![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Applied mathematics > Mathematics for scientists & engineers
In this unique volume, renowned experts discuss the applications of fractals in petroleum research-offering an excellent introduction to the subject. Contributions cover a broad spectrum of applications from petroleum exploration to production. Papers also illustrate how fractal geometry can quantify the spatial heterogeneity of different aspects of geology and how this information can be used to improve exploration and production results.
Terrorism is one of the serious threats to international peace and security that we face in this decade. No nation can consider itself immune from the dangers it poses, and no society can remain disengaged from the efforts to combat it. The termcounterterrorism refers to the techniques, strategies, and tactics used in the ?ght against terrorism. Counterterrorism efforts involve many segments of so- ety, especially governmental agencies including the police, military, and intelligence agencies (both domestic and international). The goal of counterterrorism efforts is to not only detect and prevent potential future acts but also to assist in the response to events that have already occurred. A terrorist cell usually forms very quietly and then grows in a pattern - sp- ning international borders, oceans, and hemispheres. Surprising to many, an eff- tive "weapon," just as quiet - mathematics - can serve as a powerful tool to combat terrorism, providing the ability to connect the dots and reveal the organizational pattern of something so sinister. The events of 9/11 instantly changed perceptions of the wordsterrorist andn- work, especially in the United States. The international community was confronted with the need to tackle a threat which was not con?ned to a discreet physical - cation. This is a particular challenge to the standard instruments for projecting the legal authority of states and their power to uphold public safety. As demonstrated by the events of the 9/11 attack, we know that terrorist attacks can happen anywhere.
Aimed at graduates and potential researchers, this is a comprehensive introduction to the mathematical aspects of spin glasses and neural networks. It should be useful to mathematicians in probability theory and theoretical physics, and to engineers working in theoretical computer science.
This book addresses a modern topic in reliability: multi-state and continuous-state system reliability, which has been intensively developed in recent years. It offers an up-to-date overview of the latest developments in reliability theory for multi-state systems, engineering applications to a variety of technical problems, and case studies that will be of interest to reliability engineers and industrial managers. It also covers corresponding theoretical issues, as well as case studies illustrating the applications of the corresponding theoretical advances. The book is divided into two parts: Modern Mathematical Methods for Multi-state System Reliability Analysis (Part 1), and Applications and Case Studies (Part 2), which examines real-world multi-state systems. It will greatly benefit scientists and researchers working in reliability, as well as practitioners and managers with an interest in reliability and performability analysis. It can also be used as a textbook or as a supporting text for postgraduate courses in Industrial Engineering, Electrical Engineering, Mechanical Engineering, Applied Mathematics, and Operations Research.
Prominent scientists present the latest achievements in computational methods and mechanics in this book. These lectures were held at the CMM 2009 conference.
This is the eighth volume in the series "Mathematics in Industrial Prob lems." The motivation for these volumes is to foster interaction between Industry and Mathematics at the "grass roots level"; that is, at the level of specific problems. These problems come from Industry: they arise from models developed by the industrial scientists in ventures directed at the manufacture of new or improved products. At the same time, these prob lems have the potential for mathematical challenge and novelty. To identify such problems, I have visited industries and had discussions with their scientists. Some of the scientists have subsequently presented their problems in the IMA Seminar on Industrial Problems. The book is based on the seminar presentations and on questions raised in subsequent discussions. Each chapter is devoted to one of the talks and is self-contained. The chapters usually provide references to the mathematical literature and a list of open problems that are of interest to industrial scientists. For some problems, a partial solution is indicated briefly. The last chapter of the book contains a short description of solutions to some of the problems raised in the previous volume, as well as references to papers in which such solutions have been published."
The European Conferences on Numerical Mathematics and Advanced Applications (ENUMATH) are a series of conferences held every two years to provide a forum for discussion of new trends in numerical mathematics and challenging scientific and industrial applications at the highest level of international expertise. ENUMATH 2011 was hosted by the University of Leicester (UK) from the 5th to 9th September 2011. This proceedings volume contains more than 90 papers by speakers of the conference and gives an overview of recent developments in scientific computing, numerical analysis, and practical use of modern numerical techniques and algorithms in various applications. New results on finite element methods, multiscale methods, numerical linear algebra, and finite difference schemes are presented. A range of applications include computational problems from fluid dynamics, materials, image processing, and molecular dynamics.
