![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Other technologies > Marine engineering > Offshore engineering
The mathematical description of the properties of a shell is much more elaborate than those of beam and plate structures. Therefore many engineers and architects are unacquainted with aspects of shell behaviour and design, and are not familiar with sufficiently reliable shell theories for the different shell types as derived in the middle of the 20th century. Rather than contributing to theory development, this university textbook focuses on architectural and civil engineering schools. Of course, practising professionals will profit from it as well. The book deals with thin elastic shells, in particular with cylindrical, conical and spherical types, and with elliptic and hyperbolic paraboloids. The focus is on roofs, chimneys, pressure vessels and storage tanks. Special attention is paid to edge bending disturbance zones, which is indispensable knowledge in FE meshing. A substantial part of the book results from research efforts in the mid 20th century at Delft University of Technology. As such, it is a valuable addition to the body of shell research literature of continuing importance. This work can be used for university courses. It also shows professionals how to perform manual calculations of the main force flow in shell structures, and provides guidance for structural engineers estimating stresses and deformations.
Developments in Renewable Energies Offshore contains the papers presented at the 4th International Conference on Renewable Energies Offshore (RENEW 2020, Lisbon, Portugal, 12 - 15 October 2020). The book covers a wide range of topics, including: resource assessment; wind energy; wave energy; tidal energy; ocean energy devices; multiuse platforms; PTO design; grid connection; economic assessment; materials and structural design; installation planning and maintenance planning. The book will be invaluable to professionals and academics involved or interested in Offshore Engineering, and Renewable and Wind Energy.
Corrosion Protection for the Oil and Gas Industry: Pipelines, Subsea Equipment, and Structures summarizes the main causes of corrosion and requirements for materials protection, selection of corrosion-resistant materials and coating materials commonly used for corrosion protection, and the limitations to their use, application, and repair. This book focuses on the protection of steels against corrosion in an aqueous environment, either immersed in seawater or buried. It also includes guidelines for the design of cathodic protection systems and reviews of cathodic protection methods, materials, installation, and monitoring. It is concerned primarily with the external and internal corrosion protection of onshore pipelines and subsea pipelines, but reference is also made to the protection of other equipment, subsea structures, risers, and shore approaches. Two case studies, design examples, and the author's own experiences as a pipeline integrity engineer are featured in this book. Readers will develop a high quality and in-depth understanding of the corrosion protection methods available and apply them to solve corrosion engineering problems. This book is aimed at students, practicing engineers, and scientists as an introduction to corrosion protection for the oil and gas industry, as well as to overcoming corrosion issues.
There is an increasing need to construct engineering structures in the Arctic seas. The requirement is principally generated by the oil and gas industry, because of the substantial reserves that are known to exist offshore in the Beaufort Sea, the Caspian Sea, the Barents Sea, the Pacific Ocean off the coast of Sakhalin, the Canadian Arctic, and almost certainly elsewhere. Structures have to withstand the severe environmental forces generated by sea ice, a subject that is developing rapidly but is still far from completely understood. Underwater pipelines have to be safe against ice gouging and strudel scour, but also have to be constructed safely and economically. The social and human environment has to be understood and respected.This important book intentionally takes a broad view, and vividly accounts for the many and often subtle interactions between the different factors. It is illustrated by case studies of actual projects.
This book provides a comprehensive guide for the analysis and design of anchor systems used for mooring offshore floating structures. Much of the experience is based on applications toward the offshore oil and gas industry, but the substantial potential for offshore renewable energy systems is addressed. The major types of anchors are described with respect to their basic design concept, advantages and limitations, appropriate framework for analysis, and observed performance. This book addresses all aspects of anchor behaviour related to anchor design including the installation performance, load capacity, deformation, and structural integrity of the anchor itself. Coverage is also provided of appurtenant components of anchor systems, in particular of anchor line/chain mechanics in the soil and water columns. Much of the material presented represents relatively new developments, including several new anchors which have been developed within the last decade, so the book will provide a useful compendium of information is largely scattered in journals and conference proceedings. This book is intended for engineers engaged in offshore geotechnics and marine engineers involved in mooring system and floating structure design. While the analytical methods presented in this text have a strong theoretical basis, the emphasis is on simplified computational formats accessible to design engineers.
This book offers a timely review of wave energy and its conversion mechanisms. Written having in mind current needs of advanced undergraduates engineering students, it covers the whole process of energy generation, from waves to electricity, in a systematic and comprehensive manner. Upon a general introduction to the field of wave energy, it presents analytical calculation methods for estimating wave energy potential in any given location. Further, it covers power-take off (PTOs), describing their mechanical and electrical aspects in detail, and control systems and algorithms. The book includes chapters written by active researchers with vast experience in their respective filed of specialization. It combines basic aspects with cutting-edge research and methods, and selected case studies. The book offers systematic and practice-oriented knowledge to students, researchers, and professionals in the wave energy sector. Chapters 17 of this book is available open access under a CC BY 4.0 license at link.springer.com
First published in 1992. Routledge is an imprint of Taylor & Francis, an informa company.
