![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Other technologies > Marine engineering > Offshore engineering
Wind Turbine Foundations (ICE Themes) presents fourteen chapters covering the latest international research and case studies on offshore wind farm foundations. Chapters encompass field observations on sites in several countries as well as computational and laboratory studies. Ground conditions vary from soft clay to dense sand. Key features of this book include (1) broad coverage of the subject including monopile foundations, axial loaded piles and suction caissons; (2) international scope with authors from Australia, Ireland, Tanzania, Norway, Greece, China and the United Kingdom; and (3) an overview of key issues. This book, which has been edited by two leading experts in the field is an ideal resource for engineers and researchers seeking an overview of the latest research in this exciting area.
This is the first textbook to address quantified risk assessment (QRA) as specifically applied to offshore installations and operations. As the second part of the two-volume updated and expanded fourth edition, it adds a new focus on the recent development of Normally Unattended Installations (NUIs), which are essentially autonomous installations that combine digitalization, big data, drones and machine learning, and can be supported by W2W (walk-to-work) vessels. These minimalistic installations with no helideck and very limited safety systems will require a new approach to risk assessment and emergency planning, especially during manned periods involving W2W vessels. Separate chapters analyse the main hazards for offshore structures: fire, explosion, collision, and falling objects, as well as structural and marine hazards. The book explores possible simplifications of risk assessment for traditional manned installations. Risk mitigation and control are also discussed, as well as how the results of quantitative risk assessment studies should be presented. In closing, the book provides an updated approach to environmental risk assessment. The book offers a comprehensive reference guide for academics and students of marine/offshore risk assessment and management. It will also be of interest to professionals in the industry, as well as contractors, suppliers, consultants and regulatory authorities.
Dynamics and Control of Mechanical Systems in Offshore Engineering is a comprehensive treatment of marine mechanical systems (MMS) involved in processes of great importance such as oil drilling and mineral recovery. Ranging from nonlinear dynamic modeling and stability analysis of flexible riser systems, through advanced control design for an installation system with a single rigid payload attached by thrusters, to robust adaptive control for mooring systems, it is an authoritative reference on the dynamics and control of MMS. Readers will gain not only a complete picture of MMS at the system level, but also a better understanding of the technical considerations involved and solutions to problems that commonly arise from dealing with them. The text provides: * a complete framework of dynamical analysis and control design for marine mechanical systems; * new results on the dynamical analysis of riser, mooring and installation systems together with a general modeling method for a class of MMS; * a general method and strategy for realizing the control objectives of marine systems with guaranteed stability the effectiveness of which is illustrated by extensive numerical simulation; and * approximation-based control schemes using neural networks for installation of subsea structures with attached thrusters in the presence of time-varying environmental disturbances and parametric uncertainties. Most of the results presented are analytical with repeatable design algorithms with proven closed-loop stability and performance analysis of the proposed controllers is rigorous and detailed. Dynamics and Control of Mechanical Systems in Offshore Engineering is primarily intended for researchers and engineers in the system and control community, but graduate students studying control and marine engineering will also find it a useful resource as will practitioners working on the design, running or maintenance of offshore platforms.
The book gives a systematical and almost self-contained description of the many facets of envisaging, designing, implementing or experimentally exploring offshore mechatronics and systems along the adequate designs of integrated modeling, safety, control and supervision infrastructure. With the rapid improvements in offshore technologies in various fields such as oil and gas industry, wind energy, robotics and logistics, many researchers in academia and industry have focused on technology-based challenges raised in offshore environment. This book introduces novel theoretical or practical techniques for offshore mechatronics systems. Chapters cover general application model-based systems engineering, wind energy, control systems, mechanics, health monitoring, safety critical human-machine systems, logistics and offshore industrial complexes such as oil and gas operations, robotics, large space structures and autonomous underwater vehicles, and some other advanced technologies. The core feature of this book is that of establishing synergies of modeling, control, computing and mechanics in order to achieve not only robust plant system operation but also properties such as safety, cost, integrity and survivability while retaining desired performance quality. The book provides innovative insights into applications aspects and theoretical understanding of complex offshore mechatronics systems that has emerged in recent years, either via physical implementations or via extensive computer simulations in addition to sound innovated theoretical developments. It will serve as a reference for graduate and postgraduate students and for researchers in all engineering disciplines, including mechanical engineering, electrical engineering and applied mathematics to explore the state-of-theart techniques for solving problems of integrated modeling, control and supervision of complex offshore plants with collective safety and robustness. Thus it shall be useful as a guidance for system engineering practitioners and system theoretic researchers alike.
