![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Applied mathematics > Mathematics for scientists & engineers
The book "Soft Computing Based Modeling in Intelligent Systems"contains the - tended works originally presented at the IEEE International Workshop SOFA 2005 and additional papers. SOFA, an acronym for SOFt computing and Applications, is an international wo- shop intended to advance the theory and applications of intelligent systems and soft computing. Lotfi Zadeh, the inventor of fuzzy logic, has suggested the term "Soft Computing." He created the Berkeley Initiative of Soft Computing (BISC) to connect researchers working in these new areas of AI. Professor Zadeh participated actively in our wo- shop. Soft Computing techniques are tolerant to imprecision, uncertainty and partial truth. Due to the large variety and complexity of the domain, the constituting methods of Soft Computing are not competing for a comprehensive ultimate solution. Instead they are complementing each other, for dedicated solutions adapted to each specific pr- lem. Hundreds of concrete applications are already available in many domains. Model based approaches offer a very challenging way to integrate a priori knowledge into procedures. Due to their flexibility, robustness, and easy interpretability, the soft c- puting applications will continue to have an exceptional role in our technologies. The applications of Soft Computing techniques in emerging research areas show its mat- ity and usefulness. The IEEE International Workshop SOFA 2005 held Szeged-Hungary and Arad- Romania in 2005 has led to the publication of these two edited volumes. This volume contains Soft Computing methods and applications in modeling, optimisation and prediction.
This book is about the pattern formation and the evolution of crack propagation in engineering materials and structures, bridging mathematical analyses of cracks based on singular integral equations, to computational simulation of engineering design. The first two parts of this book focus on elasticity and fracture and provide the basis for discussions on fracture morphology and its numerical simulation, which may lead to a simulation-based fracture control in engineering structures. Several design concepts are discussed for the prevention of fatigue and fracture in engineering structures, including safe-life design, fail-safe design, damage tolerant design. After starting with basic elasticity and fracture theories in parts one and two, this book focuses on the fracture morphology that develops due to the propagation of brittle cracks or fatigue cracks. In part three, the mathematical analysis of a curved crack is precisely described, based on the perturbation method. The stability theory of interactive cracks propagating in brittle solids may help readers to understand the formation of a fractal-like cracking patterns in brittle solids, while the stability theory of crack paths helps to identify the straight versus sharply curved or sometimes wavy crack paths observed in brittle solids. In part four, the numerical simulation method of a system of multiple cracks is introduced by means of the finite element method, which may be used for the better implementation of fracture control in engineering structures. This book is part of a series on Mathematics for Industry and will appeal to structural engineers seeking to understand the basic backgrounds of analyses, but also to mathematicians with an interest in how such mathematical solutions are evaluated in industrial applications."
Heavy metals always pose serious ecological risks when released into the environment due to their elemental non-degradable nature, regardless of their chemical form. This calls for the development of efficient and low-cost effluent treatment and metal recuperation technologies for contaminated waste water, not only because regulatory limits need to be met but also because the waste itself can be a resource for certain precious metals. Biosorption is a general property of living and dead biomass to rapidly bind and abiotically concentrate inorganic or organic compounds from even very diluted aqueous solutions. As a specific term, biosorption is a method that utilizes materials of biological origin - biosorbents formulated from non-living biomass - for the removal of target substances from aqueous solutions. Recent research on biosorption provides a solid understanding of the mechanism underlying microbial biosorption of heavy metals and related elements. This book gathers review articles analyzing current views on the mechanism and (bio)chemistry of biosorption, the performance of bacterial, fungal and algal biomass, and the practical aspects of biosorbent preparation and engineering. It also reviews the physico-chemical evaluations of biosorbents and modelling of the process as well as the importance of biosorption during heavy metal removal using living cells. It is a reference work for scientists, environmental safety engineers and R&D specialists who wish to further promote biosorption research and use the accumulated knowledge to develop and build industrial applications of biosorption in heavy metal separation technologies. "
The tremendous progress in astronomical observations over the past sixty years has revealed a vast structured universe whose fundamental parti cles are galaxies, and clusters thereof. The interpretation of the new astronomical evidence owes much to Einstein's insights and deductions. All our knowledge of the world derives from the light, more generally the energy, which reaches us from near and far. Einstein recognised the vital role of energy as the solE basis of our information about the workings of nature; his Special Theory of Relativity showed how our understanding of space and time Is linked with measurements involving reflecting light signals. He further demonstrated that matter exists in two interchangeable forms - a mass form and an energy form - which interact closely at all levels. His General Theory of Relativity dealt with the nature of this interaction in the context of gravitational fields, and led to a view of the universe which was soon observationally confirmed. Einstein's methods and results form the theoretical basis of modern cosmology which has spawned many 'models' of the universe; how ever, they all deal with an Einstein-type universe and they all employ his geometric approach to describe it."