This book presents a systematic approach to numerical solution for a wide range of spatial contact problems of geotechnics. On the basis of the boundary element method new techniques and effective computing algorithms are considered. Special attention is given to the formulation and analysis of the spatial contact models for elastic bases. Besides the classical schemes of contact deformation, new contact models are discussed for spatially nonhomogeneous and nonlinearly elastic media properly describing soil properties.
The Decomposition of Controlled Dynamic Systems.- A Differential Game for the Minimax of a Positional Functional.- Global Methods in Optimal Control Theory.- On the Theory of Trajectory Tubes - a Mathematical Formalism for Uncertain Dynamics, Viability and Control.- A Theory of Generalized Solutions to First-Order PDEs with an Emphasis on Differential Games.- Adaptivity and Robustness in Automatic Control Systems.
This book is the second edition of Numerical methods for diffusion phenomena in building physics: a practical introduction originally published by PUCPRESS (2016). It intends to stimulate research in simulation of diffusion problems in building physics, by providing an overview of mathematical models and numerical techniques such as the finite difference and finite-element methods traditionally used in building simulation tools. Nonconventional methods such as reduced order models, boundary integral approaches and spectral methods are presented, which might be considered in the next generation of building-energy-simulation tools. In this reviewed edition, an innovative way to simulate energy and hydrothermal performance are presented, bringing some light on innovative approaches in the field.
The deep and original ideas of Norman Levinson have had a lasting impact on fields as diverse as differential & integral equations, harmonic, complex & stochas tic analysis, and analytic number theory during more than half a century. Yet, the extent of his contributions has not always been fully recognized in the mathematics community. For example, the horseshoe mapping constructed by Stephen Smale in 1960 played a central role in the development of the modern theory of dynami cal systems and chaos. The horseshoe map was directly stimulated by Levinson's research on forced periodic oscillations of the Van der Pol oscillator, and specifi cally by his seminal work initiated by Cartwright and Littlewood. In other topics, Levinson provided the foundation for a rigorous theory of singularly perturbed dif ferential equations. He also made fundamental contributions to inverse scattering theory by showing the connection between scattering data and spectral data, thus relating the famous Gel'fand-Levitan method to the inverse scattering problem for the Schrodinger equation. He was the first to analyze and make explicit use of wave functions, now widely known as the Jost functions. Near the end of his life, Levinson returned to research in analytic number theory and made profound progress on the resolution of the Riemann Hypothesis. Levinson's papers are typically tightly crafted and masterpieces of brevity and clarity. It is our hope that the publication of these selected papers will bring his mathematical ideas to the attention of the larger mathematical community."
The idea of optimization runs through most parts of control theory. The simplest optimal controls are preplanned (programmed) ones. The problem of constructing optimal preplanned controls has been extensively worked out in literature (see, e. g., the Pontrjagin maximum principle giving necessary conditions of preplanned control optimality). However, the concept of op timality itself has a restrictive character: it is limited by what one means under optimality in each separate case. The internal contradictoriness of the preplanned control optimality ("the better is the enemy of the good") yields that the practical significance of optimal preplanned controls proves to be not great: such controls are usually sensitive to unregistered disturbances (includ ing the round-off errors which are inevitable when computer devices are used for forming controls), as there is the effect of disturbance accumulation in the control process which makes controls to be of little use on large time inter vals. This gap is mainly provoked by oversimplified settings of optimization problems. The outstanding result of control theory established in the end of the first half of our century is that controls in feedback form ensure the weak sensitivity of closed loop systems with respect to "small" unregistered internal and external disturbances acting in them (here we do not need to discuss performance indexes, since the considered phenomenon is of general nature). But by far not all optimal preplanned controls can be represented in a feedback form."
The 7th ACIS International Conference on Software Engineering Research, Management and Applications (SERA 2009) was held on Hainan Island, China from December 2 - 4. SERA '09 featured excellent theoretical and practical contributions in the areas of formal methods and tools, requirements engineering, software process models, communication systems and networks, software quality and evaluation, software engineering, networks and mobile computing, parallel/distributed computing, software testing, reuse and metrics, database retrieval, computer security, software architectures and modeling. Our conference officers selected the best 17 papers from those papers accepted for presentation at the conference in order to publish them in this volume. The papers were chosen based on review scores submitted by members or the program committee, and underwent further rigorous rounds of review.
