![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Applied mathematics > Mathematics for scientists & engineers
This book gathers selected contributions by top Portuguese and international researchers in the field of Operations Research, presented at the 19th Congress of APDIO (Portuguese Association of Operational Research). The papers address a broad range of complex real-world problems, which are approached using recent theoretical techniques. Of particular interest are the applications of e.g. linear, nonlinear and mixed-integer programming, multiobjective optimization, metaheuristics and hybrid heuristics, multicriteria decision analysis, data envelopment analysis, clustering techniques and decision support systems, in such varied contexts as: supply chain management, scheduling problems, production management, logistics, energy, finance and healthcare. This conference, organized by APDIO and held in Aveiro, Portugal in September 2018, offered an ideal opportunity to discuss the latest developments in this field and to build new bridges between academic researchers and practitioners. Summarizing the outcomes, this book offers a valuable tool for all researchers, students and practitioners who wish to learn about the latest trends in this field.
This book is devoted to applications of complex nonlinear dynamic phenomena to real systems and device applications. In recent decades there has been significant progress in the theory of nonlinear phenomena, but there are comparatively few devices that actually take this rich behavior into account. The text applies and exploits this knowledge to propose devices which operate more efficiently and cheaply, while affording the promise of much better performance.
This book presents recent research in the field of interaction between computational intelligence and mathematics. In the current technological age, we face the challenges of tackling very complex problems - in the usual sense, but also in the mathematical and theoretical computer science sense. However, even the most up-to-date results in mathematics, are unable to provide exact solutions of such problems, and no further technical advances will ever make it possible to find general and exact solutions. Constantly developing technologies (including social technologies) necessitate handling very complex problems. This has led to a search for acceptably "good" or precise solutions, which can be achieved by the combination of traditional mathematical techniques and computational intelligence tools, in order to solve the various problems emerging in many different areas to a satisfactory degree. Important funding programs, such as the European Commission's current framework programme for research and innovation - Horizon 2020 - are devoted to the development of new instruments to deal with the current challenges. Without doubt, research topics associated with the interactions between computational intelligence and traditional mathematics play a key role. Presenting contributions from engineers, scientists and mathematicians, this book offers a series of novel solutions for meaningful and real-world problems that connect those research areas.
The Handbook of Antennas for EMC provides a thorough overview of both the practical and theoretical aspects of antennas in EMC systems and helps you improve your understanding of the nature and uses of antennas in these systems. The treatment throughout is sensitive to the needs of the practicing engineer, providing summaries of the underlying mathematics, while avoiding the theoretical emphasis that characterizes much of the existing literature.
Biological systems are inherently stochastic and uncertain. Thus, research in bioinformatics, biomedical engineering and computational biology has to deal with a large amount of uncertainties. Fuzzy logic has shown to be a powerful tool in capturing different uncertainties in engineering systems. In recent years, fuzzy logic based modeling and analysis approaches are also becoming popular in analyzing biological data and modeling biological systems. Numerous research and application results have been reported that demonstrated the effectiveness of fuzzy logic in solving a wide range of biological problems found in bioinformatics, biomedical engineering, and computational biology. Contributed by leading experts world-wide, this edited book contains 16 chapters presenting representative research results on the application of fuzzy systems to genome sequence assembly, gene expression analysis, promoter analysis, cis-regulation logic analysis and synthesis, reconstruction of genetic and cellular networks, as well as biomedical problems, such as medical image processing, electrocardiogram data classification and anesthesia monitoring and control. This volume is a valuable reference for researchers, practitioners, as well as graduate students working in the field of bioinformatics, biomedical engineering and computational biology.
All over the world sport plays a prominent role in society: as a leisure activity for many, as an ingredient of culture, as a business and as a matter of national prestige in such major events as the World Cup in soccer or the Olympic Games. Hence, it is not surprising that science has entered the realm of sports, and, in particular, that computer simulation has become highly relevant in recent years. This is explored in this book by choosing five different sports as examples, demonstrating that computational science and engineering (CSE) can make essential contributions to research on sports topics on both the fundamental level and, eventually, by supporting athletes performance."
Industrial production is one of the most basic human activities indispensable to the economic activity. Due to its complexity, production is not very well understood and modeled as opposed to traditional fields of inquiry such as physics. This book aims at enhancing rigorous understanding of a particular area of production, that of analysis and optimization of production lines and networks using discrete event models and simulation. To our knowledge, this is the first book treating this subject from the point of view mentioned above. We have arrived at the realization that discrete event models and simulation provide perhaps the best tools to model production lines and networks for a number of reasons. Analysis is precise but demands enormous computational resources, usually unavailable in practical situations. Brute force simulation is also precise but slow when quick decisions are to be made. Approximate analytical models are fast but often unreliable as far as accuracy is concerned. The approach of the book, on the other hand, combines speed and accuracy to an exceptional degree in most practical applications.
