![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Applied mathematics > Mathematical modelling
In recent decades, kinetic theory - originally developed as a field of mathematical physics - has emerged as one of the most prominent fields of modern mathematics. In recent years, there has been an explosion of applications of kinetic theory to other areas of research, such as biology and social sciences. This book collects lecture notes and recent advances in the field of kinetic theory of lecturers and speakers of the School "Trails in Kinetic Theory: Foundational Aspects and Numerical Methods", hosted at Hausdorff Institute for Mathematics (HIM) of Bonn, Germany, 2019, during the Junior Trimester Program "Kinetic Theory". Focusing on fundamental questions in both theoretical and numerical aspects, it also presents a broad view of related problems in socioeconomic sciences, pedestrian dynamics and traffic flow management.
Fuel cells are widely regarded as the future of the power and transportation industries. Intensive research in this area now requires new methods of fuel cell operation modeling and cell design. Typical mathematical models are based on the physical process description of fuel cells and require a detailed knowledge of the microscopic properties that govern both chemical and electrochemical reactions. Advanced Methods of Solid Oxide Fuel Cell Modeling proposes the alternative methodology of generalized artificial neural networks (ANN) solid oxide fuel cell (SOFC) modeling. Advanced Methods of Solid Oxide Fuel Cell Modeling provides a comprehensive description of modern fuel cell theory and a guide to the mathematical modeling of SOFCs, with particular emphasis on the use of ANNs. Up to now, most of the equations involved in SOFC models have required the addition of numerous factors that are difficult to determine. The artificial neural network (ANN) can be applied to simulate an object's behavior without an algorithmic solution, merely by utilizing available experimental data. The ANN methodology discussed in Advanced Methods of Solid Oxide Fuel Cell Modeling can be used by both researchers and professionals to optimize SOFC design. Readers will have access to detailed material on universal fuel cell modeling and design process optimization, and will also be able to discover comprehensive information on fuel cells and artificial intelligence theory.
Model theory investigates mathematical structures by means of formal languages. These so-called first-order languages have proved particularly useful. The text introduces the reader to the model theory of first-order logic, avoiding syntactical issues that are not too relevant to model-theory. In this spirit, the compactness theorem is proved via the algebraically useful ultraproduct technique, rather than via the completeness theorem of first-order logic. This leads fairly quickly to algebraic applications, like Malcev's local theorems (of group theory) and, after a little more preparation, also to Hilbert's Nullstellensatz (of field theory). Steinitz' dimension theory for field extensions is obtained as a special case of a much more general model-theoretic treatment of strongly minimal sets. The final chapter is on the models of the first-order theory of the integers as an abelian group. This material appears here for the first time in a textbook of introductory level, and is used to give hints to further reading and to recent developments in the field, such as stability (or classification) theory. The latter itself is not touched upon. The undergraduate or graduate, is assumed t
The expertise of a professional mathmatician and a theoretical engineer provides a fresh perspective of stability and stable oscillations. The current state of affairs in stability theory, absolute stability of control systems, and stable oscillations of both periodic and almost periodic discrete systems is presented, including many applications in engineering such as stability of digital filters, digitally controlled thermal processes, neurodynamics, and chemical kinetics. This book will be an invaluable reference source for those whose work is in the area of discrete dynamical systems, difference equations, and control theory or applied areas that use discrete time models.
Galton used quantiles more than a hundred years ago in describing data. Tukey and Parzen used them in the 60s and 70s in describing populations. Since then, the authors of many papers, both theoretical and practical, have used various aspects of quantiles in their work. Until now, however, no one put all the ideas together to form what turns out to be a general approach to statistics.
Risk or uncertainty assessments are used as aids to decision making in nearly every aspect of business, education, and government. As a follow-up to the author's bestselling Risk Assessment and Decision Making in Business and Industry: A Practical Guide, Risk Modeling for Determining Value and Decision Making presents comprehensive examples of risk/uncertainty analyses from a broad range of applications.
The monograph addresses a problem of stochastic analysis based on the uncertainty assessment by simulation and application of this method in ecology and steel industry under uncertainty. The first chapter defines the Monte Carlo (MC) method and random variables in stochastic models. Chapter two deals with the contamination transport in porous media. Stochastic approach for Municipal Solid Waste transit time contaminants modeling using MC simulation has been worked out. The third chapter describes the risk analysis of the waste to energy facility proposal for Konin city, including the financial aspects. Environmental impact assessment of the ArcelorMittal Steel Power Plant, in Krakow - in the chapter four - is given. Thus, four scenarios of the energy mix production processes were studied. Chapter five contains examples of using ecological Life Cycle Assessment (LCA) - a relatively new method of environmental impact assessment - which help in preparing pro-ecological strategy, and which can lead to reducing the amount of wastes produced in the ArcelorMittal Steel Plant production processes. Moreover, real input and output data of selected processes under uncertainty, mainly used in the LCA technique, have been examined. The last chapter of this monograph contains final summary. The log-normal probability distribution, widely used in risk analysis and environmental management, in order to develop a stochastic analysis of the LCA, as well as uniform distribution for stochastic approach of pollution transport in porous media has been proposed. The distributions employed in this monograph are assembled from site-specific data, data existing in the most current literature, and professional judgment."
The practice of modeling is best learned by those armed with fundamental methodologies and exposed to a wide variety of modeling experience. Ideally, this experience could be obtained by working on actual modeling problems. But time constraints often make this difficult. Applied Mathematical Modeling provides a collection of models illustrating the power and richness of the mathematical sciences in supplying insight into the operation of important real-world systems. It fills a gap within modeling texts, focusing on applications across a broad range of disciplines.
Understanding and predicting the Earth's climate system,
particularly climate variability and possible human-induced climate
change, presents one of the most difficult and urgent challenges in
science. Climate scientists worldwide have responded to that
challenge over the past decade by creating a wide variety of ever
more sophisticated climate models that are beginning to show
considerable ability to replicate many aspects of the climate
system. At the same time, to fully understand climate change, one
also has to look to past climates. For this purpose five eminent
scholars who span the disciplines of modeling and observation,
including elements of past, present and future climate studies came
together at this Les Houches school. They presented a systematic
development of each of their respective subjects which provided a
comprehensive overview of this vast and complex subject. These core
lectures were supplemented by a set of shorter lectures and of
seminars.
This study contributes to the understanding of the mechanisms and processes of sand bypassing in artificial and non-artificial coastal environments through a numerical modelling study. Sand bypassing processes in general is a relevant but poorly understood topic. This study attempts to link the theory and physics of sand bypassing processes which is significantly important in definition of coastal sedimentary budget. The main question is how can we model sand bypassing processes and whether the modelled sand bypassing processes represent the actual sand bypassing processes. In this study, it is shown that a process-based model can be used to simulate the processes of sand bypassing around groyne and headland structures. Both hypothetical and real case studies were successfully developed. Results comparisons were made among analytical models, empirical models and field data measurements. In general, the process-based model can produce reasonable results. In summary, through numerical modelling this study reveals the importance of understanding coastal processes and the role of geological controls in governing headland sand bypassing processes and embayed beach morphodynamics. The morphological model developed in this study is useful to increase understanding of the natural sand distribution patterns due to combination of engineering efforts and natural coastal processes.
The Ning-Meng reach of the Yellow River basin is located in the Inner Mongolia region at the Northern part of the Yellow River. Due to the special geographical conditions, the river flow direction is towards the North causing the Ning-Meng reach to freeze up every year in wintertime. Both during the freeze-up and break-up period, unfavourable conditions occur which may cause ice jamming and ice dam formation leading to dike breaching and overtopping of the embankment. Throughout history this has often led to considerable casualties and property loss. Enhanced economic development and human activities in the region have altered the characteristics of the ice regime in recent decades, leading to several ice disasters during freezing or breaking-up periods. The integrated water resources management plan developed by the Yellow River Conservancy Commission (YRCC) outlines the requirements for water regulation in the upper Yellow River during ice flood periods. YRCC is developing measures that not only safeguard against ice floods, but also assure the availability of adequate water resources. These provide the overall requirements for developing an ice regime forecasting system including lead-time prediction and required accuracy. In order to develop such a system, numerical modelling of ice floods is an essential component of current research at the YRCC, together with field observations and laboratory experiments. In order to properly model river ice processes it is necessary to adjust the hydrodynamic equations to account for thermodynamic effects. In this research, hydrological and meteorological data from 1950 to 2010 were used to analyse the characteristics of ice regimes in the past. Also, additional field observations were carried out for ice flood model calibration and validation. By combining meteorological forecasting models with statistical models, a medium to short range air temperature forecasting model for the Ning-Meng reach was established. These results were used to improve ice formation modelling and prolong lead-time prediction. The numerical ice flood model developed in this thesis for the Ning-Meng reach allows better forecasting of the ice regime and improved decision support for upstream reservoir regulation and taking appropriate measures for disaster risk reduction.
Disability insurance, long-term care insurance, and critical illness cover are becoming increasingly important in developed countries as the problems of demographic aging come to the fore. The private sector insurance industry is providing solutions to problems resulting from these pressures and other demands of better educated and more prosperous populations. Actuarial Models for Disability Insurance examines the actuarial structure of disability insurance, long-term care insurance, and critical illness cover, including problems encountered in the design and development of such insurances. Actuarial problems such as pricing and reserving are considered within the context of multiple state modeling, providing a vigorous and sound framework for analyzing personal insurances.
"Computational Physics" is designed to provide direct experience in the computer modeling of physical systems. Its scope includes the essential numerical techniques needed to "do physics" on a computer. Each of these is developed heuristically in the text, with the aid of simple mathematical illustrations. However, the real value of the book is in the eight Examples and Projects, where the reader is guided in applying these techniques to substantial problems in classical, quantum, or statistical mechanics. These problems have been chosen to enrich the standard physics curriculum at the advanced undergraduate or beginning graduate level. The book will also be useful to physicists, engineers, and chemists interested in computer modeling and numerical techniques. Although the user-friendly and fully documented programs are written in FORTRAN, a casual familiarity with any other high-level language, such as BASIC, PASCAL, or C, is sufficient. The codes in BASIC and FORTRAN are available on the web at http: //www.computationalphysics.info (Please follow the link at the bottom of the page). They are available in zip format, which can be expanded on UNIX, Window, and Mac systems with the proper software. The codes are suitable for use (with minor changes) on any machine with a FORTRAN-77 compatible compiler or BASIC compiler. The FORTRAN graphics codes are available as well. However, as they were originally written to run on the VAX, major modifications must be made to make them run on other machines.
A clear methodological and philosophical introduction to complexity theory as applied to urban and regional systems is given, together with a detailed series of modelling case studies compiled over the last couple of decades. Based on the new complex systems thinking, mathematical models are developed which attempt to simulate the evolution of towns, cities, and regions and the complicated co-evolutionary interaction there is both between and within them. The aim of these models is to help policy analysis and decision-making in urban and regional planning, energy policy, transport policy, and many other areas of service provision, infrastructure planning, and investment that are necessary for a successful society.
This edited volume collects six surveys that present state-of-the-art results on modeling, qualitative analysis, and simulation of active matter, focusing on specific applications in the natural sciences. Following the previously published Active Particles volumes, these chapters are written by leading experts in the field and reflect the diversity of subject matter in theory and applications within an interdisciplinary framework. Topics covered include: Variability and heterogeneity in natural swarms Multiscale aspects of the dynamics of human crowds Mathematical modeling of cell collective motion triggered by self-generated gradients Clustering dynamics on graphs Random Batch Methods for classical and quantum interacting particle systems The consensus-based global optimization algorithm and its recent variants Mathematicians and other members of the scientific community interested in active matter and its many applications will find this volume to be a timely, authoritative, and valuable resource.
This book presents a select group of papers that provide a comprehensive view of the models and applications of chaos theory in medicine, biology, ecology, economy, electronics, mechanical, and the human sciences. Covering both the experimental and theoretical aspects of the subject, it examines a range of current topics of interest. It considers the problems arising in the study of discrete and continuous time chaotic dynamical systems modeling the several phenomena in nature and society-highlighting powerful techniques being developed to meet these challenges that stem from the area of nonlinear dynamical systems theory.
Introductory Mathematics for the Life Sciences offers a straightforward introduction to the mathematical principles needed for studies in the life sciences. Starting with the basics of numbers, fractions, ratios, and percentages, the author explains progressively more sophisticated concepts, from algebra, measurement, and scientific notation through the linear, power, exponential, and logarithmic functions to introductory statistics. Worked examples illustrate concepts, applications, and interpretations, and exercises at the end of each chapter help readers apply and practice the skills they develop. Answers to the exercises are posted at the end of the text.
Since the original publication of the bestselling Modelling Binary Data, a number of important methodological and computational developments have emerged, accompanied by the steady growth of statistical computing. Mixed models for binary data analysis and procedures that lead to an exact version of logistic regression form valuable additions to the statistician's toolbox, and author Dave Collett has fully updated his popular treatise to incorporate these important advances. Modelling Binary Data, Second Edition now provides an even more comprehensive and practical guide to statistical methods for analyzing binary data. Along with thorough revisions to the original material-now independent of any particular software package- it includes a new chapter introducing mixed models for binary data analysis and another on exact methods for modelling binary data. The author has also added material on modelling ordered categorical data and provides a summary of the leading software packages. All of the data sets used in the book are available for download from the Internet, and the appendices include additional data sets useful as exercises.
The development of constitutive relations for geotechnical materials, with the help of numerical models, have increased notably the ability to predict and to interpret mechanical behaviour of geotechnical works. These proceedings cover the applications of computational mechanics in this area.
This monograph provides a general background to the modelling of a special class of offshore structures known as compliant structures. External forcing is resisted by buoyancy and tension forces which increase when the structure is slightly offset from its equilibrium. The technical development given in this book is presented in such a way as to highlight the adaptability of the modelling, and the reader is shown how the techniques described can be applied to a variety of different offshore structures.
Because of its ability to treat both regions with irregular boundaries and with different material types, the finite element method is increasingly being applied to surface water and soil transport problems and this is the focus of the present volume. The method is ideally suited to simulation of complex real applications for resolving environmental issues and for conducting environmental impact studies. The present volume focuses on the two main areas of environmental modeling with finite elements and the supporting finite element methodology. Five chapters are devoted to ocean and coastal engineering, one to other surface water problems, several to ground water modeling and contaminant transport, including radioactive waste, and the remainder to mathematical models, particularly for mixed finite elements and nonlinear problems. Environmental problems are of increasing topicality and importance today. Special care has been taken in organizing and editing the material to form the right combination of modeling, methodology, and applications studies to form a cohesive treatment appropriate for a graduate course or seminar on the subject. It is aimed in particular at engineers working in computational environmental fluid mechanics and transport processes.
Originally published in 1984. This book brings together a reasonably complete set of results regarding the use of Constraint Item estimation procedures under the assumption of accurate specification. The analysis covers the case of all explanatory variables being non-stochastic as well as the case of identified simultaneous equations, with error terms known and unknown. Particular emphasis is given to the derivation of criteria for choosing the Constraint Item. Part 1 looks at the best CI estimators and Part 2 examines equation by equation estimation, considering forecasting accuracy.
Offers information necessary for the development of mathematical models and numerical techniques to solve specific drying problems. The book addresses difficult issues involved with the drying equations of numerical analysis, including mesh generation, discretinization strategies, the nonlinear equation set and the linearized algebraic system, convergance criteria, time step control, experimental validation, optimum methods of visualization results, and more.
Reissuing works originally published between 1929 and 1991, this collection of 17 volumes presents a variety of considerations on Econometrics, from introductions to specific research works on particular industries. With some volumes on models for macroeconomics and international economies, this is a widely interesting set of economic texts. Input/Output methods and databases are looked at in some volumes while others look at Bayesian techniques, linear and non-linear models. This set will be of use to those in industry and business studies, geography and sociology as well as politics and economics. |
![]() ![]() You may like...
Fundamentals of Service Systems
Jorge Cardoso, Hansjoerg Fromm, …
Hardcover
R3,195
Discovery Miles 31 950
Spatiotemporality and cognitive-semiotic…
Maria Cristina Gatti
Hardcover
R1,576
Discovery Miles 15 760
Semiotic Landscapes - Language, Image…
Adam Jaworski, Crispin Thurlow
Hardcover
R5,964
Discovery Miles 59 640
New Studies in Multimodality…
Ognyan Seizov, Janina Wildfeuer
Hardcover
R4,588
Discovery Miles 45 880
|