"Dynamics and Control of Mechanical Systems in Offshore Engineering" is a comprehensive treatment of marine mechanical systems (MMS) involved in processes of great importance such as oil drilling and mineral recovery. Ranging from nonlinear dynamic modeling and stability analysis of flexible riser systems, through advanced control design for an installation system with a single rigid payload attached by thrusters, to robust adaptive control for mooring systems, it is an authoritative reference on the dynamics and control of MMS. Readers will gain not only a complete picture of MMS at the system level, but also a better understanding of the technical considerations involved and solutions to problems that commonly arise from dealing with them. The text provides: . a complete framework of dynamical analysis and control design for marine mechanical systems; . new results on the dynamical analysis of riser, mooring and installation systems together with a general modeling method for a class of MMS; . a general method and strategy for realizing the control objectives of marine systems with guaranteed stability the effectiveness of which is illustrated by extensive numerical simulation; and . approximation-based control schemes using neural networks for installation of subsea structures with attached thrusters in the presence of time-varying environmental disturbances and parametric uncertainties. Most of the results presented are analytical with repeatable design algorithms with proven closed-loop stability and performance analysis of the proposed controllers is rigorous and detailed. "Dynamics and Control of Mechanical Systems in Offshore Engineering" is primarily intended for researchers and engineers in the system and control community, but graduate students studying control and marine engineering will also find it a useful resource as will practitioners working on the design, running or maintenance of offshore platforms."
The generation of offshore energy is a rapidly growing sector, competing for space in an already busy seascape. This book brings together the ecological, economic, and social implications of the spatial conflict this growth entails. Covering all energy-generation types (wind, wave, tidal, oil, and gas), it explores the direct and indirect impacts the growth of offshore energy generation has on both the marine environment and the existing uses of marine space. Chapters explore main issues associated with offshore energy, such as the displacement of existing activities and the negative impacts it can have on marine species and ecosystems. Chapters also discuss how the growth of offshore energy generation presents new opportunities for collaboration and co-location with other sectors, for example, the co-location of wild-capture fisheries and wind farms. The book integrates these issues and opportunities, and demonstrates the importance of holistic marine spatial planning for optimising the location of offshore energy-generation sites. It highlights the importance of stakeholder engagement in these planning processes and the role of integrated governance, with illustrative case studies from the United States, United Kingdom, northern Europe, and the Mediterranean. It also discusses trade-off analysis and decision theory and provides a range of tools and best practices to inform future planning processes.
Covers theoretical concepts in offshore mechanics with consideration to new applications, including offshore wind farms, ocean energy devices, aquaculture, floating bridges, and submerged tunnels This comprehensive book covers important aspects of the required analysis and design of offshore structures and systems and the fundamental background material for offshore engineering. Whereas most of the books currently available in the field use traditional oil, gas, and ship industry examples in order to explain the fundamentals in offshore mechanics, this book uses more recent applications, including recent fixed-bottom and floating offshore platforms, ocean energy structures and systems such as wind turbines, wave energy converters, tidal turbines and hybrid marine platforms. Offshore Mechanics covers traditional and more recent methodologies used in offshore structure modelling (including SPH and hydroelasticity models). It also examines numerical techniques, including computational fluid dynamics and finite element method. Additionally, the book features easy-to-understand exercises and examples. Provides a comprehensive treatment for the case of recent applications in offshore mechanics for researchers and engineers Presents the subject of computational fluid dynamics (CFD) and finite element methods (FEM) along with the high fidelity numerical analysis of recent applications in offshore mechanics Offers insight into the philosophy and power of numerical simulations and an understanding of the mathematical nature of the fluid and structural dynamics with focus on offshore mechanic applications Offshore Mechanics: Structural and Fluid Dynamics for Recent Applications is an important book for graduate and senior undergraduate students in offshore engineering and for offshore engineers and researchers in the offshore industry.
This book highlights state-of-the-art research findings on floating developments in both inland and coastal waters with focus on living, recreation and working offshore. It includes six themes: (1) business case and real estate development, (2) spatial planning and architecture, (3) food and energy production, (4) ecological impact and nature-based solutions, (5) governance and social impact and (6) design and engineering of (infra)structures. The book presents key issues addressed when utilizing water space. It gives an overview of findings and discussions from the world's leading experts from the industry, policymakers, entrepreneurs, researchers and identifies new opportunities as well as fosters collaboration on floating projects for a more climate-adaptive, socially inclusive, sustainable and better world.