This book deals with the economic aspects of changing attitudes in arts and sciences. The effects of the public good character of culture, along with the very long production period and lifetime for its products, are emphasized, since both contribute to the failure of normal market solutions. Embodiment of ideas and the consequences of modern reproduction technology for protection of property rights are closely examined. The evolution within arts and sciences, which often seems to return to previously scrapped ideals, is illustrated by detailed case studies, in which the importance of changing tastes, rather than progress proper, is emphasized. The author attempts an understanding for this using Darwinian evolution in combination with modern mathematical complexity theory, expressed in terms accessible to the general reader. The second edition is extended and updated especially as regards the illustration material.
Learning spaces offer a rigorous mathematical foundation for practical systems of educational technology. Learning spaces generalize partially ordered sets and are special cases of knowledge spaces. The various structures are investigated from the standpoints of combinatorial properties and stochastic processes. Leaning spaces have become the essential structures to be used in assessing students' competence of various topics. A practical example is offered by ALEKS, a Web-based, artificially intelligent assessment and learning system in mathematics and other scholarly fields. At the heart of ALEKS is an artificial intelligence engine that assesses each student individually and continously. The book is of interest to mathematically oriented readers in education, computer science, engineering, and combinatorics at research and graduate levels. Numerous examples and exercises are included, together with an extensive bibliography.
This book continues the biannual series of conference proceedings, which has become a classical reference resource in traffic and granular research alike, and addresses the latest developments at the intersection of physics, engineering and computational science. These involve complex systems, in which multiple simple agents, be they vehicles or particles, give rise to surprising and fascinating phenomena. The contributions collected in these proceedings cover several research fields, all of which deal with transport. Topics include highway, pedestrian and internet traffic; granular matter; biological transport; transport networks; data acquisition; data analysis and technological applications. Different perspectives, i.e., modeling, simulations, experiments, and phenomenological observations are considered.
This book project was initiated at "The Tribute Workshop in Honour of Gunnar Sparr" and the follow-up workshop "Inequalities, Interpolation, Non-commutative, Analysis, Non-commutative Geometry and Applications INANGA08," held at the Centre for Mathematical Sciences, Lund University in May and November of 2008. The resulting book is dedicated in celebration of Gunnar Sparr's
sixty-fifth anniversary and more than forty years of exceptional
service to mathematics and its applications in engineering and
technology, mathematics and engineering education, as well as
interdisciplinary, industrial and international cooperation.
Phenomena occurring during a contact of two bodies are encountered in everyday life. In reality almost every type of motion is related to frictional contact between a moving body and a ground. Moreover, modeling of simple and more complex processes as nailing, cutting, vacuum pressing, movement of machines and their elements, rolling or, finally, a numerical simulation of car crash tests, requires taking contact into account.Therefore, its analysis has been a subject of many research efforts for a long time now. However, it is author 's opinion that there are relatively few efforts related to contact between structural elements, like beams, plates or shells. The purpose of this work is to fill this gap. It concerns the beam-to-beam contact as a specific case of the 3D solids contact. A numerical formulation of frictional contact for beams with two shapes of cross-section is derived. Further, a couple of effective methods for modeling of smooth curves representing beam axes are presented. A part of the book is also devoted to analyze some aspects of thermo-electro-mechanical coupling in contact of thermal and electric conductors. Analyses in every chapter are illustrated with numerical examples showing the performance of derived contact finite elements.
Synchronization of chaotic systems, a patently nonlinear
phenomenon, has emerged as a highly active interdisciplinary
research topic at the interface of physics, biology, applied
mathematics and engineering sciences. In this connection,
time-delay systems described by delay differential equations have
developed as particularly Last but not least, the presentation as a whole strives for a
balance between the necessary mathematical description of the
basics
This EMS volume shows the great power provided by modern harmonic
analysis, not only in mathematics, but also in mathematical physics
and engineering. Aimed at a reader who has learned the principles
of harmonic analysis, this book is intended to provide a variety of
perspectives on this important classical subject. The authors have
written an outstanding book which distinguishes itself by the
authors' excellent expository style.
