![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Applied mathematics > Mathematics for scientists & engineers
Mathematics for Engineering has been carefully designed to provide a maths course for a wide ability range, and does not go beyond the requirements of Advanced GNVQ. It is an ideal text for any pre-degree engineering course where students require revision of the basics and plenty of practice work. Bill Bolton introduces the key concepts through examples set firmly in engineering contexts, which students will find relevant and motivating. The second edition has been carefully matched to the Curriculum 2000 Advanced GNVQ units: Applied Mathematics in Engineering (compulsory unit 5) Further Mathematics for Engineering (Edexcel option unit 13) Further Applied Mathematics for Engineering (AQA / City & Guilds option unit 25) A new introductory section on number and mensuration has been added, as well as a new section on series and some further material on applications of differentiation and definite integration. Bill Bolton is a leading author of college texts in engineering and other technical subjects. As well as being a lecturer for many years, he has also been Head of Research, Development and Monitoring at BTEC and acted as a consultant for the Further Education Unit.
This book provides a practical guide to applying soft-computing methods to interpret geophysical data. It discusses the design of neural networks with Matlab for geophysical data, as well as fuzzy logic and neuro-fuzzy concepts and their applications. In addition, it describes genetic algorithms for the automatic and/or intelligent processing and interpretation of geophysical data.
Introduce every concept in the simplest setting and to maintain a level of treatment that is as rigorous as possible without being unnecessarily abstract. Contains unique recent developments of various finite elements such as nonconforming, mixed, discontinuous, characteristic, and adaptive finite elements, along with their applications. Describes unique recent applications of finite element methods to important fields such as multiphase flows in porous media and semiconductor modelling. Treats the three major types of partial differential equations, i.e., elliptic, parabolic, and hyperbolic equations.
This volume is dedicated to the memory of Professor Ashley Morris who passed away some two years ago. Ashley was a close friend of all of us, the editors of this volume, and was also a Ph.D. student of one of us. We all had a chance to not only fully appreciate, and be inspired by his contributions, which have had a considerable impact on the entire research community. Due to our personal relations with Ashley, we also had an opportunity to get familiar with his deep thinking about the areas of his expertise and interests. Ashley has been involved since the very beginning of his professional career in database research and practice. Notably, he introduced first some novel solution in database management systems that could handle imprecise and uncertain data, and flexible queries based on imprecisely specified user interests. He proposed to use for that purpose fuzzy logic as an effective and efficient tool. Later the interests of Ashley moved to ways of how to represent and manipulate more complicated databases involving spatial or temporal objects. In this research he discovered and pursued the power of Geographic Information Systems (GISs). These two main lines of Ashley 's research interests and contributions are reflected in the composition of this volume. Basically, we collected some significant papers by well known researchers and scholars on the above mentioned topics. The particular contributions will now be briefly summarized to help the reader get a view of the topics covered and the contents of the particular contributions.
Interactive Particle Systems is a branch of Probability Theory with close connections to Mathematical Physics and Mathematical Biology. In 1985, the author wrote a book (T. Liggett, Interacting Particle System, ISBN 3-540-96069) that treated the subject as it was at that time. The present book takes three of the most important models in the area, and traces advances in our understanding of them since 1985. In so doing, many of the most useful techniques in the field are explained and developed, so that they can be applied to other models and in other contexts. Extensive Notes and References sections discuss other work on these and related models. Readers are expected to be familiar with analysis and probability at the graduate level, but it is not assumed that they have mastered the material in the 1985 book. This book is intended for graduate students and researchers in Probability Theory, and in related areas of Mathematics, Biology and Physics.
In recent years, the issue of linkage in GEAs has garnered greater attention and recognition from researchers. Conventional approaches that rely much on ad hoc tweaking of parameters to control the search by balancing the level of exploitation and exploration are grossly inadequate. As shown in the work reported here, such parameters tweaking based approaches have their limits; they can be easily fooled by cases of triviality or peculiarity of the class of problems that the algorithms are designed to handle. Furthermore, these approaches are usually blind to the interactions between the decision variables, thereby disrupting the partial solutions that are being built up along the way.