The intersection of probability and physics has been a rich and explosive area of growth in the past two decades, specifically covering such subjects as percolation theory, random walks, interacting particle systems, and various topics related to statistical mechanics. In the last several years, substantial progress has been made in a number of directions: fluctuations of 2-dimensional growth processes, Wulf constructions in higher dimensions for percolation, Potts and Ising models, classification of random walks in random environments, the introduction of the stochastic Loewner equation, the rigorous proof of intersection exponents for planar Brownian motion, and finally the proof of conformal invariance for critical percolation on the triangular lattice. This volume consists of a collection of invited articles, written by some of the most distinguished probabilists in the above-mentioned areas, most of whom were personally responsible for advances in the various subfields of probability. All of the articles are an outgrowth of the Fourth Brazilian School of Probability, held in Mambucaba, Brazil, August 2000. Contributors: K. Alexander * J.M. AzaAs * J. van den Berg * T. Bodineau * F. Camia * N. Cancrini * G. Grimmett * P. Hiemer * A.E. Holroyd * H. Kesten * G.F. Lawler * T.M. Liggett * J. Lorinczi * F. Martinelli * C. M. Newman * J. Quastel * C.-E. Pfister * M. PrAhofer * C. Roberto * O. Schramm * V. Sidoravicius * H. Spohn * A. Toom * B. TA3th * D. Ueltschi * W. Werner * M. Wschebor * M. WA1/4thrich Graduate students and researchers in probability theory and math physics will find this book a useful reference.
May the Forcing Functions be with You: The Stimulating World of AIED and ITS Research It is my pleasure to write the foreword for Advances in Intelligent Tutoring S- tems. This collection, with contributions from leading researchers in the field of artificial intelligence in education (AIED), constitutes an overview of the many challenging research problems that must be solved in order to build a truly intel- gent tutoring system (ITS). The book not only describes some of the approaches and techniques that have been explored to meet these challenges, but also some of the systems that have actually been built and deployed in this effort. As discussed in the Introduction (Chapter 1), the terms "AIED" and "ITS" are often used int- changeably, and there is a large overlap in the researchers devoted to exploring this common field. In this foreword, I will use the term "AIED" to refer to the - search area, and the term "ITS" to refer to the particular kind of system that AIED researchers build. It has often been said that AIED is "AI-complete" in that to produce a tutoring system as sophisticated and effective as a human tutor requires solving the entire gamut of artificial intelligence research (AI) problems.
The Influence Line Approach to the Analysis of Rigid Frames offers a simple method of analysis of indeterminate structures. It is original and independent of other methods. The author derived these equations by applying an algebraic rather than an arithmetical method of distribution of fixed-end moments. His method is fully explained and illustrated by worked examples. The equations listed in the Tables in The Influence Line Approach to the Analysis of Rigid Frames offer a simple approach to the analysis of rigid frames, including building frames, rendering them statically determinate for any system of loading, static or moving and including the self weight of a structure. Particularly useful aspects to the reader are:
Due to the rapid expansion of the frontiers of physics and engineering, the demand for higher-level mathematics is increasing yearly. This book is designed to provide accessible knowledge of higher-level mathematics demanded in contemporary physics and engineering. Rigorous mathematical structures of important subjects in these fields are fully covered, which will be helpful for readers to become acquainted with certain abstract mathematical concepts. The selected topics are: - Real analysis, Complex analysis, Functional analysis, Lebesgue integration theory, Fourier analysis, Laplace analysis, Wavelet analysis, Differential equations, and Tensor analysis. This book is essentially self-contained, and assumes only standard undergraduate preparation such as elementary calculus and linear algebra. It is thus well suited for graduate students in physics and engineering who are interested in theoretical backgrounds of their own fields. Further, it will also be useful for mathematics students who want to understand how certain abstract concepts in mathematics are applied in a practical situation. The readers will not only acquire basic knowledge toward higher-level mathematics, but also imbibe mathematical skills necessary for contemporary studies of their own fields.
This book covers the results obtained in the Tera op Workbench project during a four years period from 2004 to 2008. The Tera op Workbench project is a colla- ration betweenthe High PerformanceComputingCenter Stuttgart (HLRS) and NEC Deutschland GmbH (NEC-HPCE) to support users to achieve their research goals using high performance computing. The Tera op Workbench supports users of the HLRS systems to enable and - cilitate leading edge scienti c research. This is achieved by optimizing their codes and improving the process work ow which results from the integration of diff- ent modules into a "hybrid vector system". The assessment and demonstration of industrial relevance is another goal of the cooperation. The Tera op Workbench project consists of numerous individual codes, grouped together by application area and developed and maintained by researchers or c- mercial organizations. Within the project, several of the codes have shown the ab- ity to reach beyond the TFlop/s threshold of sustained performance. This created the possibility for new science and a deeper understanding of the underlying physics. The papers in this book demonstrate the value of the project for different scienti c areas.
In complementarity theory, which is a relatively new domain of
applied mathematics, several kinds of mathematical models and
problems related to the study of equilibrium are considered from
the point of view of physics as well as economics. In this book the
authors have combined complementarity theory, equilibrium of
economical systems, and efficiency in Pareto's sense. The authors
discuss the use of complementarity theory in the study of
equilibrium of economic systems and present results they have
obtained. In addition the authors present several new results in
complementarity theory and several numerical methods for solving
complementarity problems associated with the study of economic
equilibrium. The most important notions of Pareto efficiency are
also presented.
The analysis of Euclidean space is well-developed. The classical Lie groups that act naturally on Euclidean space-the rotations, dilations, and trans lations-have both shaped and guided this development. In particular, the Fourier transform and the theory of translation invariant operators (convolution transforms) have played a central role in this analysis. Much modern work in analysis takes place on a domain in space. In this context the tools, perforce, must be different. No longer can we expect there to be symmetries. Correspondingly, there is no longer any natural way to apply the Fourier transform. Pseudodifferential operators and Fourier integral operators can playa role in solving some of the problems, but other problems require new, more geometric, ideas. At a more basic level, the analysis of a smoothly bounded domain in space requires a great deal of preliminary spadework. Tubular neighbor hoods, the second fundamental form, the notion of "positive reach," and the implicit function theorem are just some of the tools that need to be invoked regularly to set up this analysis. The normal and tangent bundles become part of the language of classical analysis when that analysis is done on a domain. Many of the ideas in partial differential equations-such as Egorov's canonical transformation theorem-become rather natural when viewed in geometric language. Many of the questions that are natural to an analyst-such as extension theorems for various classes of functions-are most naturally formulated using ideas from geometry."
This book constitutes the proceedings of the QMath 7 Conference on Mathematical Results in Quantum Mechanics held in Prague, Czech Republic in June, 1998. The volume addresses mathematicians and physicists interested in contemporary quantum physics and associated mathematical questions, presenting new results on Schr dinger and Pauli operators with regular, fractal or random potentials, scattering theory, adiabatic analysis, and interesting new physical systems such as photonic crystals, quantum dots and wires.
Fundamental concepts of mathematical modeling Modeling is one of the most effective, commonly used tools in engineering and the applied sciences. In this book, the authors deal with mathematical programming models both linear and nonlinear and across a wide range of practical applications. Whereas other books concentrate on standard methods of analysis, the authors focus on the power of modeling methods for solving practical problems–clearly showing the connection between physical and mathematical realities–while also describing and exploring the main concepts and tools at work. This highly computational coverage includes:
Building and Solving Mathematical Programming Models in Engineering and Science is practically suited for use as a professional reference for mathematicians, engineers, and applied or industrial scientists, while also tutorial and illustrative enough for advanced students in mathematics or engineering.
These proceedings of the 13th International Conference on Computer Aided Engineering present selected papers from the event, which was held in Polanica Zdroj, Poland, from June 22 to 25, 2016. The contributions are organized according to thematic sections on the design and manufacture of machines and technical systems; durability prediction; repairs and retrofitting of power equipment; strength and thermodynamic analyses for power equipment; design and calculation of various types of load-carrying structures; numerical methods for dimensioning materials handling; and long-distance transport equipment. The conference and its proceedings offer a major interdisciplinary forum for researchers and engineers to present the most innovative studies and advances in this dynamic field.
Several well-established geometric and topological methods are used in this work in an application to a beautiful physical phenomenon known as the geometric phase. This book examines the geometric phase, bringing together different physical phenomena under a unified mathematical scheme. The material is presented so that graduate students and researchers in applied mathematics and physics with an understanding of classical and quantum mechanics can handle the text.
Bridging the gap between statistical theory and physical experiment, this is a thorough introduction to the statistical methods used in the experimental physical sciences and to the numerical methods used to implement them. An accompanying CD-ROM provides detailed code for implementing many of these algorithms. The treatment emphasises concise but rigorous mathematics but always retains its focus on applications. Readers are assumed to have a sound basic knowledge of differential and integral calculus and some knowledge of vectors and matrices. After an introduction to probability, random variables, computer generation of random numbers and important distributions, the book turns to statistical samples, the maximum likelihood method, and the testing of statistical hypotheses. The discussion concludes with several important statistical methods: least squares, analysis of variance, polynomial regression, and analysis of time series. Appendices provide the necessary methods of matrix algebra, combinatorics, and many sets of useful algorithms and formulae.
This book presents improved and extended versions of selected papers from EUROGEN 2019, a conference with interest on developing or applying evolutionary and deterministic methods in optimization of design and emphasizing on industrial and societal applications.
