![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Applied mathematics > Mathematics for scientists & engineers
The first World Meeting for Women in Mathematics - (WM)(2) - was a satellite event of the International Congress of Mathematicians (ICM) 2018 in Rio de Janeiro. With a focus on Latin America, the first (WM)(2) brought together mathematicians from all over the world to celebrate women mathematicians, and also to reflect on gender issues in mathematics, challenges, initiatives, and perspectives for the future. Its activities were complemented by a panel discussion organized by the Committee for Women in Mathematics (CWM) of the International Mathematical Union (IMU) inside the ICM 2018 entitled "The gender gap in mathematical and natural sciences from a historical perspective". This historical proceedings book, organized by CWM in coordination with the Association for Women in Mathematics, records the first (WM)(2) and the CWM panel discussion at ICM 2018. The first part of the volume includes a report of activities with pictures of the first (WM)(2) and a tribute to Maryam Mirzakhani, the first woman to be awarded the Fields medal. It also comprises survey research papers from invited lecturers, which provide panoramic views of different fields in pure and applied mathematics. The second part of the book contains articles from the panelists of the CWM panel discussion, which consider the historical context of the gender gap in mathematics. It includes an analysis of women lecturers in the ICM since its inception. This book is dedicated to the memory of Maryam Mirzakhani.
This book is an introduction to the mathematical analysis of p- and hp-finite elements applied to elliptic problems in solid and fluid mechanics, and is suitable for graduate students and researchers who have had some prior exposure to finite element methods (FEM). In the last decade the p-, hp-, and spectral element methods have emerged as efficient and robust approximation methods for several classes of problems in this area. The aim of this book is therefore to establish the exponential convergence of such methods for problems with the piecewise analytic solutions which typically arise in engineering. It looks at the variational formulation of boundary value problems with particular emphasis on the regularity of the solution. The books then studies the p- and hp- convergence of FEM in one and two dimensions, supplying complete proofs. Also covered are hp-FEM for saddle point problems and the techniques for establishing the discrete infsup condition. Finally, hp-FEM in solid mechanics and the issue of locking is addressed in the context of these methods.
This book provides a careful treatment of the theory of algebraic Riccati equations. It consists of four parts: the first part is a comprehensive account of necessary background material in matrix theory including careful accounts of recent developments involving indefinite scalar products and rational matrix functions. The second and third parts form the core of the book and concern the solutions of algebraic Riccati equations arising from continuous and discrete systems. The geometric theory and iterative analysis are both developed in detail. The last part of the book is an exciting collection of eight problem areas in which algebraic Riccati equations play a crucial role. These applications range from introductions to the classical linear quadratic regulator problems and the discrete Kalman filter to modern developments in HD*W*w control and total least squares methods.
The subject of nonlinear partial differential equations is experiencing a period of intense activity in the study of systems underlying basic theories in geometry, topology and physics. These mathematical models share the property of being derived from variational principles. Understanding the structure of critical configurations and the dynamics of the corresponding evolution problems is of fundamental importance for the development of the physical theories and their applications. This volume contains survey lectures in four different areas, delivered by leading resarchers at the 1995 Barrett Lectures held at The University of Tennessee: nonlinear hyperbolic systems arising in field theory and relativity (S. Klainerman); harmonic maps from Minkowski spacetime (M. Struwe); dynamics of vortices in the Ginzburg-Landau model of superconductivity (F.-H. Lin); the Seiberg-Witten equations and their application to problems in four-dimensional topology (R. Fintushel). Most of this material has not previously been available in survey form. These lectures provide an up-to-date overview and an introduction to the research literature in each of these areas, which should prove useful to researchers and graduate students in mathematical physics, partial differential equations, differential geometry and topology.
This volume presents the Proceedings of the Joint U.S. / Israel Workshop on Operator Theory and Its Applications, held February 24-28, 1992, at the Ben Gurion University of the Negev, Beersheva. This event was sponsored by the United States / Israel Binational Science Foundation and the Ben Gurion University of the Negev, and many outstanding experts in operator theory took part. The workshop honored Professor Emeritus Moshe Livsic on the occasion of his retirement. The volume contains a selection of papers covering a wide range of topics in modern operator theory and its applications, from abstract operator theory to system theory and computers in operator models. The papers treat linear and nonlinear problems, and study operators from different abstract and concrete classes. Many of the topics concern the area in which contributions of Moshe Livsic were extremely important. This book will appeal to a wide audience of pure and applied mathematicians and engineers.
The investigation of the origin and formation of microstructures and the effect that microstructure has on the properties of materials are important issues in materials science and technology. Geometrical analysis is often the key to understanding the formation of microstructures and the resulting material properties. The authors make use of mathematical morphology, spatial statistics, image processing, stereology and stochastic geometry to analyze microstructures arising in materials science.
This volume gathers contributions from participants of the Introductory School and the IHP thematic quarter on Numerical Methods for PDE, held in 2016 in Cargese (Corsica) and Paris, providing an opportunity to disseminate the latest results and envisage fresh challenges in traditional and new application fields. Numerical analysis applied to the approximate solution of PDEs is a key discipline in applied mathematics, and over the last few years, several new paradigms have appeared, leading to entire new families of discretization methods and solution algorithms. This book is intended for researchers in the field.
An essential contribution to the study of the history of computers, this work identifies the computer's impact on the physical, biological, cognitive, and medical sciences. References fundamental to the understudied area of the history of scientific computing also document the significant role of the sciences in helping to shape the development of computer technology. More broadly, the many resources on scientific computing help demonstrate how the computer was the most significant scientific instrument of the 20th century. The only guide of its kind covering the use and impact of computers on the the physical, biological, medical, and cognitive sciences, it contains more than 1,000 annotated citations to carefully selected secondary and primary resources. Historians of technology and science will find this a very useful resource. Computer scientists, physicians, biologists, chemists, and geologists will also benefit from this extensive bibliography on the history of computer applications and the sciences.
This textbook provides concise coverage of the basics of linear and integer programming which, with megatrends toward optimization, machine learning, big data, etc., are becoming fundamental toolkits for data and information science and technology. The authors' approach is accessible to students from almost all fields of engineering, including operations research, statistics, machine learning, control system design, scheduling, formal verification and computer vision. The presentations enables the basis for numerous approaches to solving hard combinatorial optimization problems through randomization and approximation. Readers will learn to cast various problems that may arise in their research as optimization problems, understand the cases where the optimization problem will be linear, choose appropriate solution methods and interpret results appropriately.
This book is a collection of selected papers presented at the 10th International Conference on Scientific Computing in Electrical Engineering (SCEE), held in Wuppertal, Germany in 2014. The book is divided into five parts, reflecting the main directions of SCEE 2014: 1. Device Modeling, Electric Circuits and Simulation, 2. Computational Electromagnetics, 3. Coupled Problems, 4. Model Order Reduction, and 5. Uncertainty Quantification. Each part starts with a general introduction followed by the actual papers. The aim of the SCEE 2014 conference was to bring together scientists from academia and industry, mathematicians, electrical engineers, computer scientists, and physicists, with the goal of fostering intensive discussions on industrially relevant mathematical problems, with an emphasis on the modeling and numerical simulation of electronic circuits and devices, electromagnetic fields, and coupled problems. The methodological focus was on model order reduction and uncertainty quantification.
This textbook intends to be a comprehensive and substantially self-contained two-volume book covering performance, reliability, and availability evaluation subjects. The volumes focus on computing systems, although the methods may also be applied to other systems. The first volume covers Chapter 1 to Chapter 14, whose subtitle is ``Performance Modeling and Background". The second volume encompasses Chapter 15 to Chapter 25 and has the subtitle ``Reliability and Availability Modeling, Measuring and Workload, and Lifetime Data Analysis". This text is helpful for computer performance professionals for supporting planning, design, configuring, and tuning the performance, reliability, and availability of computing systems. Such professionals may use these volumes to get acquainted with specific subjects by looking at the particular chapters. Many examples in the textbook on computing systems will help them understand the concepts covered in each chapter. The text may also be helpful for the instructor who teaches performance, reliability, and availability evaluation subjects. Many possible threads could be configured according to the interest of the audience and the duration of the course. Chapter 1 presents a good number of possible courses programs that could be organized using this text.
This volume contains proceedings of two conferences held in Toronto (Canada) and Kozhikode (India) in 2016 in honor of the 60th birthday of Professor Kumar Murty. The meetings were focused on several aspects of number theory: The theory of automorphic forms and their associated L-functions Arithmetic geometry, with special emphasis on algebraic cycles, Shimura varieties, and explicit methods in the theory of abelian varieties The emerging applications of number theory in information technology Kumar Murty has been a substantial influence in these topics, and the two conferences were aimed at honoring his many contributions to number theory, arithmetic geometry, and information technology.
This book puts in one place and in accessible form Richard Berk's most recent work on forecasts of re-offending by individuals already in criminal justice custody. Using machine learning statistical procedures trained on very large datasets, an explicit introduction of the relative costs of forecasting errors as the forecasts are constructed, and an emphasis on maximizing forecasting accuracy, the author shows how his decades of research on the topic improves forecasts of risk. Criminal justice risk forecasts anticipate the future behavior of specified individuals, rather than "predictive policing" for locations in time and space, which is a very different enterprise that uses different data different data analysis tools. The audience for this book includes graduate students and researchers in the social sciences, and data analysts in criminal justice agencies. Formal mathematics is used only as necessary or in concert with more intuitive explanations.
This volume of selected and peer-reviewed contributions on the latest developments in time series analysis and forecasting updates the reader on topics such as analysis of irregularly sampled time series, multi-scale analysis of univariate and multivariate time series, linear and non-linear time series models, advanced time series forecasting methods, applications in time series analysis and forecasting, advanced methods and online learning in time series and high-dimensional and complex/big data time series. The contributions were originally presented at the International Work-Conference on Time Series, ITISE 2016, held in Granada, Spain, June 27-29, 2016. The series of ITISE conferences provides a forum for scientists, engineers, educators and students to discuss the latest ideas and implementations in the foundations, theory, models and applications in the field of time series analysis and forecasting. It focuses on interdisciplinary and multidisciplinary research encompassing the disciplines of computer science, mathematics, statistics and econometrics.
Numerical partial differential equations (PDEs) are an important part of numerical simulation, the third component of the modern methodology for science and engineering, besides the traditional theory and experiment. This volume contains papers that originated with the collaborative research of the teams that participated in the IMA Workshop for Women in Applied Mathematics: Numerical Partial Differential Equations and Scientific Computing in August 2014.
Growth curve models in longitudinal studies are widely used to model population size, body height, biomass, fungal growth, and other variables in the biological sciences, but these statistical methods for modeling growth curves and analyzing longitudinal data also extend to general statistics, economics, public health, demographics, epidemiology, SQC, sociology, nano-biotechnology, fluid mechanics, and other applied areas. There is no one-size-fits-all approach to growth measurement. The selected papers in this volume build on presentations from the GCM workshop held at the Indian Statistical Institute, Giridih, on March 28-29, 2016. They represent recent trends in GCM research on different subject areas, both theoretical and applied. This book includes tools and possibilities for further work through new techniques and modification of existing ones. The volume includes original studies, theoretical findings and case studies from a wide range of applied work, and these contributions have been externally refereed to the high quality standards of leading journals in the field.
In the last few years, courses on parallel computation have been developed and offered in many institutions in the UK, Europe and US as a recognition of the growing significance of this topic in mathematics and computer science. There is a clear need for texts that meet the needs of students and lecturers and this book, based on the author's lecture at ETH Zurich, is an ideal practical student guide to scientific computing on parallel computers working up from a hardware instruction level, to shared memory machines, and finally to distributed memory machines. Aimed at advanced undergraduate and graduate students in applied mathematics, computer science, and engineering, subjects covered include linear algebra, fast Fourier transform, and Monte-Carlo simulations, including examples in C and, in some cases, Fortran. This book is also ideal for practitioners and programmers.
The book focuses on the next fields of computer science: combinatorial optimization, scheduling theory, decision theory, and computer-aided production management systems. It also offers a quick introduction into the theory of PSC-algorithms, which are a new class of efficient methods for intractable problems of combinatorial optimization. A PSC-algorithm is an algorithm which includes: sufficient conditions of a feasible solution optimality for which their checking can be implemented only at the stage of a feasible solution construction, and this construction is carried out by a polynomial algorithm (the first polynomial component of the PSC-algorithm); an approximation algorithm with polynomial complexity (the second polynomial component of the PSC-algorithm); also, for NP-hard combinatorial optimization problems, an exact subalgorithm if sufficient conditions were found, fulfilment of which during the algorithm execution turns it into a polynomial complexity algorithm. Practitioners and software developers will find the book useful for implementing advanced methods of production organization in the fields of planning (including operative planning) and decision making. Scientists, graduate and master students, or system engineers who are interested in problems of combinatorial optimization, decision making with poorly formalized overall goals, or a multiple regression construction will benefit from this book.
This book gathers the main recent results on positive trigonometric polynomials within a unitary framework. The book has two parts: theory and applications. The theory of sum-of-squares trigonometric polynomials is presented unitarily based on the concept of Gram matrix (extended to Gram pair or Gram set). The applications part is organized as a collection of related problems that use systematically the theoretical results.
This book offers an ideal introduction to singular perturbation problems, and a valuable guide for researchers in the field of differential equations. It also includes chapters on new contributions to both fields: differential equations and singular perturbation problems. Written by experts who are active researchers in the related fields, the book serves as a comprehensive source of information on the underlying ideas in the construction of numerical methods to address different classes of problems with solutions of different behaviors, which will ultimately help researchers to design and assess numerical methods for solving new problems. All the chapters presented in the volume are complemented by illustrations in the form of tables and graphs.
This uniquely accessible book helps readers use CABology to solve real-world business problems and drive real competitive advantage. It provides reliable, concise information on the real benefits, usage and operationalization aspects of utilizing the "Trio Wave" of cloud, analytic and big data. Anyone who thinks that the game changing technology is slow paced needs to think again. This book opens readers' eyes to the fact that the dynamics of global technology and business are changing. Moreover, it argues that businesses must transform themselves in alignment with the Trio Wave if they want to survive and excel in the future. CABology focuses on the art and science of optimizing the business goals to deliver true value and benefits to the customer through cloud, analytic and big data. It offers business of all sizes a structured and comprehensive way of discovering the real benefits, usage and operationalization aspects of utilizing the Trio Wave.
The second part of a two-volume set concerning the field of Clifford (geometric) algebra, this work consists of thematically organized chapters that provide a broad overview of cutting-edge topics in mathematical physics and the physical applications of Clifford algebras. This volume is a survey of most aspects of Clifford analysis. Topics range from applications such as complex-distance potential theory, supersymmetry, and fluid dynamics to Fourier analysis, the study of boundary value problems, and applications, to mathematical physics and Schwarzian derivatives in Euclidean space. Among the mathematical topics examined are generalized Dirac operators, holonomy groups, monogenic and hypermonogenic functions and their derivatives, quaternionic Beltrami equations, Fourier theory under Mobius transformations, Cauchy-Reimann operators, and Cauchy type integrals.
"This text covers key mathematical principles and algorithms for
nonlinear filters used in image processing. Readers will gain an
in-depth understanding of the underlying mathematical and filter
design methodologies needed to construct and use nonlinear filters
in a variety of applications.
This book concerns the most up-to-date advances in computational transport phenomena (CTP), an emerging tool for the design of gas-solid processes such as fluidized bed systems. The authors examine recent work in kinetic theory and CTP and illustrate gas-solid processes' many applications in the energy, chemical, pharmaceutical, and food industries. They also discuss the kinetic theory approach in developing constitutive equations for gas-solid flow systems and how it has advanced over the last decade as well as the possibility of obtaining innovative designs for multiphase reactors, such as those needed to capture CO2 from flue gases. Suitable as a concise reference and a textbook supplement for graduate courses, Computational Transport Phenomena of Gas-Solid Systems is ideal for practitioners in industries involved with the design and operation of processes based on fluid/particle mixtures, such as the energy, chemicals, pharmaceuticals, and food processing.
6 Preliminaries.- 6.1 The operator of singular integration.- 6.2 The space Lp(?, ?).- 6.3 Singular integral operators.- 6.4 The spaces $$L_{p}^{ + }(\Gamma, \rho ), L_{p}^{ - }(\Gamma, \rho ) and \mathop{{L_{p}^{ - }}}\limits^{^\circ } (\Gamma, \rho )$$.- 6.5 Factorization.- 6.6 One-sided invertibility of singular integral operators.- 6.7 Fredholm operators.- 6.8 The local principle for singular integral operators.- 6.9 The interpolation theorem.- 7 General theorems.- 7.1 Change of the curve.- 7.2 The quotient norm of singular integral operators.- 7.3 The principle of separation of singularities.- 7.4 A necessary condition.- 7.5 Theorems on kernel and cokernel of singular integral operators.- 7.6 Two theorems on connections between singular integral operators.- 7.7 Index cancellation and approximative inversion of singular integral operators.- 7.8 Exercises.- Comments and references.- 8 The generalized factorization of bounded measurable functions and its applications.- 8.1 Sketch of the problem.- 8.2 Functions admitting a generalized factorization with respect to a curve in Lp(?, ?).- 8.3 Factorization in the spaces Lp(?, ?).- 8.4 Application of the factorization to the inversion of singular integral operators.- 8.5 Exercises.- Comments and references.- 9 Singular integral operators with piecewise continuous coefficients and their applications.- 9.1 Non-singular functions and their index.- 9.2 Criteria for the generalized factorizability of power functions.- 9.3 The inversion of singular integral operators on a closed curve.- 9.4 Composed curves.- 9.5 Singular integral operators with continuous coefficients on a composed curve.- 9.6 The case of the real axis.- 9.7 Another method of inversion.- 9.8 Singular integral operators with regel functions coefficients.- 9.9 Estimates for the norms of the operators P?, Q? and S?.- 9.10 Singular operators on spaces H?o(?, ?).- 9.11 Singular operators on symmetric spaces.- 9.12 Fredholm conditions in the case of arbitrary weights.- 9.13 Technical lemmas.- 9.14 Toeplitz and paired operators with piecewise continuous coefficients on the spaces lp and ?p.- 9.15 Some applications.- 9.16 Exercises.- Comments and references.- 10 Singular integral operators on non-simple curves.- 10.1 Technical lemmas.- 10.2 A preliminary theorem.- 10.3 The main theorem.- 10.4 Exercises.- Comments and references.- 11 Singular integral operators with coefficients having discontinuities of almost periodic type.- 11.1 Almost periodic functions and their factorization.- 11.2 Lemmas on functions with discontinuities of almost periodic type.- 11.3 The main theorem.- 11.4 Operators with continuous coefficients - the degenerate case.- 11.5 Exercises.- Comments and references.- 12 Singular integral operators with bounded measurable coefficients.- 12.1 Singular operators with measurable coefficients in the space L2(?).- 12.2 Necessary conditions in the space L2(?).- 12.3 Lemmas.- 12.4 Singular operators with coefficients in ?p(?). Sufficient conditions.- 12.5 The Helson-Szegoe theorem and its generalization.- 12.6 On the necessity of the condition a ? Sp.- 12.7 Extension of the class of coefficients.- 12.8 Exercises.- Comments and references.- 13 Exact constants in theorems on the boundedness of singular operators.- 13.1 Norm and quotient norm of the operator of singular integration.- 13.2 A second proof of Theorem 4.1 of Chapter 12.- 13.3 Norm and quotient norm of the operator S? on weighted spaces.- 13.4 Conditions for Fredholmness in spaces Lp(?, ?).- 13.5 Norms and quotient norm of the operator aI + bS?.- 13.6 Exercises.- Comments and references.- References. |
You may like...
|