![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Applied mathematics > Mathematical modelling
Originally published in 1984. Since the logic underlying economic theory can only be grasped fully by a thorough understanding of the mathematics, this book will be invaluable to economists wishing to understand vast areas of important research. It provides a basic introduction to the fundamental mathematical ideas of topology and calculus, and uses these to present modern singularity theory and recent results on the generic existence of isolated price equilibria in exchange economies.
The book discusses the solutions to nonlinear ordinary differential equations (ODEs) using analytical and numerical approximation methods. Recently, analytical approximation methods have been largely used in solving linear and nonlinear lower-order ODEs. It also discusses using these methods to solve some strong nonlinear ODEs. There are two chapters devoted to solving nonlinear ODEs using numerical methods, as in practice high-dimensional systems of nonlinear ODEs that cannot be solved by analytical approximate methods are common. Moreover, it studies analytical and numerical techniques for the treatment of parameter-depending ODEs. The book explains various methods for solving nonlinear-oscillator and structural-system problems, including the energy balance method, harmonic balance method, amplitude frequency formulation, variational iteration method, homotopy perturbation method, iteration perturbation method, homotopy analysis method, simple and multiple shooting method, and the nonlinear stabilized march method. This book comprehensively investigates various new analytical and numerical approximation techniques that are used in solving nonlinear-oscillator and structural-system problems. Students often rely on the finite element method to such an extent that on graduation they have little or no knowledge of alternative methods of solving problems. To rectify this, the book introduces several new approximation techniques.
Practical Handbook of Genetic Algorithms, Volume 3: Complex Coding
Systems contains computer-code examples for the development of
genetic algorithm systems - compiling them from an array of
practitioners in the field.
Disability insurance, long-term care insurance, and critical illness cover are becoming increasingly important in developed countries as the problems of demographic aging come to the fore. The private sector insurance industry is providing solutions to problems resulting from these pressures and other demands of better educated and more prosperous populations. Actuarial Models for Disability Insurance examines the actuarial structure of disability insurance, long-term care insurance, and critical illness cover, including problems encountered in the design and development of such insurances. Actuarial problems such as pricing and reserving are considered within the context of multiple state modeling, providing a vigorous and sound framework for analyzing personal insurances.
Based on talks from the 2017 and 2018 Combinatorial and Additive Number Theory (CANT) workshops at the City University of New York, these proceedings offer 17 peer-reviewed and edited papers on current topics in number theory. Held every year since 2003, the workshop series surveys state-of-the-art open problems in combinatorial and additive number theory and related parts of mathematics. Topics featured in this volume include sumsets, partitions, convex polytopes and discrete geometry, Ramsey theory, commutative algebra and discrete geometry, and applications of logic and nonstandard analysis to number theory. Each contribution is dedicated to a specific topic that reflects the latest results by experts in the field. This selection of articles will be of relevance to both researchers and graduate students interested in current progress in number theory.
"Computational Physics" is designed to provide direct experience in the computer modeling of physical systems. Its scope includes the essential numerical techniques needed to "do physics" on a computer. Each of these is developed heuristically in the text, with the aid of simple mathematical illustrations. However, the real value of the book is in the eight Examples and Projects, where the reader is guided in applying these techniques to substantial problems in classical, quantum, or statistical mechanics. These problems have been chosen to enrich the standard physics curriculum at the advanced undergraduate or beginning graduate level. The book will also be useful to physicists, engineers, and chemists interested in computer modeling and numerical techniques. Although the user-friendly and fully documented programs are written in FORTRAN, a casual familiarity with any other high-level language, such as BASIC, PASCAL, or C, is sufficient. The codes in BASIC and FORTRAN are available on the web at http: //www.computationalphysics.info (Please follow the link at the bottom of the page). They are available in zip format, which can be expanded on UNIX, Window, and Mac systems with the proper software. The codes are suitable for use (with minor changes) on any machine with a FORTRAN-77 compatible compiler or BASIC compiler. The FORTRAN graphics codes are available as well. However, as they were originally written to run on the VAX, major modifications must be made to make them run on other machines.
The origami introduced in this book is based on simple techniques. Some were previously known by origami artists and some were discovered by the author. Curved-Folding Origami Design shows a way to explore new area of origami composed of curved folds. Each technique is introduced in a step-by-step fashion, followed by some beautiful artwork examples. A commentary explaining the theory behind the technique is placed at the end of each chapter. Features Explains the techniques for designing curved-folding origami in seven chapters Contains many illustrations and photos (over 140 figures), with simple instructions Contains photos of 24 beautiful origami artworks, as well as their crease patterns Some basic theories behind the techniques are introduced
Introductory Mathematics for the Life Sciences offers a straightforward introduction to the mathematical principles needed for studies in the life sciences. Starting with the basics of numbers, fractions, ratios, and percentages, the author explains progressively more sophisticated concepts, from algebra, measurement, and scientific notation through the linear, power, exponential, and logarithmic functions to introductory statistics. Worked examples illustrate concepts, applications, and interpretations, and exercises at the end of each chapter help readers apply and practice the skills they develop. Answers to the exercises are posted at the end of the text.