Across the centuries, the development and growth of mathematical concepts have been strongly stimulated by the needs of mechanics. Vector algebra was developed to describe the equilibrium of force systems and originated from Stevin's experiments (1548-1620). Vector analysis was then introduced to study velocity fields and force fields. Classical dynamics required the differential calculus developed by Newton (1687). Nevertheless, the concept of particle acceleration was the starting point for introducing a structured spacetime. Instantaneous velocity involved the set of particle positions in space. Vector algebra theory was not sufficient to compare the different velocities of a particle in the course of time. There was a need to (parallel) transport these velocities at a single point before any vector algebraic operation. The appropriate mathematical structure for this transport was the connection. I The Euclidean connection derived from the metric tensor of the referential body was the only connection used in mechanics for over two centuries. Then, major steps in the evolution of spacetime concepts were made by Einstein in 1905 (special relativity) and 1915 (general relativity) by using Riemannian connection. Slightly later, nonrelativistic spacetime which includes the main features of general relativity I It took about one and a half centuries for connection theory to be accepted as an independent theory in mathematics. Major steps for the connection concept are attributed to a series of findings: Riemann 1854, Christoffel 1869, Ricci 1888, Levi-Civita 1917, WeyJ 1918, Cartan 1923, Eshermann 1950.
New Approaches to Circle Packing into the Square is devoted to the most recent results on the densest packing of equal circles in a square. In the last few decades, many articles have considered this question, which has been an object of interest since it is a hard challenge both in discrete geometry and in mathematical programming. The authors have studied this geometrical optimization problem for a long time, and they developed several new algorithms to solve it. The book completely covers the investigations on this topic.
This book explores the extent to which fuzzy set logic can overcome some of the shortcomings of public choice theory, particularly its inability to provide adequate predictive power in empirical studies. Especially in the case of social preferences, public choice theory has failed to produce the set of alternatives from which collective choices are made. The book presents empirical findings achieved by the authors in their efforts to predict the outcome of government formation processes in European parliamentary and semi-presidential systems.Using data from the Comparative Manifesto Project (CMP), the authors propose a new approach that reinterprets error in the coding of CMP data as ambiguity in the actual political positions of parties on the policy dimensions being coded. The range of this error establishes parties fuzzy preferences. The set of possible outcomes in the process of government formation is then calculated on the basis of both the fuzzy Pareto set and the fuzzy maximal set, and the predictions are compared with those made by two conventional approaches as well as with the government that was actually formed. The comparison shows that, in most cases, the fuzzy approaches outperform their conventional counterparts."
This book brings together research on numerical methods adapted for Graphics Processing Units (GPUs). It explains recent efforts to adapt classic numerical methods, including solution of linear equations and FFT, for massively parallel GPU architectures. This volume consolidates recent research and adaptations, covering widely used methods that are at the core of many scientific and engineering computations. Each chapter is written by authors working on a specific group of methods; these leading experts provide mathematical background, parallel algorithms and implementation details leading to reusable, adaptable and scalable code fragments. This book also serves as a GPU implementation manual for many numerical algorithms, sharing tips on GPUs that can increase application efficiency. The valuable insights into parallelization strategies for GPUs are supplemented by ready-to-use code fragments. Numerical Computations with GPUs targets professionals and researchers working in high performance computing and GPU programming. Advanced-level students focused on computer science and mathematics will also find this book useful as secondary text book or reference.
Mathematics for Engineering has been carefully designed to provide a maths course for a wide ability range, and does not go beyond the requirements of Advanced GNVQ. It is an ideal text for any pre-degree engineering course where students require revision of the basics and plenty of practice work. Bill Bolton introduces the key concepts through examples set firmly in engineering contexts, which students will find relevant and motivating. The second edition has been carefully matched to the Curriculum 2000 Advanced GNVQ units: Applied Mathematics in Engineering (compulsory unit 5) Further Mathematics for Engineering (Edexcel option unit 13) Further Applied Mathematics for Engineering (AQA / City & Guilds option unit 25) A new introductory section on number and mensuration has been added, as well as a new section on series and some further material on applications of differentiation and definite integration. Bill Bolton is a leading author of college texts in engineering and other technical subjects. As well as being a lecturer for many years, he has also been Head of Research, Development and Monitoring at BTEC and acted as a consultant for the Further Education Unit. |
![]() ![]() You may like...
Handbook of Electronic Assistive…
Ladan Najafi, Donna Cowan
Paperback
Wireless Sensor and Actuator Networks…
Roberto Verdone, Davide Dardari, …
Hardcover
R2,374
Discovery Miles 23 740
Magnetic Skyrmions and Their…
Giovanni Finocchio, Christos Panagopoulos
Paperback
R4,475
Discovery Miles 44 750
|