![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Applied mathematics > Mathematics for scientists & engineers
Applied Time Series Analysis and Innovative Computing contains the applied time series analysis and innovative computing paradigms, with frontier application studies for the time series problems based on the recent works at the Oxford University Computing Laboratory, University of Oxford, the University of Hong Kong, and the Chinese University of Hong Kong. The monograph was drafted when the author was a post-doctoral fellow in Harvard School of Engineering and Applied Sciences, Harvard University. It provides a systematic introduction to the use of innovative computing paradigms as an investigative tool for applications in time series analysis. Applied Time Series Analysis and Innovative Computing offers the state of art of tremendous advances in applied time series analysis and innovative computing paradigms and also serves as an excellent reference work for researchers and graduate students working on applied time series analysis and innovative computing paradigms.
This reference spells out the fundamentals of Augmented with 1024 equations, 138 references and 82 figures and 69 problems, this book provides an introduction to and overview of signal detection and estimation. detection and estimation theory, reviews mathemat ical techniques and gives the essential background needed to understand the more advanced material, provides detailed examples stated and solved showing all the necessary steps, and contains chapter-end problems and provides step-by-step solutions that facilitate self-study. Each chapter provides an introduction, summary, problems and list of references and expands upon material covered in the previous chapter.
The historical and epistemological reflection on the applications of mathematical techniques to the Sciences of Nature - physics, biology, chemistry, and geology - today generates attention and interest because of the increasing use of mathematical models in all sciences and their high level of sophistication. The goal of the meeting and the papers collected in this proceedings volume is to give physicists, biologists, mathematicians, and historians of science the opportunity to share information on their work and reflect on the and mathematical models are used in the natural sciences today and in way mathematics the past. The program of the workshop combines the experience of those working on current scientific research in many different fields with the historical analysis of previous results. We hope that some novel interdisciplinary, philosophical, and epistemological considerations will follow from the two aspects of the workshop, the historical and the scientific. This proceedings includes papers presented at the meeting and some of the results of the discussions that took place during the workshop. We wish to express our gratitude to Sergio Monteiro for all his work, which has been essential for the successful publication of these proceedings. We also want to thank the editors of Kluwer AcademidPlenum Publishers for their patience and constant help, and in particular Beth Kuhne and Roberta Klarreich. Our thanks to the fallowing institutions: -Amministrazione Comunale di Arcidosso -Comunita Montana del Monte Amiata .Center for the History of Physics, UCLA -Centre F."
The 91st London Mathematical Society Durham Symposium took place from July 5th to 15th 2010, with more than 100 international participants attending. The Symposium focused on Numerical Analysis of Multiscale Problems and this book contains 10 invited articles from some of the meeting's key speakers, covering a range of topics of contemporary interest in this area. Articles cover the analysis of forward and inverse PDE problems in heterogeneous media, high-frequency wave propagation, atomistic-continuum modeling and high-dimensional problems arising in modeling uncertainty. Novel upscaling and preconditioning techniques, as well as applications to turbulent multi-phase flow, and to problems of current interest in materials science are all addressed. As such this book presents the current state-of-the-art in the numerical analysis of multiscale problems and will be of interest to both practitioners and mathematicians working in those fields.
This book explores recent advances in the Internet of things (IoT) via advanced technologies and provides an overview of most aspects which are relevant for advance secure, distributed, decentralized blockchain technology in the Internet of things, their applications, and industry IoT. The book provides an in-depth analysis of the step-by-step evolution of IoT to create a change by enhancing the productivity of industries. It introduces how connected things, data, and their communication (data sharing) environment build a transparent, reliable, secure environment for people, processes, systems, and services with the help of blockchain technology.
This book presents contributions on the most active lines of recent advanced research in the field of nonlinear mechanics and physics selected from the 4th International Conference on Structural Nonlinear Dynamics and Diagnosis. It includes fifteen chapters by outstanding scientists, covering various aspects of applications, including road tanker dynamics and stability, simulation of abrasive wear, energy harvesting, modeling and analysis of flexoelectric nanoactuator, periodic Fermi-Pasta-Ulam problems, nonlinear stability in Hamiltonian systems, nonlinear dynamics of rotating composites, nonlinear vibrations of a shallow arch, extreme pulse dynamics in mode-locked lasers, localized structures in a photonic crystal fiber resonator, nonlinear stochastic dynamics, linearization of nonlinear resonances, treatment of a linear delay differential equation, and fractional nonlinear damping. It appeals to a wide range of experts in the field of structural nonlinear dynamics and offers researchers and engineers an introduction to the challenges posed by nonlinearities in the development of these topics
Evolutionary computing paradigms offer robust and powerful adaptive search mechanisms for system design. This book's thirteen chapters cover a wide area of topics in evolutionary computing and applications, including an introduction to evolutionary computing in system design; evolutionary neuro-fuzzy systems; and evolution of fuzzy controllers. The book will be useful to researchers in intelligent systems with interest in evolutionary computing, as well as application engineers and system designers.
This volume contains the invited contributions from talks delivered in the Fall 2011 series of the Seminar on Mathematical Sciences and Applications 2011 at Virginia State University. Contributors to this volume, who are leading researchers in their fields, present their work in a way to generate genuine interdisciplinary interaction. Thus all articles therein are selective, self-contained, and are pedagogically exposed and help to foster student interest in science, technology, engineering and mathematics and to stimulate graduate and undergraduate research and collaboration between researchers in different areas. This work is suitable for both students and researchers in a variety of interdisciplinary fields namely, mathematics as it applies to engineering, physical-chemistry, nanotechnology, life sciences, computer science, finance, economics, and game theory. "
This book provides an extensive introduction to numerical computing from the viewpoint of backward error analysis. The intended audience includes students and researchers in science, engineering and mathematics. The approach taken is somewhat informal owing to the wide variety of backgrounds of the readers, but the central ideas of backward error and sensitivity (conditioning) are systematically emphasized. The book is divided into four parts: Part I provides the background preliminaries including floating-point arithmetic, polynomials and computer evaluation of functions; Part II covers numerical linear algebra; Part III covers interpolation, the FFT and quadrature; and Part IV covers numerical solutions of differential equations including initial-value problems, boundary-value problems, delay differential equations and a brief chapter on partial differential equations. The book contains detailed illustrations, chapter summaries and a variety of exercises as well some Matlab codes provided online as supplementary material. "I really like the focus on backward error analysis and condition. This is novel in a textbook and a practical approach that will bring welcome attention." Lawrence F. Shampine A Graduate Introduction to Numerical Methods and Backward Error Analysis" has been selected by Computing Reviews as a notable book in computing in 2013. Computing Reviews Best of 2013 list consists of book and article nominations from reviewers, CR category editors, the editors-in-chief of journals, and others in the computing community.
This book presents works detailing the application of processing and visualization techniques for analyzing the Earth's subsurface. The topic of the book is interactive data processing and interactive 3D visualization techniques used on subsurface data. Interactive processing of data together with interactive visualization is a powerful combination which has in the recent years become possible due to hardware and algorithm advances in. The combination enables the user to perform interactive exploration and filtering of datasets while simultaneously visualizing the results so that insights can be made immediately. This makes it possible to quickly form hypotheses and draw conclusions. Case studies from the geosciences are not as often presented in the scientific visualization and computer graphics community as e.g., studies on medical, biological or chemical data. This book will give researchers in the field of visualization and computer graphics valuable insight into the open visualization challenges in the geosciences, and how certain problems are currently solved using domain specific processing and visualization techniques. Conversely, readers from the geosciences will gain valuable insight into relevant visualization and interactive processing techniques. Subsurface data has interesting characteristics such as its solid nature, large range of scales and high degree of uncertainty, which makes it challenging to visualize with standard methods. It is also noteworthy that parallel fields of research have taken place in geosciences and in computer graphics, with different terminology when it comes to representing geometry, describing terrains, interpolating data and (example-based) synthesis of data. The domains covered in this book are geology, digital terrains, seismic data, reservoir visualization and CO2 storage. The technologies covered are 3D visualization, visualization of large datasets, 3D modelling, machine learning, virtual reality, seismic interpretation and multidisciplinary collaboration. People within any of these domains and technologies are potential readers of the book.
This volume is dedicated to Jacob Aboudi, a ?ne scientist who has made seminal c- tributions in applied mechanics. The papers presented here re?ect the appreciation of many of Jacob's colleagues. A publication list f- lowing this introduction provides an indi- tion of his distinguished academic career, c- rently in its ?fth decade, and the breadth of hisknowledge. His papersconsistentlydem- strate originality, innovation and diligence. This list uncovers the methodical work of a dedicated researcher whose achievements established him as a leading authority in the area of mathematical modeling of the beh- ior of heterogeneous materials, the area which became known as homogenization theory. Starting in 1981, Jacob established a micromechanical model known as the Method of Cells (MOC) which evolved into the Generalized Method of Cells (GMC) that predicts the macroscopic response of composite materials as a function of the pr- erties, volume fractions, shapes, and constitutive behavior of its constituents. The versatility of the model has been demonstrated to effectively incorporate various types of constituent material behavior (i. e. , both coupled and uncoupled mecha- cal, thermal, electrical and magnetic effects). As a result of its potential in providing an ef?cient tool for the emerging ?eld of multiscale analysis, the method gained increasing attention and became a subject for further research.
In today's global economy, supply chains are an essential ingredient to corporate survival and growth. Operations strategy in supply chains must assume an ever-expanding and strategic role of risks that modern enterprises face when they operate in an interdependent supply chain environment. These operational and strategic facets entail a brand new set of operational problems and risks that have not always been understood or managed very well. It falls to supply chain managers to identify and to educate corporate managers on what these critical operational problems and risks involve. This book provides business students and practitioners with the means to understand, to model and to analyze these outstanding issues and problems that are the essential elements in managing supply chains today. This book will consider these problems in depth and draw essential conclusions regarding their management in supply chains. As a textbook treatment, it will examine traditional operational problems, expressing them in a strategic context, understanding their complexity, and recognizing their interdependency with other firms within a supply-chain environment. Used throughout the book will be application examples that illustrate all the aspects of dealing with and solving these kinds of problems. The content of SUPPLY CHAIN GAMES: Operations Management and Risk Valuation is presented in three sections, each of which will emphasize important facets of supply chain management operations. (1) Supply chains and operations modeling and management section will provide static and time models and their gradual extension to a supply chain environment. The section will give special attention tothe new concerns and issues at this level of analysis. (2) Inter-temporal supply chain management section will address this aspect as differential games. The differential games will be presented as natural continuous-time extensions of static models so that the effect of various types of dynamics on supply chains can be assessed and insights can be developed. (3) Risk and supply chain management section will deal with risk and supply chains as well as providing numerous applications regarding the management of interdependent operations and quality in a supply chain environment.
This book offers a first course in analysis for scientists and engineers. It can be used at the advanced undergraduate level or as part of the curriculum in a graduate program. The book is built around metric spaces. In the first three chapters, the authors lay the foundational material and cover the all-important "four-C's": convergence, completeness, compactness, and continuity. In subsequent chapters, the basic tools of analysis are used to give brief introductions to differential and integral equations, convex analysis, and measure theory. The treatment is modern and aesthetically pleasing. It lays the groundwork for the needs of classical fields as well as the important new fields of optimization and probability theory.
During the past decade, geneticists have cloned scores of Mendelian disease genes and constructed a rough draft of the entire human genome. The unprecedented insights into human disease and evolution offered by mapping, cloning, and sequencing will transform medicine and agriculture. This revolution depends vitally on the contributions of applied mathematicians, statisticians, and computer scientists. Mathematical and Statistical Methods for Genetic Analysis is written to equip students in the mathematical sciences to understand and model the epidemiological and experimental data encountered in genetics research. Mathematical, statistical, and computational principles relevant to this task are developed hand in hand with applications to population genetics, gene mapping, risk prediction, testing of epidemiological hypotheses, molecular evolution, and DNA sequence analysis. Many specialized topics are covered that are currently accessible only in journal articles. This second edition expands the original edition by over 100 pages and includes new material on DNA sequence analysis, diffusion processes, binding domain identification, Bayesian estimation of haplotype frequencies, case-control association studies, the gamete competition model, QTL mapping and factor analysis, the Lander-Green-Kruglyak algorithm of pedigree analysis, and codon and rate variation models in molecular phylogeny. Sprinkled throughout the chapters are many new problems. Kenneth Lange is Professor of Biomathematics and Human Genetics at the UCLA School of Medicine. At various times during his career, he has held appointments at the University of New Hampshire, MIT, Harvard, and the University of Michigan. While at the University of Michigan, he was the Pharmacia & Upjohn Foundation Professor of Biostatistics. His research interests include human genetics, population modeling, biomedical imaging, computational statistics, and applied stochastic processes. Springer-Verlag published his book Numerical Analysis for Statisticians in 1999.
The aim of this book is to present the theory and applications of the relativistic Boltzmann equation in a self-contained manner, even for those readers who have no familiarity with special and general relativity. Though an attempt is made to present the basic concepts in a complete fashion, the style of presentation is chosen to be appealing to readers who want to understand how kinetic theory is used for explicit calculations. The book will be helpful not only as a textbook for an advanced course on relativistic kinetic theory but also as a reference for physicists, astrophysicists and applied mathematicians who are interested in the theory and applications of the relativistic Boltzmann equation.
Ready access to computers has de?ned a new era in teaching and learning. The opportunity to extend the subject matter of traditional science and engineering curricula into the realm of scienti?c computing has become not only desirable, but also necessary. Thanks to portability and low overhead and operating cost, experimentation by numerical simulation has become a viable substitute, and occasionally the only alternative, to physical experimentation. The new framework has necessitated the writing of texts and monographs from a modern perspective that incorporates numerical and computer progr- ming aspects as an integral part of the discourse. Under this modern directive, methods, concepts, and ideas are presented in a uni?ed fashion that motivates and underlines the urgency of the new elements, but neither compromises nor oversimpli?es the rigor of the classical approach. Interfacing fundamental concepts and practical methods of scienti?c c- puting can be implemented on di?erent levels. In one approach, theory and implementation are kept complementary and presented in a sequential fashion. In another approach, the coupling involves deriving computational methods and simulation algorithms, and translating equations into computer code - structions immediately following problem formulations. Seamlessly interjecting methods of scienti?c computing in the traditional discourse o?ers a powerful venue for developing analytical skills and obtaining physical insight.
Wireless Sensor Network Technologies for Information Explosion Era The amount and value of information available due to rapid spread of information technology is exploding. Typically, large enterprises have approximately a petabyte of operational data stored in hundreds of data repositories supporting thousands of applications. Data storage volumes grow in excess of 50% annually. This growth is expected to continue due to vast proliferation of existing infor- tion systems and the introduction of new data sources. Wireless Sensor Networks (WSNs) represent one of the most notable examples of such new data sources. In recent few years, various types of WSNs have been deployed and the amount of information generated by wireless sensors increases rapidly. The information - plosion requires establishing novel data processing and communication techniques for WSNs. This volume aims to cover both theoretical and practical aspects - lated to this challenge, and it explores directions for future research to enable ef- cient utilization of WSNs in the information-explosion era. The book is organized in three main parts that consider (1) technical issues of WSNs, (2) the integration of multiple WSNs, and (3) the development of WSNs systems and testbeds for conducting practical experiments. Each part consists of three chapters.
The topic of level sets is currently very timely and useful for creating realistic 3-D images and animations. They are powerful numerical techniques for analyzing and computing interface motion in a host of application settings. In computer vision, it has been applied to stereo and segmentation, whereas in graphics it has been applied to the postproduction process of in-painting and 3-D model construction. Osher is co-inventor of the Level Set Methods, a pioneering framework introduced jointly with James Sethian from the University of Berkeley in 1998. This methodology has been used up to now to provide solutions to a wide application range not limited to image processing, computer vision, robotics, fluid mechanics, crystallography, lithography, and computer graphics. The topic is of great interest to advanced students, professors, and R&D professionals working in the areas of graphics (post-production), video-based surveillance, visual inspection, augmented reality, document image processing, and medical image processing. These techniques are already employed to provide solutions and products in the industry (Cognitech, Siemens, Philips, Focus Imaging). An essential compilation of survey chapters from the leading researchers in the field, emphasizing the applications of the methods. This book can be suitable for a short professional course related with the processing of visual information.
During the past decade model predictive control (MPC), also
referred to as receding horizon control or moving horizon control,
has become the preferred control strategy for quite a number of
industrial processes. There have been many significant advances in
this area over the past years, one of the most important ones being
its extension to nonlinear systems. This book gives an up-to-date
assessment of the current state of the art in the new field of
nonlinear model predictive control (NMPC). The main topic areas
that appear to be of central importance for NMPC are covered,
namely receding horizon control theory, modeling for NMPC,
computational aspects of on-line optimization and application
issues. The book consists of selected papers presented at the
International Symposium on Nonlinear Model Predictive Control -
Assessment and Future Directions, which took place from June 3 to
5, 1998, in Ascona, Switzerland.
Action C21 of the European programme for Cooperation in the field of Scientific and Technical Research (COST - http: //www.cost.esf.org/) is dedicated to investigating urban ontologies for an improved communication in urban civil engineering projects. The Action, known informally as "Towntology," brings together a large and heterogeneous grouping from across Europe, whose interests range from construction to urban tourism and from transport infrastructure to resource visualisation. On 6-7 November 2006, in Geneva, the Action convened a successful workshop to address emerging issues in the field. This volume presents the contributions to that workshop, in many cases revised afterwards to capture some of the outcomes of discussion. Many of these contributions are from members of the Towntology group, but there are also contributions from other European researchers, and from researchers in the US. The volume represents a valuable overview of major current issues in the field of urban ontologies and encapsulates many useful and different approaches. We hope that it will serve not only as a worthy outcome of Action C21, but also as a valuable resource for a wide range of researchers.
The first edition (94301-3) was published in 1995 in TIMS and had 2264 regular US sales, 928 IC, and 679 bulk. This new edition updates the text to Mathematica 5.0 and offers a more extensive treatment of linear algebra. It has been thoroughly revised and corrected throughout.
Ring polymers are one of the last big mysteries in polymer physics, and this thesis tackles the problem of describing their behaviour when interacting in dense solutions and with complex environments and reports key findings that help shed light on these complex issues. The systems investigated are not restricted to artificial polymer systems, but also cover biologically inspired ensembles, contributing to the broad applicability and interest of the conclusions reached. One of the most remarkable findings is the unambiguous evidence that rings inter-penetrate when in dense solutions; here this behaviour is shown to lead to the emergence of a glassy state solely driven by the topology of the constituents. This novel glassy state is unconventional in its nature and, thanks to its universal properties inherited from polymer physics, will attract the attention of a wide range of physicists in the years to come.
This research book provides a comprehensive overview of the state-of-the-art subspace learning methods for pattern recognition in intelligent environment. With the fast development of internet and computer technologies, the amount of available data is rapidly increasing in our daily life. How to extract core information or useful features is an important issue. Subspace methods are widely used for dimension reduction and feature extraction in pattern recognition. They transform a high-dimensional data to a lower-dimensional space (subspace), where most information is retained. The book covers a broad spectrum of subspace methods including linear, nonlinear and multilinear subspace learning methods and applications. The applications include face alignment, face recognition, medical image analysis, remote sensing image classification, traffic sign recognition, image clustering, super resolution, edge detection, multi-view facial image synthesis.
This is an up to date exposition of nonlinear phenomena in random and inhomogeneous media which provides recent results on the combined effects of nonlinearity and inhomogeneity, including random inhomogeneity. Topics covered include recent developments within such popular areas as nonlinear photonic crystals, inhomogeneous optical fibres (dispersion management), discrete nonlinear lattices, discrete breathers, Bose-Einstein condensates, ultra-short optical pulse, Josephson lattices, various types of inhomogeneous waveguides and nonlinear quantization.
This book gathers selected contributions by top Portuguese and international researchers in the field of Operations Research, presented at the 19th Congress of APDIO (Portuguese Association of Operational Research). The papers address a broad range of complex real-world problems, which are approached using recent theoretical techniques. Of particular interest are the applications of e.g. linear, nonlinear and mixed-integer programming, multiobjective optimization, metaheuristics and hybrid heuristics, multicriteria decision analysis, data envelopment analysis, clustering techniques and decision support systems, in such varied contexts as: supply chain management, scheduling problems, production management, logistics, energy, finance and healthcare. This conference, organized by APDIO and held in Aveiro, Portugal in September 2018, offered an ideal opportunity to discuss the latest developments in this field and to build new bridges between academic researchers and practitioners. Summarizing the outcomes, this book offers a valuable tool for all researchers, students and practitioners who wish to learn about the latest trends in this field. |
![]() ![]() You may like...
The Delaware River - History, Traditions…
Frank Harris Moyer
Paperback
Classical and Stochastic Laplacian…
Bjoern Gustafsson, Razvan Teodorescu, …
Hardcover
R1,563
Discovery Miles 15 630
Tsunami Events and Lessons Learned…
Y.A. Kontar, V. Santiago-Fandino, …
Hardcover
Chironomidae of Central America - An…
Ladislav Hamerlik, Fabio Laurindo da Silva
Hardcover
R7,928
Discovery Miles 79 280
Atlas of Benthic Foraminifera from China…
Yanli Lei, Tiegang Li
Hardcover
R4,431
Discovery Miles 44 310
Operator Theory and Harmonic Analysis…
Alexey N. Karapetyants, Igor V. Pavlov, …
Hardcover
R6,319
Discovery Miles 63 190
Harmonic Analysis on Exponential…
Hidenori Fujiwara, Jean Ludwig
Hardcover
R3,820
Discovery Miles 38 200
|