![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Applied mathematics > Mathematics for scientists & engineers
Automatic Graph Drawing is concerned with the layout of relational structures as they occur in Computer Science (Data Base Design, Data Mining, Web Mining), Bioinformatics (Metabolic Networks), Businessinformatics (Organization Diagrams, Event Driven Process Chains), or the Social Sciences (Social Networks). In mathematical terms, such relational structures are modeled as graphs or more general objects such as hypergraphs, clustered graphs, or compound graphs. A variety of layout algorithms that are based on graph theoretical foundations have been developed in the last two decades and implemented in software systems. After an introduction to the subject area and a concise treatment of the technical foundations for the subsequent chapters, this book features 14 chapters on state-of-the-art graph drawing software systems, ranging from general "tool boxes'' to customized software for various applications. These chapters are written by leading experts, they follow a uniform scheme and can be read independently from each other.
This book connects the different topics and professions involved in information technology approaches to architectural design, ranging from computer-aided design, building information modeling and programming to simulation, digital representation, augmented and virtual reality, digital fabrication and physical computation. The contributions include experts' academic and practical experiences and findings in research and advanced applications, covering the fields of architecture, engineering, design and mathematics. What are the conditions, constraints and opportunities of this digital revolution for architecture? How do processes change and influence the result? What does it mean for the collaboration and roles of the partners involved. And last but not least: how does academia reflect and shape this development and what does the future hold? Following the sequence of architectural production - from design to fabrication and construction up to the operation of buildings - the book discusses the impact of computational methods and technologies and its consequences for the education of future architects and designers. It offers detailed insights into the processes involved and considers them in the context of our technical, historical, social and cultural environment. Intended mainly for academic researchers, the book is also of interest to master's level students.
Analysis, Control and Optimization of Complex Dynamic Systems gathers in a single volume a spectrum of complex dynamic systems related papers written by experts in their fields, and strongly representative of current research trends. Complex systems present important challenges, in great part due to their sheer size which makes it difficult to grasp their dynamic behavior, optimize their operations, or study their reliability. Yet, we live in a world where, due to increasing inter-dependencies and networking of systems, complexity has become the norm. With this in mind, the volume comprises two parts. The first part is dedicated to a spectrum of complex problems of decision and control encountered in the area of production and inventory systems. The second part is dedicated to large scale or multi-agent system problems occurring in other areas of engineering such as telecommunication and electric power networks, as well as more generic context.
This is the second volume of a comprehensive two-volume treatment of mechanics intended for students of civil and mechanical engineering. Used for several years in courses at Bradley university, the text presents dynamics in a clear and straightforward way and emphasizes problem solving. More than 350 examples clarify the discussion. The diskette included with the book contains EnSolve, a program written by the authors for solving problems in engineering mechanics. The program runs on Macintosh and PC-DOS computers and includes the following: - a unit converter for SI to US units and vice versa - a graphics program for plotting functions and data - a set of numerical subroutines The graphics module will, among other features, fit smooth splines between data, plot regression lines and curves, and change scales ß including from arithmetic to log and log-log. The numerical routines will, for example, find roots of polynomials, solve systems of equations, invert matrices, differentiate and integrate, and solve boundary-value problems.
This present book provides an alternative approach to study the pre-kernel solution of transferable utility games based on a generalized conjugation theory from convex analysis. Although the pre-kernel solution possesses an appealing axiomatic foundation that lets one consider this solution concept as a standard of fairness, the pre-kernel and its related solutions are regarded as obscure and too technically complex to be treated as a real alternative to the Shapley value. Comprehensible and efficient computability is widely regarded as a desirable feature to qualify a solution concept apart from its axiomatic foundation as a standard of fairness. We review and then improve an approach to compute the pre-kernel of a cooperative game by the indirect function. The indirect function is known as the Fenchel-Moreau conjugation of the characteristic function. Extending the approach with the indirect function, we are able to characterize the pre-kernel of the grand coalition simply by the solution sets of a family of quadratic objective functions.
The emphasis of this textbook is on industrial applications of Statistical Measurement Theory. It deals with the principal issues of measurement theory, is concise and intelligibly written, and to a wide extent self-contained. Difficult theoretical issues are separated from the mainstream presentation. Each topic starts with an informal introduction followed by an example, the rigorous problem formulation, solution method, and a detailed numerical solution. Each chapter concludes with a set of exercises of increasing difficulty, mostly with solutions. The book is meant as a text for graduate students and a reference for researchers and industrial experts specializing in measurement and measurement data analysis for quality control, quality engineering and industrial process improvement using statistical methods. Knowledge of calculus and fundamental probability and statistics is required for the understanding of its contents.
Many large-scale projects for detecting gravitational radiation are currently being developed, all with the aim of opening a new window onto the observable Universe. As a result, numerical relativity has recently become a major field of research, and Elements of Numerical Relativity and Relativistic Hydrodynamics is a valuable primer for both graduate students and non-specialist researchers wishing to enter the field. A revised and significantly enlarged edition of LNP 673 Elements of Numerical Relativity, this book starts with the most basic insights and aspects of numerical relativity before it develops coherent guidelines for the reliable and convenient selection of each of the following key aspects: evolution formalism; gauge, initial, and boundary conditions; and various numerical algorithms. And in addition to many revisions, it includes new, convenient damping terms for numerical implementations, a presentation of the recently-developed harmonic formalism, and an extensive, new chapter on matter space-times, containing a thorough introduction to relativistic hydrodynamics. While proper reference is given to advanced applications requiring large computational resources, most tests and applications in this book can be performed on a standard PC.
Weak convergence is a basic tool of modern nonlinear analysis because it enjoys the same compactness properties that finite dimensional spaces do: basically, bounded sequences are weak relatively compact sets. Nonetheless, weak conver gence does not behave as one would desire with respect to nonlinear functionals and operations. This difficulty is what makes nonlinear analysis much harder than would normally be expected. Parametrized measures is a device to under stand weak convergence and its behavior with respect to nonlinear functionals. Under suitable hypotheses, it yields a way of representing through integrals weak limits of compositions with nonlinear functions. It is particularly helpful in comprehending oscillatory phenomena and in keeping track of how oscilla tions change when a nonlinear functional is applied. Weak convergence also plays a fundamental role in the modern treatment of the calculus of variations, again because uniform bounds in norm for se quences allow to have weak convergent subsequences. In order to achieve the existence of minimizers for a particular functional, the property of weak lower semicontinuity should be established first. This is the crucial and most delicate step in the so-called direct method of the calculus of variations. A fairly large amount of work has been devoted to determine under what assumptions we can have this lower semicontinuity with respect to weak topologies for nonlin ear functionals in the form of integrals. The conclusion of all this work is that some type of convexity, understood in a broader sense, is usually involved."
With many areas of science reaching across their boundaries and becoming more and more interdisciplinary, students and researchers in these fields are confronted with techniques and tools not covered by their particular education. Especially in the life- and neurosciences quantitative models based on nonlinear dynamics and complex systems are becoming as frequently implemented as traditional statistical analysis. Unfamiliarity with the terminology and rigorous mathematics may discourage many scientists to adopt these methods for their own work, even though such reluctance in most cases is not justified. This book bridges this gap by introducing the procedures and methods used for analyzing nonlinear dynamical systems. In Part I, the concepts of fixed points, phase space, stability and transitions, among others, are discussed in great detail and implemented on the basis of example elementary systems. Part II is devoted to specific, non-trivial applications: coordination of human limb movement (Haken-Kelso-Bunz model), self-organization and pattern formation in complex systems (Synergetics), and models of dynamical properties of neurons (Hodgkin-Huxley, Fitzhugh-Nagumo and Hindmarsh-Rose). Part III may serve as a refresher and companion of some mathematical basics that have been forgotten or were not covered in basic math courses. Finally, the appendix contains an explicit derivation and basic numerical methods together with some programming examples as well as solutions to the exercises provided at the end of certain chapters. Throughout this book all derivations are as detailed and explicit as possible, and everybody with some knowledge of calculus should be able to extract meaningful guidance follow and apply the methods of nonlinear dynamics to their own work. "This book is a masterful treatment, one might even say a gift, to the interdisciplinary scientist of the future." "With the authoritative voice of a genuine practitioner, Fuchs is a master teacher of how to handle complex dynamical systems." "What I find beautiful in this book is its clarity, the clear definition of terms, every step explained simply and systematically." (J.A.Scott Kelso, excerpts from the foreword)
Bayesian networks currently provide one of the most rapidly growing areas of research in computer science and statistics. In compiling this volume we have brought together contributions from some of the most prestigious researchers in this field. Each of the twelve chapters is self-contained. Both theoreticians and application scientists/engineers in the broad area of artificial intelligence will find this volume valuable. It also provides a useful sourcebook for Graduate students since it shows the direction of current research.
"Paradox" conjures up arrows and tortoises. But it has a speculative, gedanken ring: no one would dream of really conjuring up Achilles to confirm that he catches the tortoise. The paradox of Einstein, Podolsky, and Rosen, however, is capable of empirical test. Attempted experimental resolutions have involved photons, but these are not detected often enough to settle the matter. Kaons are easier to detect and will soon be used to discriminate between quantum mechanics and local realism. The existence ofan objective physical reality, which had disappeared behind the impressive formalism of quantum mechanics, was originally intended to be the central issue of the paradox; locality, like the mathematics used, was just assumed to hold. Quantum mechanics, with its incompatible measurements, was born rather by chance in an atmosphere of great positivistic zeal, in which only the obviously measurable had scientific respectability. Speculation about occult "unobservable" quantities was viewed as vacuous metaphysics, which should surely form no part of a mature scientific attitude. Soon the "unmeasurable, " once only disreputable, vanished altogether. One had first been told not to worry about it; then, as dogma got more carefully defined, one was assured that the unobserved was just not there. This made it easier not to think about it and to avoid hazardous metaphysical temptation.
Geoscientific modelling has some unique requirements. Modern geological applications require increasingly quantitative and accurate rock property characerizations within the three-dimensional subsurface environment. this problem differs from that faced by most other fields due to a variety of technocal and economic constriants. Three-dimensional geoscientific modelling often relies on complex stochastic concepts and thus requires the extraction of information from large multiparameter data sets, and the representation and modification of complex, and uncertain geo-objects of interest. The visualization of these three-dimensional features has been a major constraint. The ability to rapidly create and manipulate three-dimensional imgages can materially speed up the geoscientist's understanding of the subsurface environment. The wok is organized arou d four major themes: definition of the problem; description of existing 3-D geoscientific information systems; 3-D data structures and display methods; and applications of 3-D geoscientific modelling. The contributors are drawn from most of the NATO nations, Sweden and Japan, representing national geological surveys, the petroleum, mining, environmental and engineering industries, universities and computer hardware and software companies.
Thirty years ago mathematical, as opposed to applied numerical, computation was difficult to perform and so relatively little used. Three threads changed that: the emergence of the personal computer; the discovery of fiber-optics and the consequent development of the modern internet; and the building of the Three "M's" Maple, Mathematica and Matlab. We intend to persuade that Mathematica and other similar tools are worth knowing, assuming only that one wishes to be a mathematician, a mathematics educator, a computer scientist, an engineer or scientist, or anyone else who wishes/needs to use mathematics better. We also hope to explain how to become an "experimental mathematician" while learning to be better at proving things. To accomplish this our material is divided into three main chapters followed by a postscript. These cover elementary number theory, calculus of one and several variables, introductory linear algebra, and visualization and interactive geometric computation.
As our title suggests, there are two aspects in the subject of this book. The first is the mathematical investigation of the dynamics of infinite systems of in teracting particles and the description of the time evolution of their states. The second is the rigorous derivation of kinetic equations starting from the results of the aforementioned investigation. As is well known, statistical mechanics started in the last century with some papers written by Maxwell and Boltzmann. Although some of their statements seemed statistically obvious, we must prove that they do not contradict what me chanics predicts. In some cases, in particular for equilibrium states, it turns out that mechanics easily provides the required justification. However things are not so easy, if we take a step forward and consider a gas is not in equilibrium, as is, e.g., the case for air around a flying vehicle. Questions of this kind have been asked since the dawn of the kinetic theory of gases, especially when certain results appeared to lead to paradoxical conclu sions. Today this matter is rather well understood and a rigorous kinetic theory is emerging. The importance of these developments stems not only from the need of providing a careful foundation of such a basic physical theory, but also to exhibit a prototype of a mathematical construct central to the theory of non-equilibrium phenomena of macroscopic size."
This is the first book to present a comprehensive treatment of the mathematical physics of quantum wires and devices. The focus is on the recent results in the area of the spectral theory of bent and deformed quantum wires, simple quantum devices, Anderson localization, the quantum Hall effect and graphical models for quantum wire systems. The Selberg trace formula for finite volume graphical models is reviewed. Examples and relationships to recent work on acoustic and fluid flow, trapped states and spectral resonances, quantum chaos, random matrix theory, spectral statistics, point interactions, photonic crystals, Landau models, quantum transistors, edge states and metal-insulator transitions are developed. Problems related to modeling open quantum devices are discussed. The research of Exner and co-workers in quantum wires, Stollmann, Figotin, Bellissard et al. in the area of Anderson localization and the quantum Hall effect, and Bird, Ferry, Berggren and others in the area of quantum devices and their modeling is surveyed. The work on finite volume graphical models is interconnected to recent work on Ramanujan graphs and diagrams, the Phillips-Sarnak conjectures, L-functions and scattering theory. Audience: This book will be of use to physicists, mathematicians and engineers interested in quantum wires, quantum devices and related mesoscopic systems.
Presenting the latest findings in topics from across the mathematical spectrum, this volume includes results in pure mathematics along with a range of new advances and novel applications to other fields such as probability, statistics, biology, and computer science. All contributions feature authors who attended the Association for Women in Mathematics Research Symposium in 2015: this conference, the third in a series of biennial conferences organized by the Association, attracted over 330 participants and showcased the research of women mathematicians from academia, industry, and government.
Nonsmoothness and nonconvexity arise in numerous applications of mechan- ics and modeling due to the need for studying more and more complicated phe- nomena and real life applications. Mathematicians have started to provide the necessary tools and theoretical results underpinning these applications. Ap- plied mathematicians and engineers have begun to realize the benefits of this new area and are adopting, increasingly, these new tools in their work. New computational tools facilitate numerical applications and enable the theory to be tested, and the resulting feedback poses new theoretical questions. Because of the upsurge in activity in the area of nonsmooth and noncon- vex mechanics, Professors Gao and Ogden, together with the late Professor P.D. Panagiotopoulos, had planned to organize a Minisymposium with the title Nonsmooth and Nonconvex Mechanics within the ASME 1999 Mechanics & Materials Conference, June 27-30 1999, Blacksburg, Virginia. After the unex- pected death of Professor Panagiotopoulos the first two editors invited the third editor (Professor Stavroulakis) to join them. A large number of mathematical and engineering colleagues supported our efforts by presenting lectures at the Minisymposium in which the available mathematical methods were described and many problems of nonsmooth and nonconvex mechanics were discussed. The interest of the many participants encourages us all to continue our research efforts.
This book is a comprehensive presentation of recent results and developments on several widely used transforms and their fast algorithms. In many cases, new options are provided for improved or new fast algorithms, some of which are not well known in the digital signal processing community. The book is suitable as a textbook for senior undergraduate and graduate courses in digital signal processing. It may also serve as an excellent self-study reference for electrical engineers and applied mathematicians whose work is related to the fields of electronics, signal processing, image and speech processing, or digital design and communication.
A modern information retrieval system must have the capability to find, organize and present very different manifestations of information - such as text, pictures, videos or database records - any of which may be of relevance to the user. However, the concept of relevance, while seemingly intuitive, is actually hard to define, and it's even harder to model in a formal way. Lavrenko does not attempt to bring forth a new definition of relevance, nor provide arguments as to why any particular definition might be theoretically superior or more complete. Instead, he takes a widely accepted, albeit somewhat conservative definition, makes several assumptions, and from them develops a new probabilistic model that explicitly captures that notion of relevance. With this book, he makes two major contributions to the field of information retrieval: first, a new way to look at topical relevance, complementing the two dominant models, i.e., the classical probabilistic model and the language modeling approach, and which explicitly combines documents, queries, and relevance in a single formalism; second, a new method for modeling exchangeable sequences of discrete random variables which does not make any structural assumptions about the data and which can also handle rare events. Thus his book is of major interest to researchers and graduate students in information retrieval who specialize in relevance modeling, ranking algorithms, and language modeling.
In diamond alluvial deposits, the information about the spatial distribution of stone size is of crucial importance for the quantitative characterisation of the different areas of the deposit. In fact, the value of the diamond reserves depends strongly on the distribution of stone sizes: between two areas with the same grade, the most valuable is the one with larger stones. The geological genesis of the mineralization, related with the transport and deposition of stones in trapsites, can create separated spatial areas, corresponding to different stone size. To characterise these distinct areas, the non smooth transitions between them should be accounted for, in the estimation of internal properties. An extended version of zonal control of geostatistical estimation (Soares et ai, 1995) proposed in this paper, aims to characterising the classes of size histogram for each geological unit, avoiding the smooth effect. For this purpose the morphology of each geological unit is obtained by using two distinct criteria: i) first, the points of each unit are classified according to the local and global probabilities of belonging to each unit (Soares, 1992); ii) in a second classification, the optimization technique of Simulated Annealing is used to rearrange the pre-classified points in order to impose, in the final morphological maps, the spatial variability of experimental samples (Goovaerts, 1994). A case study of a diamond alluvial deposit with two geological units with distinct stone size histograms is presented.
A beautiful interplay between probability theory (Markov
processes, martingale theory) on the one hand and operator and
spectral theory on the other yields a uniform treatment of several
kinds of Hamiltonians such as the Laplace operator, relativistic
Hamiltonian, Laplace-Beltrami operator, and generators of
Ornstein-Uhlenbeck processes. For such operators regular and
singular perturbations of order zero and their spectral properties
are investigated.
The Complex Variable Boundary Element Method (CVBEM) has an important role to play in a number of technical engineering situations and can be a tremendous help to scholars and practitioners preoccupied with solving problems in areas such as heat transport, structural mechanics and river hydraulics. As well as describing the extremely useful applications of this method, the authors explain the mathematical background to the CVBEM, which is vital to understanding the subject as a whole. Advances in the Complex Variable Boundary Element Method is the most comprehensive of books on this subject, bringing together ten years of work and boasting the latest news in CVBEM technology. It will be of particular interest to those concerned with solving technical engineering problems - scientists, graduate students, computer programmers and those working in industry may all find the book helpful.
This collection of original articles and surveys addresses the recent advances in linear and nonlinear aspects of the theory of partial differential equations. The key topics include operators as "sums of squares" of real and complex vector fields, nonlinear evolution equations, local solvability, and hyperbolic questions.
This text provides a very simple, initial introduction to the complete scientific computing pipeline: models, discretization, algorithms, programming, verification, and visualization. The pedagogical strategy is to use one case study - an ordinary differential equation describing exponential decay processes - to illustrate fundamental concepts in mathematics and computer science. The book is easy to read and only requires a command of one-variable calculus and some very basic knowledge about computer programming. Contrary to similar texts on numerical methods and programming, this text has a much stronger focus on implementation and teaches testing and software engineering in particular.
This book presents a first attempt to systematically collect, classify and solve various continuous-time scheduling problems. The classes of problems distinguish scheduling by the number of machines and products, production constraints and performance measures. Although such classes are usually considered to be a prerogative of only combinatorial scheduling literature, the scheduling methodology suggested in this book is based on two mathematical tools - optimal control and combinatorics. Generally considered as belonging to two totally different areas of research and application, these seemingly irreconcilable tools can be integrated in a unique solution approach with the advantages of both. This new approach provides the possibility of developing effective polynomial-time algorithms to solve the generic scheduling problems. This book is aimed at a student audience - final year undergraduates as well as master and Ph.D. students, primarily in Operations Research, Management, Industrial Engineering and Control Systems. Indeed, some of the material in the book has formed part of the content of undergraduate and graduate courses taught at the Industrial Engineering Department of Tel-Aviv University, the Logistics Department of Bar-Ilan University and the Technology Management Department of Rolon Center for Technological Education, Israel. The book is also useful for practicing engineers interested in planning, scheduling and optimization methods. Since the book addresses the theory and design of computer-based scheduling algorithms, applied mathematicians and computer software specialists engaged in developing scheduling software for industrial engineering and management problems will find that the methods developed here can be embedded very efficiently in large applications. |
![]() ![]() You may like...
Adaptive Hybrid Active Power Filters
Lei Wang, Man-Chung Wong, …
Hardcover
R4,121
Discovery Miles 41 210
Emerging Technologies in Data Mining and…
Joao Manuel R.S. Tavares, Satyajit Chakrabarti, …
Hardcover
R5,821
Discovery Miles 58 210
|