The aim of this book is to provide a comprehensive overview of Coastal Engineering from basic theory to engineering practice. The authors of this book are worldwide authorities in the field. Each chapter deals with an important topic in the field of coastal engineering. The topics are of recent deep concern all over the world motivated by the 2004 Indian Ocean Tsunami, 2005 Hurricane Katrina, 2011 Tohoku Earthquake Tsunami and other natural disasters.For proper coastal zone management, a broad range of knowledge is necessary. This book provides a basic understanding of the theories behind the diverse natural phenomena within the coastal areas, such as waves, tsunamis and sediment transport. The book also introduces various coastal conservation technologies such as coastal structures and beach nourishment. Finally, coastal zone management practices in the USA, Europe, and Japan are introduced.Each chapter is self-standing and readers can begin from any topic depending on their interest.
This book details some of the problems experienced in the Soviet petroleum industry and includes a discussion on the downward trend in petroleum production. It reviews a geological assessment of the offshore region and presents a discussion of activities in the Soviet offshore waters.
Essentials of Offshore Structures: Framed and Gravity Platforms examines the engineering ideas and offshore drilling platforms for exploration and production. This book offers a clear and acceptable demonstration of both the theory and application of the relevant procedures of structural, fluid, and geotechnical mechanics to offshore structures. It makes available a multitude of "solved problems" and "sample problems to solve" which give readers a strong understanding of the analysis and design of steel-framed and base-supported concrete gravity offshore structures. The book highlights sensible engineering applications for offshore structural design, research, and development; it can also be useful to those working in the design industry.
Separate chapters detail the factors that influence the pile embedment and concrete gravity foundation characteristics, material choice including fatigue and corrosion, estimation of ocean environmental forces that will be exerted on the offshore structures, and the analysis fundamentals that the reader needs to possess. The last two chapters give detailed insights into the analysis and design of framed and concrete gravity platform offshore structures using API code procedures. Overall, this book is a comprehensive presentation of the analysis and design of steel and concrete offshore structures.
Design practice in offshore geotechnical engineering has grown out of onshore practice, but the two application areas have tended to diverge over the last thirty years, driven partly by the scale of the foundation and anchoring elements used offshore, and partly by fundamental differences in construction and installation techniques. As a consequence offshore geotechnical engineering has grown as a speciality. The structure of Offshore Geotechnical Engineering follows a pattern that mimics the flow of a typical offshore project. In the early chapters it provides a brief overview of the marine environment, offshore site investigation techniques and interpretation of soil behaviour. It proceeds to cover geotechnical design of piled foundations, shallow foundations and anchoring systems. Three topics are then covered which require a more multi-disciplinary approach: the design of mobile drilling rigs, pipelines and geohazards. This book serves as a framework for undergraduate and postgraduate courses, and will appeal to professional engineers specialising in the offshore industry.
The book gives a systematical and almost self-contained description of the many facets of envisaging, designing, implementing or experimentally exploring offshore mechatronics and systems along the adequate designs of integrated modeling, safety, control and supervision infrastructure. With the rapid improvements in offshore technologies in various fields such as oil and gas industry, wind energy, robotics and logistics, many researchers in academia and industry have focused on technology-based challenges raised in offshore environment. This book introduces novel theoretical or practical techniques for offshore mechatronics systems. Chapters cover general application model-based systems engineering, wind energy, control systems, mechanics, health monitoring, safety critical human-machine systems, logistics and offshore industrial complexes such as oil and gas operations, robotics, large space structures and autonomous underwater vehicles, and some other advanced technologies. The core feature of this book is that of establishing synergies of modeling, control, computing and mechanics in order to achieve not only robust plant system operation but also properties such as safety, cost, integrity and survivability while retaining desired performance quality. The book provides innovative insights into applications aspects and theoretical understanding of complex offshore mechatronics systems that has emerged in recent years, either via physical implementations or via extensive computer simulations in addition to sound innovated theoretical developments. It will serve as a reference for graduate and postgraduate students and for researchers in all engineering disciplines, including mechanical engineering, electrical engineering and applied mathematics to explore the state-of-theart techniques for solving problems of integrated modeling, control and supervision of complex offshore plants with collective safety and robustness. Thus it shall be useful as a guidance for system engineering practitioners and system theoretic researchers alike.
This book discusses coastal defense measures, which have not improved in the past few decades, and better alternatives. It emphasizes on the existence of stable bays in coastal geomorphology and their use in coastal stabilization. The conventional measures for saving beaches, such as seawalls, groins, offshore breakwaters, and renourishment, are discussed in detail, followed by an alternative known as headland control. Many types of coast, and the respective defense measures, are discussed, especially for eroding beaches downcoast of harbors with long breakwaters. The formation of offshore bars during storms is examined and the design of stable recreational beaches is demonstrated. Practical design problems are discussed in all cases. Many issues requiring attention in coastal engineering are also outlined.
