![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Other technologies > Marine engineering > Offshore engineering
This book provides insight on processing mechanics during ship and offshore structure, and researchers, scientists, and engineers in the field of manufacturing process mechanics can benefit from the book. This book is written by subject experts based on the recent research results in FE computation on accuracy fabrication of ship and offshore structures based on processing mechanics. In order to deal with actual engineering problems during construction of ship and offshore structure, it proposes advanced computational approaches such as thermal elastic-plastic and elastic FE computations and employed to examine physical behavior and clarifies generation mechanism of mechanical response. As such, this book provides valuable knowledge, useful methods, and practical algorithms that can be considered in manufacturing process mechanics.
This book highlights state-of-the-art research findings on floating developments in both inland and coastal waters with focus on living, recreation and working offshore. It includes six themes: (1) business case and real estate development, (2) spatial planning and architecture, (3) food and energy production, (4) ecological impact and nature-based solutions, (5) governance and social impact and (6) design and engineering of (infra)structures. The book presents key issues addressed when utilizing water space. It gives an overview of findings and discussions from the world's leading experts from the industry, policymakers, entrepreneurs, researchers and identifies new opportunities as well as fosters collaboration on floating projects for a more climate-adaptive, socially inclusive, sustainable and better world.
This book gathers a selection of refereed papers presented at the 2nd Vietnam Symposium on Advances in Offshore Engineering (VSOE 2021), held in 2022 in Ho Chi Minh City, Vietnam. The book consists of articles written by researchers, practitioners, policymakers, and entrepreneurs addressing the important topic of technological and policy changes intended to promote renewable energies and to generate business opportunities in oil and gas and offshore renewable energy. With a special focus on sustainable energy and marine planning, the book brings together the latest lessons learned in offshore engineering, technological innovations, cost-effective and safer foundations and structural solutions, environmental protection, hazards, vulnerability, and risk management. Its content caters to graduate students, researchers, and industrial practitioners working in the fields of offshore engineering and renewable energies.
This book proposes a new approach to dynamic and online risk assessment of automated and autonomous marine systems, taking into account different environmental and operational conditions. The book presents lessons learnt from dynamic positioning incidents and accidents, and discusses the challenges of risk assessment of complex systems. The book begins by introducing dynamic and online risk assessment, before presenting automated and autonomous marine systems, as well as numerous dynamic positioning incidents. It then discusses human interactions with technology and explores how to quantify human error. Dynamic probabilistic risk assessment and online risk assessment are both considered fully, including case studies with the application of assisting operators in decision making in emergency situations. Finally, areas for future research are suggested. This practical volume offers tools and methodologies to help operators make better decisions and improve the safety of automated and autonomous marine systems. It provides a guideline for researchers and practitioners to perform dynamic probabilistic and online risk assessment, which also should be applicable to other complex systems outside the marine and maritime domain, such as nuclear power plants, chemical processes, autonomous transport systems, and space shuttles.
This book offers a timely review of wave energy and its conversion mechanisms. Written having in mind current needs of advanced undergraduates engineering students, it covers the whole process of energy generation, from waves to electricity, in a systematic and comprehensive manner. Upon a general introduction to the field of wave energy, it presents analytical calculation methods for estimating wave energy potential in any given location. Further, it covers power-take off (PTOs), describing their mechanical and electrical aspects in detail, and control systems and algorithms. The book includes chapters written by active researchers with vast experience in their respective filed of specialization. It combines basic aspects with cutting-edge research and methods, and selected case studies. The book offers systematic and practice-oriented knowledge to students, researchers, and professionals in the wave energy sector. Chapters 17 of this book is available open access under a CC BY 4.0 license at link.springer.com
This book demonstrates various types of deepwater risers with different motion equations and boundary conditions depending on their different structural configurations. It also discusses the hydrodynamic analysis methods of different deepwater risers. It provides new force and structure models in time and frequency domains of vortex induced force, including that for a downstream riser of the tandem riser, and the rigid oscillating model for steel catenary riser. The highlights of this book are the analysis methods of the rigid oscillating mode of steel catenary riser and the coupling iteration for top-tensioned riser with pipe-in-pipe configuration. This book is interesting and useful to a wide readership in the various fields of ocean engineering and offshore oil & gas development.
Newly updated and translated into English for the first time, this standalone handbook perfectly combines background and theory with real-world experiments. All key topics are covered, including environmental conditions, wave theories, hydrostatics, and wave and current loads, with emphasis on nonlinear wave body interaction. Focus is given to model testing, an important component in the design of offshore structures. Recent results on the hydrodynamics of perforated structures, moonpool and gap resonance, and third-order interaction effects, have been added to this updated version. Based on practical experience from multiple industry collaborations, combined with lectures that have been honed and improved over more than 30 years, the pedagogical, real-world approach in this book make it an ideal companion for graduate students and researchers as well as ocean engineers.