In the last two decades semiconductor device simulation has become a research area, which thrives on a cooperation of physicists, electrical engineers and mathe maticians. In this book the static semiconductor device problem is presented and analysed from an applied mathematician's point of view. I shall derive the device equations - as obtained for the first time by Van Roosbroeck in 1950 - from physical principles, present a mathematical analysis, discuss their numerical solu tion by discretisation techniques and report on selected device simulation runs. To me personally the most fascinating aspect of mathematical device analysis is that an interplay of abstract mathematics, perturbation theory, numerical analysis and device physics is prompting the design and development of new technology. I very much hope to convey to the reader the importance of applied mathematics for technological progress. Each chapter of this book is designed to be as selfcontained as possible, however, the mathematical analysis of the device problem requires tools which cannot be presented completely here. Those readers who are not interested in the mathemati cal methodology and rigor can extract the desired information by simply ignoring details and proofs of theorems. Also, at the beginning of each chapter I refer to textbooks which introduce the interested reader to the required mathematical concepts."
This volume presents selected papers from the 7th International Congress on Computational Mechanics and Simulation held at IIT Mandi, India. The papers discuss the development of mathematical models representing physical phenomena and applying modern computing methods and simulations to analyse them. The studies cover recent advances in the fields of nano mechanics and biomechanics, simulations of multiscale and multiphysics problems, developments in solid mechanics and finite element method, advancements in computational fluid dynamics and transport phenomena, and applications of computational mechanics and techniques in emerging areas. The volume will be of interest to researchers and academics from civil engineering, mechanical engineering, aerospace engineering, materials engineering/science, physics, mathematics and other disciplines.
The fields of image analysis, computer vision, and artificial intelligence all make use of descriptions of shape in grey-level images. Most existing algorithms for the automatic recognition and classification of particular shapes have been devel oped for specific purposes, with the result that these methods are often restricted in their application. The use of advanced and theoretically well-founded math ematical methods should lead to the construction of robust shape descriptors having more general application. Shape description can be regarded as a meeting point of vision research, mathematics, computing science, and the application fields of image analy sis, computer vision, and artificial intelligence. The NATO Advanced Research Workshop "Shape in Picture" was organised with a twofold objective: first, it should provide all participants with an overview of relevant developments in these different disciplines; second, it should stimulate researchers to exchange original results and ideas across the boundaries of these disciplines. This book comprises a widely drawn selection of papers presented at the workshop, and many contributions have been revised to reflect further progress in the field. The focus of this collection is on mathematical approaches to the construction of shape descriptions from grey-level images. The book is divided into five parts, each devoted to a different discipline. Each part contains papers that have tutorial sections; these are intended to assist the reader in becoming acquainted with the variety of approaches to the problem."
This book introduces readers to the basic concepts of and latest findings in the area of differential equations with uncertain factors. It covers the analytic method and numerical method for solving uncertain differential equations, as well as their applications in the field of finance. Furthermore, the book provides a number of new potential research directions for uncertain differential equation. It will be of interest to researchers, engineers and students in the fields of mathematics, information science, operations research, industrial engineering, computer science, artificial intelligence, automation, economics, and management science.
The book examines innovative numerical methods for computational solid and fluid mechanics that can be used to model complex problems in engineering. It also presents innovative and promising simulation methods, including the fundamentals of these methods, as well as advanced topics and complex applications. Further, the book explores how numerical simulations can significantly reduce the number of time-consuming and expensive experiments required, and can support engineering decisions by providing data that would be very difficult, if not impossible, to obtain experimentally. It also includes chapters covering topics such as particle methods addressing particle-based materials and numerical methods that are based on discrete element formulations; fictitious domain methods; phase field models; computational fluid dynamics based on modern finite volume schemes; hybridizable discontinuous Galerkin methods; and non-intrusive coupling methods for structural models.