Graphs are extremely useful in modeling systems in physical sciences and engineering problems, because of their intuitive diagrammatic nature. This text gives a reasonably deep account of material closely related to engineering applications. Topics like directed-graph solutions of linear equations, topological analysis of linear systems, state equations, rectangle dissection and layouts, and network flows are included. A major theme of the book is electrical network theory.This book is basically intended as a reference text for researchers, and requires a certain level of mathematical maturity. However the text may equally well be used for graduate level courses on network topology and linear systems and circuits. Some of the later chapters are suitable as topics for advanced seminars. A special feature of the book is that references to other published literature are included for almost all the results presented, making the book especially handy for those wishing to continue with a study of special topics.
This monograph provides a general background to the modelling of a special class of offshore structures known as compliant structures. External forcing is resisted by buoyancy and tension forces which increase when the structure is slightly offset from its equilibrium. The technical development given in this book is presented in such a way as to highlight the adaptability of the modelling, and the reader is shown how the techniques described can be applied to a variety of different offshore structures.
The development of constitutive relations for geotechnical materials, with the help of numerical models, have increased notably the ability to predict and to interpret mechanical behaviour of geotechnical works. These proceedings cover the applications of computational mechanics in this area.
This book collects contributions to the XXIII international conference "Nonlinear dynamics of electronic systems". Topics range from non-linearity in electronic circuits to synchronisation effects in complex networks to biological systems, neural dynamics and the complex organisation of the brain. Resting on a solid mathematical basis, these investigations address highly interdisciplinary problems in physics, engineering, biology and biochemistry.
Offers information necessary for the development of mathematical models and numerical techniques to solve specific drying problems. The book addresses difficult issues involved with the drying equations of numerical analysis, including mesh generation, discretinization strategies, the nonlinear equation set and the linearized algebraic system, convergance criteria, time step control, experimental validation, optimum methods of visualization results, and more.
This book is designed as a practical and intuitive introduction to probability, statistics and random quantities for physicists. The book aims at getting to the main points by a clear, hands-on exposition supported by well-illustrated and worked-out examples. A strong focus on applications in physics and other natural sciences is maintained throughout. In addition to basic concepts of random variables, distributions, expected values and statistics, the book discusses the notions of entropy, Markov processes, and fundamentals of random number generation and Monte-Carlo methods.
The human brain is made up of 85 billion neurons, which are connected by over 100 trillion synapses. For more than a century, a diverse array of researchers searched for a language that could be used to capture the essence of what these neurons do and how they communicate. The language they were looking for was mathematics, and we would not be able to understand the brain as we do today without it. In Models of the Mind, author and computational neuroscientist Grace Lindsay explains how mathematical models have allowed scientists to understand and describe many of the brain's processes. She introduces readers to the most important concepts in modern neuroscience, and highlights the tensions that arise when the abstract world of mathematical modelling collides with the messy details of biology. Each chapter of Models of the Mind focuses on mathematical tools that have been applied in a particular area of neuroscience, progressing from the simplest building block of the brain - the individual neuron - through to circuits of interacting neurons, whole brain areas and even the behaviours that brains command. Grace examines the history of the field, starting with experiments done on frog legs in the late eighteenth century and building to the large models of artificial neural networks that form the basis of modern artificial intelligence. Throughout, she reveals the value of using the elegant language of mathematics to describe the machinery of neuroscience.
Data-analytic approaches to regression problems, arising from many scientific disciplines are described in this book. The aim of these nonparametric methods is to relax assumptions on the form of a regression function and to let data search for a suitable function that describes the data well. The use of these nonparametric functions with parametric techniques can yield very powerful data analysis tools. Local polynomial modeling and its applications provides an up-to-date picture on state-of-the-art nonparametric regression techniques. The emphasis of the book is on methodologies rather than on theory, with a particular focus on applications of nonparametric techniques to various statistical problems. High-dimensional data-analytic tools are presented, and the book includes a variety of examples. This will be a valuable reference for research and applied statisticians, and will serve as a textbook for graduate students and others interested in nonparametric regression.
Large observational studies involving research questions that require the measurement of several features on each individual arise in many fields including the social and medical sciences. This book sets out both the general concepts and the more technical statistical issues involved in analysis and interpretation. Numerous illustrative examples are described in outline and four studies are discussed in some detail.