This journal-like book series includes edited volumes to rapidly report and spread the latest technological results, new scientific discovery and valuable applied researches in the fields concerning offshore robotics as well as promote international academic exchange. We aim to make it one of the premier comprehensive academic publications of world offshore vehicle and robotics community. The audience of the series will include the scholars, researchers, engineers and students who are interested in fields of autonomous marine vehicles and robotics, including autonomous surface vehicles, autonomous underwater vehicles, remote operation vehicles, marine bionics, marine vehicle modeling, guidance, navigation, control and cooperation and so on.
In the last 25 years, information systems have had a disruptive effect on society and business. Up until recently though, the majority of passengers and goods were transported by sea in many ways similar to the way they were at the turn of the previous century. Gradually, advanced information technologies are being introduced, in an attempt to make shipping safer, greener, more efficient, and transparent. The emerging field of Maritime Informatics studies the application of information technology and information systems to maritime transportation. Maritime Informatics can be considered as both a field of study and domain of application. As an application domain, it is the outlet of innovations originating from data science and artificial intelligence; as a field of study, it is positioned between computer science and marine engineering. This new field's complexity lies within this duality because it is faced with disciplinary barriers yet demands a systemic, transdisciplinary approach. At present, there is a growing body of knowledge that remains undocumented in a single source or textbook designed to assist students and practitioners. This highly useful textbook/reference starts by introducing required knowledge, algorithmic approaches, and technical details, before presenting real-world applications. The aim is to present interested audiences with an overview of the main technological innovations having a disruptive effect on the maritime industry, as well as to discuss principal ideas, methods of operation and applications, and future developments. The material in this unique volume provides requisite core knowledge for undergraduate or postgraduate students, employing an analytical approach with numerous real-world examples and case studies.
This book highlights the main features of shipbuilding management which lead to successful completion of shipbuilding projects. A brief review of the market context for the industry, its historical development are given to explain how shipbuilding arrived at its current structure. First pre-production including design, planning, cost estimating, procurement of materials and sub-contracting. Then, the production sequence outlines part preparation, hull assembly and construction, outfitting and painting, testing and completion. The importance of human resources and management organisation are explained. Building a ship is a complex project, so the principles of project management are described, first in general terms and then with specific reference to their application in shipbuilding. Finally managing the progress of a shipbuilding project and achieving completion are emphasised.
This book gathers the latest advances, innovations, and applications in the field of computational geomechanics, as presented by international researchers and engineers at the 16th International Conference of the International Association for Computer Methods and Advances in Geomechanics (IACMAG 2020/21). Contributions include a wide range of topics in geomechanics such as: monitoring and remote sensing, multiphase modelling, reliability and risk analysis, surface structures, deep structures, dams and earth structures, coastal engineering, mining engineering, earthquake and dynamics, soil-atmosphere interaction, ice mechanics, landfills and waste disposal, gas and petroleum engineering, geothermal energy, offshore technology, energy geostructures, geomechanical numerical models and computational rail geotechnics.
This open access book discusses the energy management for the multi-energy maritime grid, which is the local energy network installed in harbors, ports, ships, ferries, or vessels. The grid consists of generation, storage, and critical loads. It operates either in grid-connected or in islanding modes, under the constraints of both power system and transportation system. With full electrification, the future maritime grids, such as all-electric ships and seaport microgrids, will become "maritime multi-energy system" with the involvement of multiple energy, i.e., electrical power, fossil fuel, and heating/cooling power. With various practical cases, this book provides a cross-disciplinary view of the green and sustainable shipping via the energy management of maritime grids. In this book, the concepts and definitions of the multi-energy maritime grids are given after a comprehensive literature survey, and then the global and regional energy efficiency policies for the maritime transportation are illustrated. After that, it presents energy management methods under different scenarios for all-electric ships and electrified ports. At last, the future research roadmap are overviewed. The book is intended for graduate students, researchers, and professionals who are interested in the energy management of maritime transportation.