This book details some of the problems experienced in the Soviet petroleum industry and includes a discussion on the downward trend in petroleum production. It reviews a geological assessment of the offshore region and presents a discussion of activities in the Soviet offshore waters.
This book provides all the key information needed to design offshore structures for renewable energy applications successfully. Suitable for practicing engineers and students, the author conveys design principles and best practices in a clear, concise manner, focusing on underlying physics while eschewing complicated mathematical detail. The text connects underlying scientific theory with industry standards and practical implementation issues for offshore wind turbines, wave energy converters and current turbines. Combined concepts such as wave-wind energy platforms are discussed, as well. Coverage of design codes and numerical tools ensures the usefulness of this resource for all those studying and working in the rapidly expanding field of offshore renewable energy.
This work describes the key results of the European research project called PROVERBS to develop and implement probability-based methods for the design of monolithic coastal structures and breakwaters subject to sea wave attacks. The issues treated include the hydrodynamic, geotechnical and structural processes involved in the wave-structure-foundation interactions and in the associated failure mechanisms.
The Brent Spar saga has become an environmental icon of the late 1990s and its recent conclusion will have repercussions into the 21st century. Like the Newbury Bypass and the Exxon Valsez, this is one environmental issue with real resonance for the public. This text chronicles the events leading up to the recent decision to recycle the offshore installation in a Norwegian fjord; the Greenpeace campaign to stop it being dumped at sea; the repercussions of Shell's decision to abort the decommissioning at the eleventh hour and the dialogue processes that have occurred to attempt to resolve the issue. It aims to give a balanced, impartial account of the situation. Its key aim being to inform the reader about the facts and mechanisms of the dialogue process and the need to approach decisions in a different way. Readers should benefit from an account of the mistakes made by both sides, the input from government, the scientific community, the press and public, and they can apply this knowledge to future environmental issues.
The Brent Spar saga has become an environmental icon of the late 1990s and its recent conclusion will have repercussions into the 21st century. Like the Newbury Bypass and the Exxon Valsez, this is one environmental issue with real resonance for the public. This text chronicles the events leading up to the recent decision to recycle the offshore installation in a Norwegian fjord; the Greenpeace campaign to stop it being dumped at sea; the repercussions of Shell's decision to abort the decommissioning at the eleventh hour and the dialogue processes that have occurred to attempt to resolve the issue. It aims to give a balanced, impartial account of the situation. Its key aim being to inform the reader about the facts and mechanisms of the dialogue process and the need to approach decisions in a different way. Readers should benefit from an account of the mistakes made by both sides, the input from government, the scientific community, the press and public, and they can apply this knowledge to future environmental issues.
This monograph provides a general background to the modelling of a special class of offshore structures known as compliant structures. External forcing is resisted by buoyancy and tension forces which increase when the structure is slightly offset from its equilibrium. The technical development given in this book is presented in such a way as to highlight the adaptability of the modelling, and the reader is shown how the techniques described can be applied to a variety of different offshore structures.
This book provides an in-depth look at the behavior, design, and construction of offshore structures. It describes the behavior of cylindrical members and suggests appropriate software, written by the contributors, to determine everything from loading up to the ultimate load, including post-buckling and cyclic inelasticity.
The Channel Tunnel was a huge construction project, employing over 14,000 people at its peak, and costing over u11 billion of private money. This book follows the project, and shows how it has succeeded in spite of great financial, political and technical difficulties, and a fundamentally flawed contract. This book should be of interest to professionals involved in tunnelling, contractors, tunnelling and railway engineers, surveyors, planners; politicians; financiers; bankers and others concerned with planning or financing major projects; and the general reader interested in the story of the Tunnel.
These proceedings gather a selection of refereed papers presented at the 1st Vietnam Symposium on Advances in Offshore Engineering (VSOE 2018), held on 1-3 November 2018 in Hanoi, Vietnam. The contributions from researchers, practitioners, policymakers, and entrepreneurs address technological and policy changes intended to promote renewable energies, and to generate business opportunities in oil and gas and offshore renewable energy. With a special focus on energy and geotechnics, the book brings together the latest lessons learned in offshore engineering, technological innovations, cost-effective and safer foundations and structural solutions, environmental protection, hazards, vulnerability, and risk management. The book offers a valuable resource for all graduate students, researchers and industrial practitioners working in the fields of offshore engineering and renewable energies.
This book discusses coastal defense measures, which have not improved in the past few decades, and better alternatives. It emphasizes on the existence of stable bays in coastal geomorphology and their use in coastal stabilization. The conventional measures for saving beaches, such as seawalls, groins, offshore breakwaters, and renourishment, are discussed in detail, followed by an alternative known as headland control. Many types of coast, and the respective defense measures, are discussed, especially for eroding beaches downcoast of harbors with long breakwaters. The formation of offshore bars during storms is examined and the design of stable recreational beaches is demonstrated. Practical design problems are discussed in all cases. