinct component of this book is thorough derivations of the learning rules for the novel ML algorithms. Given the large-scale application of ML in various domains, this segment can be relevant to researchers outside BMS domain as well. The authors hope this offering would satisfy a practicing engineer with a basic perspective, and a budding researcher with essential tools on a comprehensive understanding of BMS models.
Wide-Ranging Coverage of Parametric Modeling in Linear and Nonlinear Mixed Effects ModelsMixed Effects Models for the Population Approach: Models, Tasks, Methods and Tools presents a rigorous framework for describing, implementing, and using mixed effects models. With these models, readers can perform parameter estimation and modeling across a whole population of individuals at the same time. Easy-to-Use Techniques and Tools for Real-World Data ModelingThe book first shows how the framework allows model representation for different data types, including continuous, categorical, count, and time-to-event data. This leads to the use of generic methods, such as the stochastic approximation of the EM algorithm (SAEM), for modeling these diverse data types. The book also covers other essential methods, including Markov chain Monte Carlo (MCMC) and importance sampling techniques. The author uses publicly available software tools to illustrate modeling tasks. Methods are implemented in Monolix, and models are visually explored using Mlxplore and simulated using Simulx. Careful Balance of Mathematical Representation and Practical ImplementationThis book takes readers through the whole modeling process, from defining/creating a parametric model to performing tasks on the model using various mathematical methods. Statisticians and mathematicians will appreciate the rigorous representation of the models and theoretical properties of the methods while modelers will welcome the practical capabilities of the tools. The book is also useful for training and teaching in any field where population modeling occurs.
Probabilistic Foundations of Statistical Network Analysis presents a fresh and insightful perspective on the fundamental tenets and major challenges of modern network analysis. Its lucid exposition provides necessary background for understanding the essential ideas behind exchangeable and dynamic network models, network sampling, and network statistics such as sparsity and power law, all of which play a central role in contemporary data science and machine learning applications. The book rewards readers with a clear and intuitive understanding of the subtle interplay between basic principles of statistical inference, empirical properties of network data, and technical concepts from probability theory. Its mathematically rigorous, yet non-technical, exposition makes the book accessible to professional data scientists, statisticians, and computer scientists as well as practitioners and researchers in substantive fields. Newcomers and non-quantitative researchers will find its conceptual approach invaluable for developing intuition about technical ideas from statistics and probability, while experts and graduate students will find the book a handy reference for a wide range of new topics, including edge exchangeability, relative exchangeability, graphon and graphex models, and graph-valued Levy process and rewiring models for dynamic networks. The author's incisive commentary supplements these core concepts, challenging the reader to push beyond the current limitations of this emerging discipline. With an approachable exposition and more than 50 open research problems and exercises with solutions, this book is ideal for advanced undergraduate and graduate students interested in modern network analysis, data science, machine learning, and statistics. Harry Crane is Associate Professor and Co-Director of the Graduate Program in Statistics and Biostatistics and an Associate Member of the Graduate Faculty in Philosophy at Rutgers University. Professor Crane's research interests cover a range of mathematical and applied topics in network science, probability theory, statistical inference, and mathematical logic. In addition to his technical work on edge and relational exchangeability, relative exchangeability, and graph-valued Markov processes, Prof. Crane's methods have been applied to domain-specific cybersecurity and counterterrorism problems at the Foreign Policy Research Institute and RAND's Project AIR FORCE.
This book presents the fundamental methods of modeling, analysis and synthesis of transport processes which allow: - to optimize the work of transport organizations according to different criteria of their functioning; - to evaluate the quality of decisions made in conditions of high entropy and uncertainty of technological processes when applying new technologies and systems; -to reduce the negative impact of the human factor on the safety of ongoing transport processes by increasing the motivational component of the training processes for the operator of active transport systems. The structural diagrams presented in this book make it possible to visualize the processes of training, self-training of operators and the mechanisms of the formation of volitional motivational efforts under various external influences of the environment and the teacher–instructor. The obtained functional dependencies serve as an assessment for determining and forming the dynamics of motivation and making a decision about the readiness for safe work of the operator of active transport systems and the decision-maker in the new conditions of the technological process.
Mathematical Modeling and Immunology An enormous amount of human effort and economic resources has been directed in this century to the fight against cancer. The purpose, of course, has been to find strategies to overcome this hard, challenging and seemingly endless struggle. We can readily imagine that even greater efforts will be required in the next century. The hope is that ultimately humanity will be successful; success will have been achieved when it is possible to activate and control the immune system in its competition against neoplastic cells. Dealing with the above-mentioned problem requires the fullest pos sible cooperation among scientists working in different fields: biology, im munology, medicine, physics and, we believe, mathematics. Certainly, bi ologists and immunologists will make the greatest contribution to the re search. However, it is now increasingly recognized that mathematics and computer science may well able to make major contributions to such prob lems. We cannot expect mathematicians alone to solve fundamental prob lems in immunology and (in particular) cancer research, but valuable sup port, however modest, can be provided by mathematicians to the research aspirations of biologists and immunologists working in this field."
This book provides readers with a snapshot of recent methods for non-stationary vibration analysis of machinery. It covers a broad range of advanced techniques in condition monitoring of machinery, such as mathematical models, signal processing and pattern recognition methods and artificial intelligence methods, and their practical applications to the analysis of nonstationarities. Each chapter, accepted after a rigorous peer-review process, reports on a selected, original piece of work presented and discussed at the International Conference on Condition Monitoring of Machinery in Non-Stationary Operations, CMMNO'2016, held on September 12 - 16, 2016, in Gliwice, Poland. The contributions cover advances in both theory and practice in a variety of subfields, such as: smart materials and structures; fluid-structure interaction; structural acoustics as well as computational vibro-acoustics and numerical methods. Further topics include: engines control, noise identification, robust design, flow-induced vibration and many others. By presenting state-of-the-art in predictive maintenance solutions and discussing important industrial issues the book offers a valuable resource to both academics and professionals and is expected to facilitate communication and collaboration between the two groups.
This edited volume, with contributions from the Computer Aided Engineering for Batteries (CAEBAT) program, provides firsthand insights into nuances of implementing battery models in actual geometries. It discusses practical examples and gaps in our understanding, while reviewing in depth the theoretical background and algorithms. Over the last ten years, several world-class academics, automotive original equipment manufacturers (OEMs), battery cell manufacturers and software developers worked together under an effort initiated by the U.S. Department of Energy to develop mature, validated modeling tools to simulate design, performance, safety and life of automotive batteries. Until recently, battery modeling was a niche focus area with a relatively small number of experts. This book opens up the research topic for a broader audience from industry and academia alike. It is a valuable resource for anyone who works on battery engineering but has limited hands-on experience with coding.
Foreword by Stephen L Adler (Institute for Advanced Study, USA) Illustrations by Peggy Adler The term Phyllotaxis refers to the patterns on plants formed by the arrangement of repeated biological units. In nearly all cases, the Fibonacci Numbers and the Golden Ratio occur in these arrangements. This topic has long fascinated scientists. Over a period of more than two decades, Irving Adler wrote a number of papers that construct a rigorously derived mathematical model for Phyllotaxis, which are major and enduring contributions to the field. These papers are collected in this reprint volume to enable their access to a wider readership.
This self-contained textbook discusses all major topics in functional analysis. Combining classical materials with new methods, it supplies numerous relevant solved examples and problems and discusses the applications of functional analysis in diverse fields. The book is unique in its scope, and a variety of applications of functional analysis and operator-theoretic methods are devoted to each area of application. Each chapter includes a set of problems, some of which are routine and elementary, and some of which are more advanced. The book is primarily intended as a textbook for graduate and advanced undergraduate students in applied mathematics and engineering. It offers several attractive features making it ideally suited for courses on functional analysis intended to provide a basic introduction to the subject and the impact of functional analysis on applied and computational mathematics, nonlinear functional analysis and optimization. It introduces emerging topics like wavelets, Gabor system, inverse problems and application to signal and image processing.