One of the most exciting predictions of Einstein's theory of gravitationisthat there may exist 'black holes': putative objects whose gravitational fields are so strong that no physical bodies and signals can break free of their pull and escape. Even though a completely reliable discovery of a black hole has not yet been made, several objects among those scrutinized by astrophysicists will very likely be conformed as black holes. The proof that they do exist, and an analysis of their properties, would have a significance going far beyond astrophysics. Indeed, what is involved is not just the discovery of yet another, even if extremely remarkable, astrophysical object, but a test of the correctness of our understanding the properties of space and time in extremely strong gravitational fields. Theoretical research into the properties of black holes and into the possible corollaries of the hypothesis that they exist, has been carried out with special vigor since the beginning of the 1970s. In addition to those specific features of black holes that are important for the interpretation of their possible astrophysical manifestations, the theory has revealed a nurober of unexpected characteristics of physical interactions involving black holes. By now, a fairly detailed understanding has been achieved of the properties of the black holes, their possible astrophysical manifestations, and the specifics of the various physical processes involved. Furthermore, profound links were found between black-hole theory and such seemingly very distant fields as thermodynamics, information theory, and quantum theory.
The 14 contributed chapters in this book survey the most recent developments in high-performance algorithms for NGS data, offering fundamental insights and technical information specifically on indexing, compression and storage; error correction; alignment; and assembly. The book will be of value to researchers, practitioners and students engaged with bioinformatics, computer science, mathematics, statistics and life sciences.
Presents a discrete in time-space universal map of relative dynamics that is used to unfold an extensive catalogue of dynamic events not previously discussed in mathematical or social science literature. With emphasis on the chaotic dynamics that may ensue, the book describes the evolution on the basis of temporal and locational advantages. It explains nonlinear discrete time dynamic maps primarily through numerical simulations. These very rich qualitative dynamics are linked to evolution processes in socio-spatial systems. Important features include: The analytical properties of the one-stock, two- and three-location map; the numerical results from the one- and two-stock, two- and three-location dynamics; and the demonstration of the map's potential applicability in the social sciences through simulating population dynamics of the U.S. Regions over a two-century period. In addition, this book includes new findings: the Hopf equivalent discrete time dynamics bifurcation; the Feigenbaum slope-sequences; the presence of strange local attractors and containers; switching of extreme states; the presence of different types of turbulence; local and global turbulence. Intended for researchers and advanced graduate students in applied mathematics and an interest in dynamics and chaos. Mathematical social scientists in many other fields will also find this book useful.
This book covers algorithms and discretization procedures for the solution of nonlinear progamming, semi-infinite optimization and optimal control problems. Among the important features included are the theory of algorithms represented as point-to-set maps, the treatment of min-max problems with and without constraints, the theory of consistent approximation which provides a framework for the solution of semi-infinite optimization, optimal control, and shape optimization problems with very general constraints, using simple algorithms that call standard nonlinear programming algorithms as subroutines, the completeness with which algorithms are analysed, and chapter 5 containing mathematical results needed in optimization from a large assortment of sources. Readers will find of particular interest the exhaustive modern treatment of optimality conditions and algorithms for min-max problems, as well as the newly developed theory of consistent approximations and the treatment of semi-infinite optimization and optimal control problems in this framework. This book presents the first treatment of optimization algorithms for optimal control problems with state-trajectory and control constraints, and fully accounts for all the approximations that one must make in their solution.It is also the first to make use of the concepts of epi-convergence and optimality functions in the construction of consistent approximations to infinite dimensional problems.
This volume consists of twenty-four papers selected by the editors from the sixty-one papers presented at the 1st International Conference on Mathemati cal Methods in Reliability held at the Politehnica University of Bucharest from 16 to 19 September 1997. The papers have been divided into three sections: statistical methods, probabilistic methods, and special techniques and appli cations. Of course, as with any classification, some papers could be as well assigned to other sections. Problems in reliability are encountered in items in everyday usage. Relia bility is an important feature of household appliances, cars, telephones, power supplies, and so on, whether viewed from the vantage of the producer or the consumer. Important decisions are based on the reliability of the product. Obtaining systems that perform adequately for a specified period of time in a given environment is an important goal for both government and industry. Hence study and use of reliability theory, which can be applied in the research, development, and production phases of a system to enable the user to evaluate and improve performance, is a worthwhile venture. If reliability theory is to be useful, it must be quantitative in nature, because reliability must be demonstra ble. Subsequently probability and statistics, among others, play an important part in its development."