Dealing exclusively with underwater instrumentation, control, and communication technology for subsea oil and gas production, "Subsea Control and Data Acquisition" has been structured to cover relevant experience and challenges in frontier subsea developments. Aimed at professionals active in subsea production systems, in particular those engaged in the control and monitoring of such installations, and engineers keen to keep abreast of current practice and technologies, this volume covers operational experience of long offset control and monitoring, as well as enhanced oil recovery and discusses relevant topics in subsea and hole monitoring, such as, ReliabilityEnhanced oil recoverySubsea and down hole monitoringLong offset controlSubsea communication/control Reliability of systems plays a dominant role, and the effect of regional legislation is not forgotten; this volume includes contributions from experienced experts from major oil companies to challenge the reader. The accompanying CD can be requested from the UK Editorial team. Send requests to Debbie Cox, [email protected].
This is the first textbook to address quantified risk assessment (QRA) as specifically applied to offshore installations and operations. As the second part of the two-volume updated and expanded fourth edition, it adds a new focus on the recent development of Normally Unattended Installations (NUIs), which are essentially autonomous installations that combine digitalization, big data, drones and machine learning, and can be supported by W2W (walk-to-work) vessels. These minimalistic installations with no helideck and very limited safety systems will require a new approach to risk assessment and emergency planning, especially during manned periods involving W2W vessels. Separate chapters analyse the main hazards for offshore structures: fire, explosion, collision, and falling objects, as well as structural and marine hazards. The book explores possible simplifications of risk assessment for traditional manned installations. Risk mitigation and control are also discussed, as well as how the results of quantitative risk assessment studies should be presented. In closing, the book provides an updated approach to environmental risk assessment. The book offers a comprehensive reference guide for academics and students of marine/offshore risk assessment and management. It will also be of interest to professionals in the industry, as well as contractors, suppliers, consultants and regulatory authorities.
This is the first textbook to address quantified risk assessment (QRA) as specifically applied to offshore installations and operations. As the first part of the two-volume updated and expanded fourth edition, it adds a new focus on the EU Offshore Safety Directive, and discusses the new perspective on risk from the Norwegian Petroleum Safety Authority, followed by new and updated international standards. New safety statistics for the Norwegian sectors are presented, as well as new case studies on international offshore accidents, such as the explosion on FPSO Sao Mateus in 2015, which involved 9 fatalities. Separate chapters analyse the main hazards for offshore structures: fire, explosion, collision, and falling objects, as well as structural and marine hazards. Risk mitigation and control are discussed, as well as how the results of quantitative risk assessment studies should be presented. The fourth edition presents updated hydrocarbon release statistics, together with new methods for modelling the risk from ignited hydrocarbon releases. There have been recent advances in the modelling of collision risk from passing and attending vessels, based on extensive research; these advances are described in detail, in addition to new developments in the safety of Dynamic Positioning vessels. In closing, the book provides updated statistics and lessons learned from accidents involving offshore helicopter transportation of personnel. The book offers a comprehensive reference guide for academics and students of marine/offshore risk assessment and management. It will also be of interest to professionals in the industry, as well as contractors, suppliers, consultants and regulatory authorities.
This book presents detailed explanations of how to formulate field development plans for oil and gas discovery. The data and case studies provided here, obtained from the authors' field experience in the oil and gas industry around the globe, offer a real-world context for the theories and procedures discussed. The book covers all aspects of field development plan processes, from reserve estimations to economic analyses. It shows readers in both the oil and gas industry and in academia how to prepare field development plans in a straightforward way, and with substantially less uncertainty.
This book presents selected contributions to the Pan-American Congress of Naval Engineering, Maritime Transport and Port Engineering (COPINAVAL), which is in its twenty-fifth edition and has become a reference event for the global maritime and port sector, attracting more and more participants from different countries. The 2017 congress was held in Panama City, Panama, bringing together a select group of scientists, entrepreneurs, academics and professionals to discuss the latest technological advances in the maritime industry.
These proceedings gather a selection of refereed papers presented at the 1st Vietnam Symposium on Advances in Offshore Engineering (VSOE 2018), held on 1-3 November 2018 in Hanoi, Vietnam. The contributions from researchers, practitioners, policymakers, and entrepreneurs address technological and policy changes intended to promote renewable energies, and to generate business opportunities in oil and gas and offshore renewable energy. With a special focus on energy and geotechnics, the book brings together the latest lessons learned in offshore engineering, technological innovations, cost-effective and safer foundations and structural solutions, environmental protection, hazards, vulnerability, and risk management. The book offers a valuable resource for all graduate students, researchers and industrial practitioners working in the fields of offshore engineering and renewable energies.
This book addresses the hydrostatics and stability of ships and other floating marine structures - a fundamental aspect of naval architecture and offshore engineering for naval architects and marine engineers. It starts from the most basic concepts, assuming that the reader has no prior knowledge of the subject. By presenting the topic in a methodical and step-by-step manner, the book helps students to enhance their understanding, while also providing valuable guidelines for lecturers teaching related courses.