Discusses replacement, repair, and inspection Offers estimation and statistical tests Covers accelerated life testing Explores warranty analysis manufacturing Includes service reliability
Bayesian methods are growing more and more popular, finding new practical applications in the fields of health sciences, engineering, environmental sciences, business and economics and social sciences, among others. This book explores the use of Bayesian analysis in the statistical estimation of the unknown phenomenon of interest. The contents demonstrate that where such methods are applicable, they offer the best possible estimate of the unknown. Beyond presenting Bayesian theory and methods of analysis, the text is illustrated with a variety of applications to real world problems.
Qualitative Estimates For Partial Differential Equations: An
Introduction describes an approach to the use of partial
differential equations (PDEs) arising in the modelling of physical
phenomena. It treats a wide range of differential inequality
techniques applicable to problems arising in engineering and the
natural sciences, including fluid and solid mechanics, physics,
dynamics, biology, and chemistry.
This study contributes to the understanding of the mechanisms and processes of sand bypassing in artificial and non-artificial coastal environments through a numerical modelling study. Sand bypassing processes in general is a relevant but poorly understood topic. This study attempts to link the theory and physics of sand bypassing processes which is significantly important in definition of coastal sedimentary budget. The main question is how can we model sand bypassing processes and whether the modelled sand bypassing processes represent the actual sand bypassing processes. In this study, it is shown that a process-based model can be used to simulate the processes of sand bypassing around groyne and headland structures. Both hypothetical and real case studies were successfully developed. Results comparisons were made among analytical models, empirical models and field data measurements. In general, the process-based model can produce reasonable results. In summary, through numerical modelling this study reveals the importance of understanding coastal processes and the role of geological controls in governing headland sand bypassing processes and embayed beach morphodynamics. The morphological model developed in this study is useful to increase understanding of the natural sand distribution patterns due to combination of engineering efforts and natural coastal processes.
Stochastic Modeling of Scientific Data combines stochastic modeling and statistical inference in a variety of standard and less common models, such as point processes, Markov random fields and hidden Markov models in a clear, thoughtful and succinct manner. The distinguishing feature of this work is that, in addition to probability theory, it contains statistical aspects of model fitting and a variety of data sets that are either analyzed in the text or used as exercises. Markov chain Monte Carlo methods are introduced for evaluating likelihoods in complicated models and the forward backward algorithm for analyzing hidden Markov models is presented. The strength of this text lies in the use of informal language that makes the topic more accessible to non-mathematicians. The combinations of hard science topics with stochastic processes and their statistical inference puts it in a new category of probability textbooks. The numerous examples and exercises are drawn from astronomy, geology, genetics, hydrology, neurophysiology and physics.
Mathematical Modelling of Solids with Nonregular Boundaries
demonstrates the use of asymptotic methods and other analytical
techniques for investigating problems in solid mechanics.
Applications to solids with nonregular boundaries are described in
detail, providing precise and rigorous treatment of current methods
and techniques. The book addresses problems in fracture mechanics
of inhomogeneous media and illustrates applications in strength
analysis and in geophysics. The rigorous approach allows the reader
to explicitly analyze the stress-strain state in continuous media
with cavities or inclusions, in composite materials with small
defects, and in elastic solids with sharp inclusions. Effective
asymptotic procedures for eigenvalue problems in domains with small
defects are clearly outlined, and methods for analyzing singularly
perturbed boundary value problems are examined.
Many textbooks on continuum mechanics plunge students in at the 'deep end' of three-dimensional analysis and applications. However a striking number of commonplace models of our physical environment are based entirely within the dynamics of a one-dimensional continuum. This introductory text therefore approaches the subject entirely within such a one-dimensional framework.The principles of the mathematical modeling of one-dimensional media constitute the book's backbone. These concepts are elucidated with a diverse selection of applications, ranging from tidal dynamics and dispersion in channels to beam bending, algal blooms, blood flow, and the greenhouse effect.The book is ideally suited to elementary undergraduate courses as it makes no use of multivariable calculus. A number of graded problems are included at the end of each section. |
You may like...
A Discipline of Mathematical Systems…
Matthew Collinson, Brian Monahan, …
Paperback
R901
Discovery Miles 9 010
New Trends in the Physics and Mechanics…
Martine Ben Amar, Alain Goriely, …
Hardcover
R2,505
Discovery Miles 25 050
Time and Methods in Environmental…
Dragutin T. Mihailovic, Igor Balaz, …
Hardcover
Modelling and Control in Biomedical…
David Dagan Feng, Janan Zaytoon
Paperback
Mathematical and Physical Simulation of…
M. Pietrzyk, L. Cser, …
Hardcover
R4,188
Discovery Miles 41 880
|