Developments in mathematical physics during the second half of the 20th century influenced a number of mathematical areas, among the more significant being representation theory, differential equations, combinatorics, and algebraic geometry. In all of them, the dynamic role of integrable models has been central, largely due to two essential properties: the fact that integrable models possess infinite degrees of freedom and infinite dimensional symmetries. This volume focuses on the ongoing importance of integrability in covering the following topics: conformal field theory, massive quantum field theory, solvable lattice models, quantum affine algebras, the Painleve equations and combinatorics. Contributors: H. Au-Yang, R.J. Baxter, H.E. Boos, E. Date, K. Fabricius, V.A. Fateev, B. Feigin, G.Hatayama, A. Its, M. Jimbo, A. Kapaev, A.N. Kirillov, V.E. Korepin, A.Kuniba, J.M. Maillet, B.M. McCoy, C. Mercat, T. Miwa, A. Nakayashiki, M.Okado, C.H.Otto Chui, P.A. Pearce, J.H.H. Perk, V. Petkova, A. Schilling, F.A. Smirnov, T.Takagi, Y. Takeyama, M. Taneda, C.A. Tracy, Z.Tsuboi, H. Widom, J.-B. Zuber 'MathPhys "Odyssey 2001" will serve as an excellent reference text for mathematical physicists and graduate students in a number of areas."
A dynamical system is called isochronous if it features in its
phase space an open, fully-dimensional region where all its
solutions are periodic in all its degrees of freedom with the same,
fixed period. Recently a simple transformation has been introduced,
applicable to quite a large class of dynamical systems, that yields
autonomous systems which are isochronous. This justifies the notion
that isochronous systems are not rare.
The authors focus on the mathematical models and methods that support most data mining applications and solution techniques.
This is the first book on the subject since its introduction more than fifty years ago, and it can be used as a graduate text or as a reference work. It features all of the key results, many very useful tables, and a large number of research problems. The book will be of interest to those interested in one of the most fascinating areas of discrete mathematics, connected to statistics and coding theory, with applications to computer science and cryptography. It will be useful for anyone who is running experiments, whether in a chemistry lab or a manufacturing plant (trying to make those alloys stronger), or in agricultural or medical research. Sam Hedayat is Professor of Statistics and Senior Scholar in the Department of Mathematics, Statistics, and Computer Science, University of Illinois, Chicago. Neil J.A. Sloane is with AT&T Bell Labs (now AT&T Labs). John Stufken is Professor Statistics at Iowa State University.
A course in angular momentum techniques is essential for quantitative study of problems in atomic physics, molecular physics, nuclear physics and solid state physics. This book has grown out of such a course given to the students of the M. Sc. and M. Phil. degree courses at the University of Madras. An elementary knowledge of quantum mechanics is an essential pre-requisite to undertake this course but no knowledge of group theory is assumed on the part of the readers. Although the subject matter has group-theoretic origin, special efforts have been made to avoid the gro- theoretical language but place emphasis on the algebraic formalism dev- oped by Racah (1942a, 1942b, 1943, 1951). How far I am successful in this project is left to the discerning reader to judge. After the publication of the two classic books, one by Rose and the other by Edmonds on this subject in the year 1957, the application of angular momentum techniques to solve physical problems has become so common that it is found desirable to organize a separate course on this subject to the students of physics. It is to cater to the needs of such students and research workers that this book is written. A large number of questions and problems given at the end of each chapter will enable the reader to have a clearer understanding of the subject.
Special functions are pervasive in all fields of science and industry. The most well-known application areas are in physics, engineering, chemistry, computer science and statistics. Because of their importance, several books and websites (see for instance http: functions.wolfram.com) and a large collection of papers have been devoted to these functions. Of the standard work on the subject, namely the Handbook of Mathematical Functions with formulas, graphs and mathematical tables edited by Milton Abramowitz and Irene Stegun, the American National Institute of Standards claims to have sold over 700.000 copies But so far no project has been devoted to the systematic study of continued fraction representations for these functions. This handbook is the result of such an endeavour. We emphasise that only 10% of the continued fractions contained in this book, can also be found in the Abramowitz and Stegun project or at the Wolfram website
This book gathers the latest advances, innovations, and applications in the field of computational geomechanics, as presented by international researchers and engineers at the 16th International Conference of the International Association for Computer Methods and Advances in Geomechanics (IACMAG 2020/21). Contributions include a wide range of topics in geomechanics such as: monitoring and remote sensing, multiphase modelling, reliability and risk analysis, surface structures, deep structures, dams and earth structures, coastal engineering, mining engineering, earthquake and dynamics, soil-atmosphere interaction, ice mechanics, landfills and waste disposal, gas and petroleum engineering, geothermal energy, offshore technology, energy geostructures, geomechanical numerical models and computational rail geotechnics.