Nonnegative matrix factorization (NMF) in its modern form has become a standard tool in the analysis of high-dimensional data sets. This book provides a comprehensive and up-to-date account of the most important aspects of the NMF problem and is the first to detail its theoretical aspects, including geometric interpretation, nonnegative rank, complexity, and uniqueness. It explains why understanding these theoretical insights is key to using this computational tool effectively and meaningfully. Nonnegative Matrix Factorization is accessible to a wide audience and is ideal for anyone interested in the workings of NMF. It discusses some new results on the nonnegative rank and the identifiability of NMF and makes available MATLAB codes for readers to run the numerical examples presented in the book. Graduate students starting to work on NMF and researchers interested in better understanding the NMF problem and how they can use it will find this book useful. It can be used in advanced undergraduate and graduate-level courses on numerical linear algebra and on advanced topics in numerical linear algebra and requires only a basic knowledge of linear algebra and optimization.
Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence, Second Edition, provides a synthesis of model-based approaches for analyzing presence-absence data, allowing for imperfect detection. Beginning from the relatively simple case of estimating the proportion of area or sampling units occupied at the time of surveying, the authors describe a wide variety of extensions that have been developed since the early 2000s. This provides an improved insight about species and community ecology, including, detection heterogeneity; correlated detections; spatial autocorrelation; multiple states or classes of occupancy; changes in occupancy over time; species co-occurrence; community-level modeling, and more. Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence, Second Edition has been greatly expanded and detail is provided regarding the estimation methods and examples of their application are given. Important study design recommendations are also covered to give a well rounded view of modeling.
This book primarily focuses on rigorous mathematical formulation and treatment of static problems arising in continuum mechanics of solids at large or small strains, as well as their various evolutionary variants, including thermodynamics. As such, the theory of boundary- or initial-boundary-value problems for linear or quasilinear elliptic, parabolic or hyperbolic partial differential equations is the main underlying mathematical tool, along with the calculus of variations. Modern concepts of these disciplines as weak solutions, polyconvexity, quasiconvexity, nonsimple materials, materials with various rheologies or with internal variables are exploited. This book is accompanied by exercises with solutions, and appendices briefly presenting the basic mathematical concepts and results needed. It serves as an advanced resource and introductory scientific monograph for undergraduate or PhD students in programs such as mathematical modeling, applied mathematics, computational continuum physics and engineering, as well as for professionals working in these fields.
This book is the second of a set dedicated to the mathematical tools used in partial differential equations derived from physics. It presents the properties of continuous functions, which are useful for solving partial differential equations, and, more particularly, for constructing distributions valued in a Neumann space. The author examines partial derivatives, the construction of primitives, integration and the weighting of value functions in a Neumann space. Many of them are new generalizations of classical properties for values in a Banach space. Simple methods, semi-norms, sequential properties and others are discussed, making these tools accessible to the greatest number of students - doctoral students, postgraduate students - engineers and researchers, without restricting or generalizing the results.
This volume contains review articles and original results obtained in various fields of modern science using mathematical simulation methods. The basis of the articles are the plenary and some section reports that were made and discussed at the Fourth International Mathematical Simulation Conference, held in Moscow on June 27 through July 1, 2000. The conference was devoted to the following scientific areas: * mathematical and computer discrete systems models; * non-linear excitation in condensed media; * complex systems evolution; * mathematical models in economics; * non-equilibrium processes kinematics; * dynamics and structure of the molecular and biomolecular systems; * mathematical transfer models in non-linear systems; * numerical simulation and algorithms; * turbulence and determined chaos; * chemical physics of polymer. This conference was supported by the Russian Ministry of Education, Russian foundation for Basic Research and Federal Program "Integration". This volume contains the following sections: 1. models of non-linear phenomena in physics; 2. numerical methods and computer simulations; 3. mathematical computer models of discrete systems; 4. mathematical models in economics; 5. non-linear models in chemical physics and physical chemistry; 6. mathematical models of transport processes in complex systems. In Sections One and Five a number of fundamental and sufficiently general problems, concerning real physical and physical-chemical systems simulation, is discussed.