This book gathers a selection of refereed papers presented at the 2nd Vietnam Symposium on Advances in Offshore Engineering (VSOE 2021), held in 2022 in Ho Chi Minh City, Vietnam. The book consists of articles written by researchers, practitioners, policymakers, and entrepreneurs addressing the important topic of technological and policy changes intended to promote renewable energies and to generate business opportunities in oil and gas and offshore renewable energy. With a special focus on sustainable energy and marine planning, the book brings together the latest lessons learned in offshore engineering, technological innovations, cost-effective and safer foundations and structural solutions, environmental protection, hazards, vulnerability, and risk management. Its content caters to graduate students, researchers, and industrial practitioners working in the fields of offshore engineering and renewable energies.
This book offers a timely review of wave energy and its conversion mechanisms. Written having in mind current needs of advanced undergraduates engineering students, it covers the whole process of energy generation, from waves to electricity, in a systematic and comprehensive manner. Upon a general introduction to the field of wave energy, it presents analytical calculation methods for estimating wave energy potential in any given location. Further, it covers power-take off (PTOs), describing their mechanical and electrical aspects in detail, and control systems and algorithms. The book includes chapters written by active researchers with vast experience in their respective filed of specialization. It combines basic aspects with cutting-edge research and methods, and selected case studies. The book offers systematic and practice-oriented knowledge to students, researchers, and professionals in the wave energy sector. Chapters 17 of this book is available open access under a CC BY 4.0 license at link.springer.com
This book demonstrates various types of deepwater risers with different motion equations and boundary conditions depending on their different structural configurations. It also discusses the hydrodynamic analysis methods of different deepwater risers. It provides new force and structure models in time and frequency domains of vortex induced force, including that for a downstream riser of the tandem riser, and the rigid oscillating model for steel catenary riser. The highlights of this book are the analysis methods of the rigid oscillating mode of steel catenary riser and the coupling iteration for top-tensioned riser with pipe-in-pipe configuration. This book is interesting and useful to a wide readership in the various fields of ocean engineering and offshore oil & gas development.
This journal-like book series includes edited volumes to rapidly report and spread the latest technological results, new scientific discovery and valuable applied researches in the fields concerning offshore robotics as well as promote international academic exchange. We aim to make it one of the premier comprehensive academic publications of world offshore vehicle and robotics community. The audience of the series will include the scholars, researchers, engineers and students who are interested in fields of autonomous marine vehicles and robotics, including autonomous surface vehicles, autonomous underwater vehicles, remote operation vehicles, marine bionics, marine vehicle modeling, guidance, navigation, control and cooperation and so on.
This book proposes a new approach to dynamic and online risk assessment of automated and autonomous marine systems, taking into account different environmental and operational conditions. The book presents lessons learnt from dynamic positioning incidents and accidents, and discusses the challenges of risk assessment of complex systems. The book begins by introducing dynamic and online risk assessment, before presenting automated and autonomous marine systems, as well as numerous dynamic positioning incidents. It then discusses human interactions with technology and explores how to quantify human error. Dynamic probabilistic risk assessment and online risk assessment are both considered fully, including case studies with the application of assisting operators in decision making in emergency situations. Finally, areas for future research are suggested. This practical volume offers tools and methodologies to help operators make better decisions and improve the safety of automated and autonomous marine systems. It provides a guideline for researchers and practitioners to perform dynamic probabilistic and online risk assessment, which also should be applicable to other complex systems outside the marine and maritime domain, such as nuclear power plants, chemical processes, autonomous transport systems, and space shuttles.
In the last 25 years, information systems have had a disruptive effect on society and business. Up until recently though, the majority of passengers and goods were transported by sea in many ways similar to the way they were at the turn of the previous century. Gradually, advanced information technologies are being introduced, in an attempt to make shipping safer, greener, more efficient, and transparent. The emerging field of Maritime Informatics studies the application of information technology and information systems to maritime transportation. Maritime Informatics can be considered as both a field of study and domain of application. As an application domain, it is the outlet of innovations originating from data science and artificial intelligence; as a field of study, it is positioned between computer science and marine engineering. This new field's complexity lies within this duality because it is faced with disciplinary barriers yet demands a systemic, transdisciplinary approach. At present, there is a growing body of knowledge that remains undocumented in a single source or textbook designed to assist students and practitioners. This highly useful textbook/reference starts by introducing required knowledge, algorithmic approaches, and technical details, before presenting real-world applications. The aim is to present interested audiences with an overview of the main technological innovations having a disruptive effect on the maritime industry, as well as to discuss principal ideas, methods of operation and applications, and future developments. The material in this unique volume provides requisite core knowledge for undergraduate or postgraduate students, employing an analytical approach with numerous real-world examples and case studies.