This book offers a comprehensive introduction to advanced methods for image and video analysis and processing. It covers deraining, dehazing, inpainting, fusion, watermarking and stitching. It describes techniques for face and lip recognition, facial expression recognition, lip reading in videos, moving object tracking, dynamic scene classification, among others. The book combines the latest machine learning methods with computer vision applications, covering topics such as event recognition based on deep learning,dynamic scene classification based on topic model, person re-identification based on metric learning and behavior analysis. It also offers a systematic introduction to image evaluation criteria showing how to use them in different experimental contexts. The book offers an example-based practical guide to researchers, professionals and graduate students dealing with advanced problems in image analysis and computer vision.
From reviews of the first edition: "The important feature of the present book is that it starts from the beginning (with only a very modest knowledge assumed) and covers all important topics... The book is very carefully organized [and] ends with 20 pages of useful historic comments. Such a comprehensive and carefully written treatment of fundamentals of the theory will certainly be a basic reference and text book in the future." -- Newsletter of the EMS "This is a fundamental book and none, beginner or expert, could afford to ignore it. Some results are really difficult to be found in other monographs, while others are for the first time included in a book." -- Mathematica "Each chapter begins with an excellent summary of the content and ends with an exercise section... This is really an outstanding book, well written and beautifully produced. It is both a graduate text and a monograph, so it can be recommended to graduate students as well as to specialists." -- Publicationes Mathematicae Lie Groups Beyond an Introduction takes the reader from the end of introductory Lie group theory to the threshold of infinite-dimensional group representations. Merging algebra and analysis throughout, the author uses Lie-theoretic methods to develop a beautiful theory having wide applications in mathematics and physics. A feature of the presentation is that it encourages the reader's comprehension of Lie group theory to evolve from beginner to expert: initial insights make use of actual matrices, while later insights come from such structural features as properties of root systems, or relationships among subgroups, or patterns among different subgroups. Topics include a description of all simplyconnected Lie groups in terms of semisimple Lie groups and semidirect products, the Cartan theory of complex semisimple Lie algebras, the Cartan-Weyl theory of the structure and representations of compact Lie groups and representations of complex semisimple Lie algebras, the classification of real semisimple Lie algebras, the structure theory of noncompact reductive Lie groups as it is now used in research, and integration on reductive groups. Many problems, tables, and bibliographical notes complete this comprehensive work, making the text suitable either for self-study or for courses in the second year of graduate study and beyond.
Microarrays for simultaneous measurement of redundancy of RNA species are used in fundamental biology as well as in medical research. Statistically, a microarray may be considered as an observation of very high dimensionality equal to the number of expression levels measured on it. In "Statistical Methods for Microarray Data Analysis: Methods and Protocols, " expert researchers in the field detail many methods and techniques used to study microarrays, guiding the reader from microarray technology to statistical problems of specific multivariate data analysis. Written in the highly successful "Methods in Molecular Biology " series format, the chapters include the kind of detailed description and implementation advice that is crucial for getting optimal results in the laboratory. Thorough and intuitive, "Statistical Methods for Microarray Data Analysis: ""Methods and Protocols "aids scientists in continuing to study microarrays and the most current statistical methods.
The book presents state-of-the-art works in computational engineering. Focus is on mathematical modeling, numerical simulation, experimental validation and visualization in engineering sciences. In particular, the following topics are presented: constitutive models and their implementation into finite element codes, numerical models in nonlinear elasto-dynamics including seismic excitations, multiphase models in structural engineering and multiscale models of materials systems, sensitivity and reliability analysis of engineering structures, the application of scientific computing in urban water management and hydraulic engineering, and the application of genetic algorithms for the registration of laser scanner point clouds. |
![]() ![]() You may like...
Understanding and Caring for People with…
Declan McNicholl, Rob Poppleton
Book
R1,458
Discovery Miles 14 580
Bouncers - Violence and Governance in…
Dick Hobbs, Philip Hadfield, …
Hardcover
R1,852
Discovery Miles 18 520
The Unicode Cookbook for Linguists
Steven Moran, Michael Cysouw
Hardcover
R1,078
Discovery Miles 10 780
Islam in China - A Critical Bibliography
Lynnette Gorman, Raphael Israeli
Hardcover
R3,509
Discovery Miles 35 090
|