The objective of Volume III is to lay down the proper mathematical
foundations of the two-dimensional theory of shells. To this end,
it provides, without any recourse to any "a priori" assumptions of
a geometrical or mechanical nature, a mathematical justification of
two-dimensional nonlinear and linear shell theories, by means of
asymptotic methods, with the thickness as the "small"
parameter.
This book focuses on various aspects of dynamic game theory, presenting state-of-the-art research and serving as a testament to the vitality and growth of the field of dynamic games and their applications. Its contributions, written by experts in their respective disciplines, are outgrowths of presentations originally given at the 14th International Symposium of Dynamic Games and Applications held in Banff. "Advances in Dynamic Games" covers a variety of topics, ranging from evolutionary games, theoretical developments in game theory and algorithmic methods to applications, examples, and analysis in fields as varied as mathematical biology, environmental management, finance and economics, engineering, guidance and control, and social interaction. Featured throughout are valuable tools and resources for researchers, practitioners, and graduate students interested in dynamic games and their applications to mathematics, engineering, economics, and management science. "
Statistical reasoning and modeling are of critical importance to modern biology. This textbook introduces fundamental concepts from probability and statistics which will pave the way for the student of biology to become a well-rounded scientist. No previous study of probability or statistics is assumed. Calculus topics are not used extensively in this book, though some integration and differentiation are expected. The calculus prerequisite is primarily intended to assure a certain level of mathematical maturity. This book puts emphasis on examples, which are presented to motivate the theory. The presentation style is concise and self-contained, briefly including the mathematical elements that are needed for studying probability and statistics. The examples are relevant to students in the life sciences with interests in genetics, biology, ecology, health, etc. We believe that aspects of probability theory are of biological interest and that probability underlies the theory of inferential statistics. Thus, we place an equal emphasis on probability and statistics which are both essential for solving and understanding many types of biological problems.
Structural Optimization is intended to supplement the engineer s box of analysis and design tools making optimization as commonplace as the finite element method in the engineering workplace. It begins with an introduction to structural optimization and the methods of nonlinear programming such as Lagrange multipliers, Kuhn-Tucker conditions, and calculus of variations. It then discusses solution methods for optimization problems such as the classic method of linear programming which leads to the method of sequential linear programming. It then proposes using sequential linear programming together with the incremental equations of structures as a general method for structural optimization. It is furthermore intended to give the engineer an overview of the field of structural optimization."
This self-contained work illustrates the application of integral methods to diverse problems in mathematics, physics, biology, and engineering. The chapters contain state-of-the-art information on current research in a variety of important practical disciplines. The problems examined arise in real-life processes and phenomena and use a wide range of solution techniques. This is a useful and practical guide.
The topics of this set of student-oriented books are presented in a discursive style that is readable and easy to follow. Numerous clearly stated, completely worked out examples together with carefully selected problem sets with answers are used to enhance students' understanding and manipulative skill. The goal is to help students feel comfortable and confident in using advanced mathematical tools in junior, senior, and beginning graduate courses.
This book describes the computational challenges posed by the progression toward nanoscale electronic devices and increasingly short design cycles in the microelectronics industry, and proposes methods of model reduction which facilitate circuit and device simulation for specific tasks in the design cycle. The goal is to develop and compare methods for system reduction in the design of high dimensional nanoelectronic ICs, and to test these methods in the practice of semiconductor development. Six chapters describe the challenges for numerical simulation of nanoelectronic circuits and suggest model reduction methods for constituting equations. These include linear and nonlinear differential equations tailored to circuit equations and drift diffusion equations for semiconductor devices. The performance of these methods is illustrated with numerical experiments using real-world data. Readers will benefit from an up-to-date overview of the latest model reduction methods in computational nanoelectronics.
This monograph aims to lay the groundwork for the design of a unified mathematical approach to the modeling and analysis of large, complex systems composed of interacting living things. Drawing on twenty years of research in various scientific fields, it explores how mathematical kinetic theory and evolutionary game theory can be used to understand the complex interplay between mathematical sciences and the dynamics of living systems. The authors hope this will contribute to the development of new tools and strategies, if not a new mathematical theory. The first chapter discusses the main features of living systems and outlines a strategy for their modeling. The following chapters then explore some of the methods needed to potentially achieve this in practice. Chapter Two provides a brief introduction to the mathematical kinetic theory of classical particles, with special emphasis on the Boltzmann equation; the Enskog equation, mean field models, and Monte Carlo methods are also briefly covered. Chapter Three uses concepts from evolutionary game theory to derive mathematical structures that are able to capture the complexity features of interactions within living systems. The book then shifts to exploring the relevant applications of these methods that can potentially be used to derive specific, usable models. The modeling of social systems in various contexts is the subject of Chapter Five, and an overview of modeling crowd dynamics is given in Chapter Six, demonstrating how this approach can be used to model the dynamics of multicellular systems. The final chapter considers some additional applications before presenting an overview of open problems. The authors then offer their own speculations on the conceptual paths that may lead to a mathematical theory of living systems hoping to motivate future research activity in the field. A truly unique contribution to the existing literature, A Quest Toward a Mathematical Theory of Living Systems is an important book that will no doubt have a significant influence on the future directions of the field. It will be of interest to mathematical biologists, systems biologists, biophysicists, and other researchers working on understanding the complexities of living systems.
Inverse and crack identification problems are of paramount importance for health monitoring and quality control purposes arising in critical applications in civil, aeronautical, nuclear, and general mechanical engineering. Mathematical modeling and the numerical study of these problems require high competence in computational mechanics and applied optimization. This is the first monograph which provides the reader with all the necessary information. Delicate computational mechanics modeling, including nonsmooth unilateral contact effects, is done using boundary element techniques, which have a certain advantage for the construction of parametrized mechanical models. Both elastostatic and harmonic or transient dynamic problems are considered. The inverse problems are formulated as output error minimization problems and they are theoretically studied as a bilevel optimization problem, also known as a mathematical problem with equilibrium constraints. Beyond classical numerical optimization, soft computing tools (neural networks and genetic algorithms) and filter algorithms are used for the numerical solution. The book provides all the required material for the mathematical and numerical modeling of crack identification testing procedures in statics and dynamics and includes several thoroughly discussed applications, for example, the impact-echo nondestructive evaluation technique. Audience: The book will be of interest to structural and mechanical engineers involved in nondestructive testing and quality control projects as well as to research engineers and applied mathematicians who study and solve related inverse problems. People working on applied optimization and soft computing will find interesting problems to apply to their methods and all necessary material to continue research in this field.
The complexity of biological systems has intrigued scientists from many disciplines and has given birth to the highly influential field of systems biology wherein a wide array of mathematical techniques, such as flux balance analysis, and technology platforms, such as next generation sequencing, is used to understand, elucidate, and predict the functions of complex biological systems. More recently, the field of synthetic biology, i.e., de novo engineering of biological systems, has emerged. Scientists from various fields are focusing on how to render this engineering process more predictable, reliable, scalable, affordable, and easy. Systems and control theory is a branch of engineering and applied sciences that rigorously deals with the complexities and uncertainties of interconnected systems with the objective of characterising fundamental systemic properties such as stability, robustness, communication capacity, and other performance metrics. Systems and control theory also strives to offer concepts and methods that facilitate the design of systems with rigorous guarantees on these properties. Over the last 100 years, it has made stellar theoretical and technological contributions in diverse fields such as aerospace, telecommunication, storage, automotive, power systems, and others. Can it have, or evolve to have, a similar impact in biology? The chapters in this book demonstrate that, indeed, systems and control theoretic concepts and techniques can have a significant impact in systems and synthetic biology. Volume II contains chapters contributed by leading researchers in the field of systems and synthetic biology that concern modeling physiological processes and bottom-up constructions of scalable biological systems. The modeling problems include characterisation and synthesis of memory, understanding how homoeostasis is maintained in the face of shocks and relatively gradual perturbations, understanding the functioning and robustness of biological clocks such as those at the core of circadian rhythms, and understanding how the cell cycles can be regulated, among others. Some of the bottom-up construction problems investigated in Volume II are as follows: How should biomacromolecules, platforms, and scalable architectures be chosen and synthesised in order to build programmable de novo biological systems? What are the types of constrained optimisation problems encountered in this process and how can these be solved efficiently? As the eminent computer scientist Donald Knuth put it, "biology easily has 500 years of exciting problems to work on". This edited book presents but a small fraction of those for the benefit of (1) systems and control theorists interested in molecular and cellular biology and (2) biologists interested in rigorous modelling, analysis and control of biological systems.
In this book Egyptian Archeology and Mathematics meet. The author is an expert in theories and applications in Solid Mechanics and Inverse Problems, a former professor at Ecole Polytechnique and now works with Electricite de France on maintenance operations on nuclear power plants. In the Autumn of 1986, after the end of the operation on the King's chamber conducted under the Technological and Scientific Sponsorship of EDF, to locate a cavity, he was called to solve a mathematical inverse problem, to find the unknown tomb of the King and the density structure of the whole pyramid based on measurements of microgravity made inside and outside of the pyramid. This book recounts the various search operations on the pyramid of Cheops made at the request of the Egyptian and French authorities in 1986-1987. After the premature end of the Cheops operation in the Autumn of 1986, following the fiasco of unsuccessful drillings in the area suspected by both architects G. Dormion and J.P. Goidin and microgravity auscultation, EDF and CPGF (a geophysical company) teams continued their researches with measurements already made, trying this time an inversion of the Newton gravity equation for the entire pyramid and using another theoretical team led by the author. The inverse problem solution confirmed the results of auscultations, but found no cavity. However, the image of the average density at the surface of the entire pyramid forms a sort of square "spiral" probably related to the construction method. In 2000, Jean-Pierre Houdin considered the author's results of 1988 as a confirmation of his theory of the internal ramp tunnel. Since then the author has done additional research and found that classical theories of the construction based on degrees and the particular mode of stones filling can also report the same densitogram. The book is richly illustrated with color figures. It is dotted with information concerning Physics, Mechanics and the History of Egyptian Antiquities. The book ends with the greatest mystery of the pyramid about the unknown tomb of the King and a dream to see the tomb at an unexpected place.
The aim of this book is to gather the most recent works that address issues related to the concept of mining complex data. The whole knowledge discovery process being involved, our goal is to provide researchers dealing with each step of this process by key entries. Actually, managing complex data within the KDD process implies to work on every step, starting from the pre-processing (e.g. structuring and organizing) to the visualization and interpretation (e.g. sorting or filtering) of the results, via the data mining methods themselves (e.g. classification, clustering, frequent patterns extraction, etc.). The papers presented here are selected from the workshop papers held yearly since 2006.
The text of the Persian poet Rum - - ?, written some eight centuries ago, and reproduced at the beginning of this book is still relevant to many of our pursuits of knowledge, not least of turbulence. The text illustrates the inability people have in seeing the whole thing, the 'big picture'. Everybody looks into the problem from his/her vi- point, and that leads to disagreement and controversy. If we could see the whole thing, our understanding would become complete and there would be no cont- versy. The turbulent motion of the atmosphere and oceans, at the heart of the observed general circulation, is undoubtedly very complex and dif?cult to understand in its entirety. Even 'bare' turbulence, without rotation and strati?cation whose effects are paramount in the atmosphere and oceans, still poses great fundamental ch- lenges for understanding after a century of research. Rotating strati?ed turbulence is a relatively new research topic. It is also far richer, exhibiting a host of distinct wave types interacting in a complicated and often subtle way with long-lived - herent structures such as jets or currents and vortices. All of this is tied together by basic ?uid-dynamical nonlinearity, and this gives rise to a multitude of phen- ena: spontaneous wave emission, wave-induced transport, both direct and inverse energy scale cascades, lateral and vertical anisotropy, fronts and transport barriers, anomalous transport in coherent vortices, and a very wide range of dynamical and thermodynamical instabilities.
This book is devoted to a novel approach for dimensionality reduction based on the famous nearest neighbor method that is a powerful classification and regression approach. It starts with an introduction to machine learning concepts and a real-world application from the energy domain. Then, unsupervised nearest neighbors (UNN) is introduced as efficient iterative method for dimensionality reduction. Various UNN models are developed step by step, reaching from a simple iterative strategy for discrete latent spaces to a stochastic kernel-based algorithm for learning submanifolds with independent parameterizations. Extensions that allow the embedding of incomplete and noisy patterns are introduced. Various optimization approaches are compared, from evolutionary to swarm-based heuristics. Experimental comparisons to related methodologies taking into account artificial test data sets and also real-world data demonstrate the behavior of UNN in practical scenarios. The book contains numerous color figures to illustrate the introduced concepts and to highlight the experimental results.
The book presents the state of the art in high performance computing and simulation on modern supercomputer architectures. It covers trends in hardware and software development in general and specifically the future of high performance systems and heterogeneous architectures. The application contributions cover computational fluid dynamics, material science, medical applications and climate research. Innovative fields like coupled multi-physics or multi-scale simulations are presented. All papers were chosen from presentations given at the 14th Teraflop Workshop held in December 2011 at HLRS, University of Stuttgart, Germany and the Workshop on Sustained Simulation Performance at Tohoku University in March 2012.
As a new interdisciplinary research area, image-based geometric modeling and mesh generation integrates image processing, geometric modeling and mesh generation with finite element method (FEM) to solve problems in computational biomedicine, materials sciences and engineering. It is well known that FEM is currently well-developed and efficient, but mesh generation for complex geometries (e.g., the human body) still takes about 80% of the total analysis time and is the major obstacle to reduce the total computation time. It is mainly because none of the traditional approaches is sufficient to effectively construct finite element meshes for arbitrarily complicated domains, and generally a great deal of manual interaction is involved in mesh generation. This contributed volume, the first for such an interdisciplinary topic, collects the latest research by experts in this area. These papers cover a broad range of topics, including medical imaging, image alignment and segmentation, image-to-mesh conversion, quality improvement, mesh warping, heterogeneous materials, biomodelcular modeling and simulation, as well as medical and engineering applications. This contributed volume, the first for such an interdisciplinary topic, collects the latest research by experts in this area. These papers cover a broad range of topics, including medical imaging, image alignment and segmentation, image-to-mesh conversion, quality improvement, mesh warping, heterogeneous materials, biomodelcular modeling and simulation, as well as medical and engineering applications. This contributed volume, the first for such an interdisciplinary topic, collects the latest research by experts in this area. These papers cover a broad range of topics, including medical imaging, image alignment and segmentation, image-to-mesh conversion, quality improvement, mesh warping, heterogeneous materials, biomodelcular modeling and simulation, as well as medical and engineering applications. This contributed volume, the first for such an interdisciplinary topic, collects the latest research by experts in this area. These papers cover a broad range of topics, including medical imaging, image alignment and segmentation, image-to-mesh conversion, quality improvement, mesh warping, heterogeneous materials, biomodelcular modeling and simulation, as well as medical and engineering applications.
Though the game-theoretic approach has been vastly studied and utilized in relation to economics of industrial organizations, it has hardly been used to tackle safety management in multi-plant chemical industrial settings. Using Game Theory for Improving Safety within Chemical Industrial Parks presents an in-depth discussion of game-theoretic modeling which may be applied to improve cross-company prevention and -safety management in a chemical industrial park. By systematically analyzing game-theoretic models and approaches in relation to managing safety in chemical industrial parks, Using Game Theory for Improving Safety within Chemical Industrial Parks explores the ways game theory can predict the outcome of complex strategic investment decision making processes involving several adjacent chemical plants. A number of game-theoretic decision models are discussed to provide strategic tools for decision-making situations. Offering clear and straightforward explanations of methodologies, Using Game Theory for Improving Safety within Chemical Industrial Parks provides managers and management teams with approaches to asses situations and to improve strategic safety- and prevention arrangements.
This monograph gives a comprehensive description of the relationship and connections between kinetic theory and fluid dynamics, mainly for a time-independent problem in a general domain. Ambiguities in this relationship are clarified, and the incompleteness of classical fluid dynamics in describing the behavior of a gas in the continuum limita "recently reported as the ghost effecta "is also discussed. The approach used in this work engages an audience of theoretical physicists, applied mathematicians, and engineers. By a systematic asymptotic analysis, fluid-dynamic-type equations and their associated boundary conditions that take into account the weak effect of gas rarefaction are derived from the Boltzmann system. Comprehensive information on the Knudsen-layer correction is also obtained. Equations and their boundary conditions are carefully classified depending on the physical context of problems. Applications are presented to various physically interesting phenomena, including flows induced by temperature fields, evaporation and condensation problems, examples of the ghost effect, and bifurcation of flows. Key features: * many applications and physical models of practical interest * experimental works such as the Knudsen compressor are examined to supplement theory * engineers will not be overwhelmed by sophisticated mathematical techniques * mathematicians will benefit from clarity of definitions and precise physical descriptions given in mathematical terms * appendices collect key derivations and formulas, important to the practitioner, but not easily found in the literature Kinetic Theory and Fluid Dynamics serves as a bridge for those working indifferent communities where kinetic theory or fluid dynamics is important: graduate students, researchers and practitioners in theoretical physics, applied mathematics, and various branches of engineering. The work can be used in graduate-level courses in fluid dynamics, gas dynamics, and kinetic theory; some parts of the text can be used in advanced undergraduate courses.
T his book presents a t.hooretical framewerk and control methodology for a class of complcx dyna.mical systenis characterized by high state space dimension, multiple inpu t.s anrl out puts. significant nonlinearity, parametric uncertainty and unmodellod dyuarni cs. The book start.s wit.h an inl.rod uct.orv Chapter 1 where the peculiari- ties of control problcrns Ior complex systems are discussed and motivating examples from different fiolds of seience and technology are given. Chapter 2 prcscnts SO Il I(' rcsults of nonlinear control theory which assist in reading subsequent chaptors. The main notions and concepts of stability theory are int roduced. and problems of nonlinear transformation of sys- tem coordinates an' discussod. On this basis, we consider different design techniques and approaches t 0 linearization. stabilization and passification of nonlinear dynamical SySt('IIIS. Chapter 3 gives an cx posit.ion of the Speed-Gradient method and its ap- plications to nonlinear aud adaptive control. Convergence and robustness properties are exam iued. I~ roblcms of rcgulat ion, tracking, partial stabiliza- tion and control of 11amiItonia.n systerns are considered . |
![]() ![]() You may like...
Mathematics For Engineering Students
Ramoshweu Solomon Lebelo, Radley Kebarapetse Mahlobo
Paperback
R397
Discovery Miles 3 970
Data Analysis and Data Mining - An…
Adelchi Azzalini, Bruno Scarpa
Hardcover
R3,484
Discovery Miles 34 840
|