64 papers covering topics including Offshore Technology, Offshore Platforms, and Design and Analysis.
A thorough understanding of the interaction of waves and currents with offshore structures has now become a vital factor in the safe and economical design of various offshore technologies. There has been a significant increase in the research efforts to meet this need. Although considerable progress has been made in the offshore industry and in the understanding of the interaction of waves, currents, and wind with ocean structures, most of the available books concentrate only on practical applications without a grounding in the physics. This text strives to integrate an understanding of the physics of ocean structure interactions with numerous applications. This more complete understanding will allow the engineer and designer to solve problems heretofore not encountered, and to design new and innovative structures. The intent of this book is to serve the needs of future generations of engineers designing more sophisticated structures at ever increasing depths."
Ocean Engineering Mechanics is designed to give an introduction to water waves and wave-structure interactions for fixed and floating bodies. Linear and nonlinear regular waves are thoroughly discussed, and the methods of determining the averaged properties of random waves are presented. With this foundation in wave mechanics, applications to engineering situations in the coastal zone are then presented. This introduction to the coastal engineering aspects of wave mechanics includes an introduction to shore protection. Covered within are also the basics of wave-structure interactions for situations involving ridged structures, compliant structures, and floating bodies in regular and random seas. The final chapters deal with the various analytical methods available for the engineering analyses of wave-induced forces and motions of floating and compliant structures in regular and random seas. An introduction to the soil-structure interactions is also included. The book can be used for both introductory and advanced courses in ocean engineering mechanics.
This unique and innovative book provides guidelines, procedures and information for the offshore renewables and oil & gas sectors with regard to the requirements for metocean at each stage of the life cycle of a project. It also provides details about metocean processes and activities that ensure these requirements are addressed. It therefore presents a better understanding of what metocean is all about and how optimum use of data and information can benefit offshore development activities. Reference is made to appropriate standards as and when applicable and it will therefore complement existing standards. Written by an expert with many years practical experience, the book provides information about the development of metocean, the rationale behind it and the key data and procedures that should be utilised and followed to enable more profitable offshore operations.
A thorough understanding of the interaction of waves and currents with offshore structures has now become a vital factor in the safe and economical design of various offshore technologies. There has been a significant increase in the research efforts to meet this need. Although considerable progress has been made in the offshore industry and in the understanding of the interaction of waves, currents, and wind with ocean structures, most of the available books concentrate only on practical applications without a grounding in the physics. This text strives to integrate an understanding of the physics of ocean structure interactions with numerous applications. This more complete understanding will allow the engineer and designer to solve problems heretofore not encountered, and to design new and innovative structures. The intent of this book is to serve the needs of future generations of engineers designing more sophisticated structures at ever increasing depths."
Ocean Engineering Mechanics is designed to give an introduction to water waves and wave-structure interactions for fixed and floating bodies. Linear and nonlinear regular waves are thoroughly discussed, and the methods of determining the averaged properties of random waves are presented. With this foundation in wave mechanics, applications to engineering situations in the coastal zone are then presented. This introduction to the coastal engineering aspects of wave mechanics includes an introduction to shore protection. Covered within are also the basics of wave-structure interactions for situations involving ridged structures, compliant structures, and floating bodies in regular and random seas. The final chapters deal with the various analytical methods available for the engineering analyses of wave-induced forces and motions of floating and compliant structures in regular and random seas. An introduction to the soil-structure interactions is also included. The book can be used for both introductory and advanced courses in ocean engineering mechanics. |
![]() ![]() You may like...
Subsea Control and Data Acquisition…
Society for Underwater Technology (Sut)
Hardcover
R4,513
Discovery Miles 45 130
Practical Design of Ships and Other…
Tetsuo Okada, Katsuyuki Suzuki, …
Hardcover
R9,576
Discovery Miles 95 760
Blast Mitigation Strategies in Marine…
Srinivasan Gopalakrishnan, Yapa Rajapakse
Hardcover
R6,564
Discovery Miles 65 640
Numerical Methods for Seakeeping…
Bettar Ould el Moctar, Thomas E. Schellin, …
Hardcover
R4,479
Discovery Miles 44 790
Practical Design of Ships and Other…
Tetsuo Okada, Katsuyuki Suzuki, …
Hardcover
R9,586
Discovery Miles 95 860
Offshore Process Safety, Volume 2
Faisal Khan, Rouzbeh Abbassi
Paperback
R5,473
Discovery Miles 54 730
|