This book highlights the main features of shipbuilding management which lead to successful completion of shipbuilding projects. A brief review of the market context for the industry, its historical development are given to explain how shipbuilding arrived at its current structure. First pre-production including design, planning, cost estimating, procurement of materials and sub-contracting. Then, the production sequence outlines part preparation, hull assembly and construction, outfitting and painting, testing and completion. The importance of human resources and management organisation are explained. Building a ship is a complex project, so the principles of project management are described, first in general terms and then with specific reference to their application in shipbuilding. Finally managing the progress of a shipbuilding project and achieving completion are emphasised.
This book provides insight on processing mechanics during ship and offshore structure, and researchers, scientists, and engineers in the field of manufacturing process mechanics can benefit from the book. This book is written by subject experts based on the recent research results in FE computation on accuracy fabrication of ship and offshore structures based on processing mechanics. In order to deal with actual engineering problems during construction of ship and offshore structure, it proposes advanced computational approaches such as thermal elastic-plastic and elastic FE computations and employed to examine physical behavior and clarifies generation mechanism of mechanical response. As such, this book provides valuable knowledge, useful methods, and practical algorithms that can be considered in manufacturing process mechanics.
This book gathers the latest advances, innovations, and applications in the field of computational geomechanics, as presented by international researchers and engineers at the 16th International Conference of the International Association for Computer Methods and Advances in Geomechanics (IACMAG 2020/21). Contributions include a wide range of topics in geomechanics such as: monitoring and remote sensing, multiphase modelling, reliability and risk analysis, surface structures, deep structures, dams and earth structures, coastal engineering, mining engineering, earthquake and dynamics, soil-atmosphere interaction, ice mechanics, landfills and waste disposal, gas and petroleum engineering, geothermal energy, offshore technology, energy geostructures, geomechanical numerical models and computational rail geotechnics.
This open access book discusses the energy management for the multi-energy maritime grid, which is the local energy network installed in harbors, ports, ships, ferries, or vessels. The grid consists of generation, storage, and critical loads. It operates either in grid-connected or in islanding modes, under the constraints of both power system and transportation system. With full electrification, the future maritime grids, such as all-electric ships and seaport microgrids, will become "maritime multi-energy system" with the involvement of multiple energy, i.e., electrical power, fossil fuel, and heating/cooling power. With various practical cases, this book provides a cross-disciplinary view of the green and sustainable shipping via the energy management of maritime grids. In this book, the concepts and definitions of the multi-energy maritime grids are given after a comprehensive literature survey, and then the global and regional energy efficiency policies for the maritime transportation are illustrated. After that, it presents energy management methods under different scenarios for all-electric ships and electrified ports. At last, the future research roadmap are overviewed. The book is intended for graduate students, researchers, and professionals who are interested in the energy management of maritime transportation.
A rotting hull of a ship...lost gold...coins...gems...Sunken Treasure! Today treasure hunting is a big business. Searchers use metal detectors and sonar to locate treasure on the ocean floor. Divers use high-powered machinery to uncover objects buried in the sand and to raise them to the surface. And more than just treasures are discovered. A whole window into the past is opened up. A salvage can take months or even years. But it's worth it!
Dealing exclusively with underwater instrumentation, control, and communication technology for subsea oil and gas production, "Subsea Control and Data Acquisition" has been structured to cover relevant experience and challenges in frontier subsea developments. Aimed at professionals active in subsea production systems, in particular those engaged in the control and monitoring of such installations, and engineers keen to keep abreast of current practice and technologies, this volume covers operational experience of long offset control and monitoring, as well as enhanced oil recovery and discusses relevant topics in subsea and hole monitoring, such as, ReliabilityEnhanced oil recoverySubsea and down hole monitoringLong offset controlSubsea communication/control Reliability of systems plays a dominant role, and the effect of regional legislation is not forgotten; this volume includes contributions from experienced experts from major oil companies to challenge the reader. The accompanying CD can be requested from the UK Editorial team. Send requests to Debbie Cox, [email protected].