This volume consists of papers presented at the Variational Analysis and Aerospace Engineering Workshop II held in Erice, Italy in September 2010 at the International School of Mathematics "Guido Stampacchia." The workshop provided a platform for aerospace engineers and mathematicians (from universities, research centers and industry) to discuss the advanced problems requiring an extensive application of mathematics. The presentations were dedicated to the most advanced subjects in engineering and, in particular to computational fluid dynamics methods, introduction of new materials, optimization in aerodynamics, structural optimization, space missions, flight mechanics, control theory and optimization, variational methods and applications, etc. This book will capture the interest of researchers from both academia and industry. "
The College of Computing and Informatics (CCI) at UNC-Charlotte has three departments: Computer Science, Software and Information Systems, and Bioinformatics and Genomics. The Department of Computer Science offers study in a variety of specialized computing areas such as database design, knowledge systems, computer graphics, artificial intelligence, computer networks, game design, visualization, computer vision, and virtual reality. The Department of Software and Information Systems is primarily focused on the study of technologies and methodologies for information system architecture, design, implementation, integration, and management with particular emphasis on system security. The Department of Bioinformatics and Genomics focuses on the discovery, development and application of novel computational technologies to help solve important biological problems. This volume gives an overview of research done by CCI faculty in the area of Information & Intelligent Systems. Presented papers focus on recent advances in four major directions: Complex Systems, Knowledge Management, Knowledge Discovery, and Visualization. A major reason for producing this book was to demonstrate a new, important thrust in academic research where college-wide interdisciplinary efforts are brought to bear on large, general, and important problems. As shown in the research described here, these efforts need not be formally organized joint undertakings (through parts could be) but are rather a convergence of interests around grand themes.
This clearly written and enlightening textbook provides a concise, introductory guide to the key mathematical concepts and techniques used by computer scientists. Topics and features: ideal for self-study, offering many pedagogical features such as chapter-opening key topics, chapter introductions and summaries, review questions, and a glossary; places our current state of knowledge within the context of the contributions made by early civilizations, such as the ancient Babylonians, Egyptians and Greeks; examines the building blocks of mathematics, including sets, relations and functions; presents an introduction to logic, formal methods and software engineering; explains the fundamentals of number theory, and its application in cryptography; describes the basics of coding theory, language theory, and graph theory; discusses the concept of computability and decideability; includes concise coverage of calculus, probability and statistics, matrices, complex numbers and quaternions.
This book presents select peer-reviewed papers presented at the International Conference on Numerical Optimization in Engineering and Sciences (NOIEAS) 2019. The book covers a wide variety of numerical optimization techniques across all major engineering disciplines like mechanical, manufacturing, civil, electrical, chemical, computer, and electronics engineering. The major focus is on innovative ideas, current methods and latest results involving advanced optimization techniques. The contents provide a good balance between numerical models and analytical results obtained for different engineering problems and challenges. This book will be useful for students, researchers, and professionals interested in engineering optimization techniques.
This book explains the usage and application of Molecular Quantum Dynamics, the methodology where both the electrons and the nuclei in a molecule are treated with quantum mechanical calculations. This volume of Lecture Notes in Chemistry addresses graduate students and postdocs in the field of theoretical chemistry, as well as postgraduate students, researchers and teachers from neighboring fields, such as quantum physics, biochemistry, biophysics, or anyone else who is interested in this rising method in theoretical chemistry, and who wants to gain experience in the opportunities it can offer. It can also be useful for teachers interested in illustrative examples of time-dependent quantum mechanics as animations of realistic wave packets have been designed to assist in visualization. Assuming a basic knowledge about quantum mechanics, the authors link their explanations to recent experimental investigations where Molecular Quantum Dynamics proved successful and necessary for the understanding of the experimental results. Examples including reactive scattering, photochemistry, tunneling, femto- and attosecond chemistry and spectroscopy, cold chemistry or crossed-beam experiments illustrate the power of the method. The book restricts complicated formalism to the necessary and in a self-contained and clearly explained way, offering the reader an introduction to, and instructions for, practical exercises. Continuative explanation and math are optionally supplemented for the interested reader. The reader learns how to apply example simulations with the MCTDH program package (Multi Configuration Time Dependent Hartree calculations). Readers can thus obtain the tools to run their own simulations and apply them to their problems. Selected scripts and program code from the examples are made available as supplementary material. This book bridges the gap between the existing textbooks on fundamental theoretical chemistry and research monographs focusing on sophisticated applications. It is a must-read for everyone who wants to gain a sound understanding of Molecular Quantum Dynamics simulations and to obtain basic experience in running their own simulations. |
![]() ![]() You may like...
Experimenting with Unconditional Basic…
Olli Kangas, Signe Jauhiainen, …
Hardcover
R3,030
Discovery Miles 30 300
Welfare State Transformations and…
Melike Wulfgramm, Tonia Bieber, …
Hardcover
R3,245
Discovery Miles 32 450
Research Handbook on Leave Policy…
Ivana Dobrotic, Sonja Blum, …
Hardcover
R6,563
Discovery Miles 65 630
Social Security and the Middle-Class…
Leonard J. Santow, Mark E Santow
Hardcover
R1,680
Discovery Miles 16 800
|