Features Connected to a Github repository with the codes in the book. The repository can be accessed at https://bit.ly/3bllnuf Suitable for undergraduate students, as well as anyone who wants a gentle introduction to the principles of quantitative finance No pre-requisites required for programming or advanced mathematics beyond basic calculus.
This book presents a broad range of deep-learning applications related to vision, natural language processing, gene expression, arbitrary object recognition, driverless cars, semantic image segmentation, deep visual residual abstraction, brain-computer interfaces, big data processing, hierarchical deep learning networks as game-playing artefacts using regret matching, and building GPU-accelerated deep learning frameworks. Deep learning, an advanced level of machine learning technique that combines class of learning algorithms with the use of many layers of nonlinear units, has gained considerable attention in recent times. Unlike other books on the market, this volume addresses the challenges of deep learning implementation, computation time, and the complexity of reasoning and modeling different type of data. As such, it is a valuable and comprehensive resource for engineers, researchers, graduate students and Ph.D. scholars.
* Based on the new idea of gathering state of the art topics in
Geometric Modeling together with techniques, applications, systems
and tools
A ubiquitous tool in mathematical biology and chemical engineering, the chemostat often produces instabilities that pose safety hazards and adversely affect the optimization of bioreactive systems. Singularity theory and bifurcation diagrams together offer a useful framework for addressing these issues. Based on the authors' extensive work in this field, Dynamics of the Chemostat: A Bifurcation Theory Approach explores the use of bifurcation theory to analyze the static and dynamic behavior of the chemostat. IntroductionThe authors first survey the major work that has been carried out on the stability of continuous bioreactors. They next present the modeling approaches used for bioreactive systems, the different kinetic expressions for growth rates, and tools, such as multiplicity, bifurcation, and singularity theory, for analyzing nonlinear systems. ApplicationThe text moves on to the static and dynamic behavior of the basic unstructured model of the chemostat for constant and variable yield coefficients as well as in the presence of wall attachment. It then covers the dynamics of interacting species, including pure and simple microbial competition, biodegradation of mixed substrates, dynamics of plasmid-bearing and plasmid-free recombinant cultures, and dynamics of predator-prey interactions. The authors also examine dynamics of the chemostat with product formation for various growth models, provide examples of bifurcation theory for studying the operability and dynamics of continuous bioreactor models, and apply elementary concepts of bifurcation theory to analyze the dynamics of a periodically forced bioreactor. Using singularity theory and bifurcation techniques, this book presents a cohesive mathematical framework for analyzing and modeling the macro- and microscopic interactions occurring in chemostats. The text includes models that describe the intracellular and operating elements of the bioreactive system. It also explains the mathematical theory behind the models. |
![]() ![]() You may like...
Modelling Hydrology, Hydraulics and…
Soumendra Nath Kuiry, Dhrubajyoti Sen
Hardcover
R3,564
Discovery Miles 35 640
Silicon Photonics, Volume 99
Chennupati Jagadish, Sebastian Lourdudoss, …
Hardcover
R5,545
Discovery Miles 55 450
Emerging Trends in Terahertz Engineering…
Arindam Biswas, Amit Banerjee, …
Hardcover
R3,625
Discovery Miles 36 250
WiMAX Modeling: Techniques and…
Bhavin S. Sedani, Komal R. Borisagar, …
Hardcover
R1,521
Discovery Miles 15 210
System Design with SystemC (TM)
Thorsten Groetker, Stan Liao, …
Hardcover
R5,217
Discovery Miles 52 170
|