This is the first textbook to address quantified risk assessment (QRA) as specifically applied to offshore installations and operations. As the second part of the two-volume updated and expanded fourth edition, it adds a new focus on the recent development of Normally Unattended Installations (NUIs), which are essentially autonomous installations that combine digitalization, big data, drones and machine learning, and can be supported by W2W (walk-to-work) vessels. These minimalistic installations with no helideck and very limited safety systems will require a new approach to risk assessment and emergency planning, especially during manned periods involving W2W vessels. Separate chapters analyse the main hazards for offshore structures: fire, explosion, collision, and falling objects, as well as structural and marine hazards. The book explores possible simplifications of risk assessment for traditional manned installations. Risk mitigation and control are also discussed, as well as how the results of quantitative risk assessment studies should be presented. In closing, the book provides an updated approach to environmental risk assessment. The book offers a comprehensive reference guide for academics and students of marine/offshore risk assessment and management. It will also be of interest to professionals in the industry, as well as contractors, suppliers, consultants and regulatory authorities.
This is the first textbook to address quantified risk assessment (QRA) as specifically applied to offshore installations and operations. As the first part of the two-volume updated and expanded fourth edition, it adds a new focus on the EU Offshore Safety Directive, and discusses the new perspective on risk from the Norwegian Petroleum Safety Authority, followed by new and updated international standards. New safety statistics for the Norwegian sectors are presented, as well as new case studies on international offshore accidents, such as the explosion on FPSO Sao Mateus in 2015, which involved 9 fatalities. Separate chapters analyse the main hazards for offshore structures: fire, explosion, collision, and falling objects, as well as structural and marine hazards. Risk mitigation and control are discussed, as well as how the results of quantitative risk assessment studies should be presented. The fourth edition presents updated hydrocarbon release statistics, together with new methods for modelling the risk from ignited hydrocarbon releases. There have been recent advances in the modelling of collision risk from passing and attending vessels, based on extensive research; these advances are described in detail, in addition to new developments in the safety of Dynamic Positioning vessels. In closing, the book provides updated statistics and lessons learned from accidents involving offshore helicopter transportation of personnel. The book offers a comprehensive reference guide for academics and students of marine/offshore risk assessment and management. It will also be of interest to professionals in the industry, as well as contractors, suppliers, consultants and regulatory authorities.
This book presents detailed explanations of how to formulate field development plans for oil and gas discovery. The data and case studies provided here, obtained from the authors' field experience in the oil and gas industry around the globe, offer a real-world context for the theories and procedures discussed. The book covers all aspects of field development plan processes, from reserve estimations to economic analyses. It shows readers in both the oil and gas industry and in academia how to prepare field development plans in a straightforward way, and with substantially less uncertainty.
This book presents selected contributions to the Pan-American Congress of Naval Engineering, Maritime Transport and Port Engineering (COPINAVAL), which is in its twenty-fifth edition and has become a reference event for the global maritime and port sector, attracting more and more participants from different countries. The 2017 congress was held in Panama City, Panama, bringing together a select group of scientists, entrepreneurs, academics and professionals to discuss the latest technological advances in the maritime industry.
These proceedings gather a selection of refereed papers presented at the 1st Vietnam Symposium on Advances in Offshore Engineering (VSOE 2018), held on 1-3 November 2018 in Hanoi, Vietnam. The contributions from researchers, practitioners, policymakers, and entrepreneurs address technological and policy changes intended to promote renewable energies, and to generate business opportunities in oil and gas and offshore renewable energy. With a special focus on energy and geotechnics, the book brings together the latest lessons learned in offshore engineering, technological innovations, cost-effective and safer foundations and structural solutions, environmental protection, hazards, vulnerability, and risk management. The book offers a valuable resource for all graduate students, researchers and industrial practitioners working in the fields of offshore engineering and renewable energies. |
![]() ![]() You may like...
Noether's Theorems - Applications in…
Gennadi Sardanashvily
Hardcover
Extremum Seeking through Delays and PDEs
Tiago Roux Oliveira, Miroslav Krstic
Hardcover
Numerical Geometry, Grid Generation and…
Vladimir A. Garanzha, Lennard Kamenski, …
Hardcover
R6,387
Discovery Miles 63 870
Stochastic Geometric Mechanics - CIB…
Sergio Albeverio, Ana Bela Cruzeiro, …
Hardcover
Solvability, Regularity, and Optimal…
Pierluigi Colli, Angelo Favini, …
Hardcover
R3,725
Discovery Miles 37 250
|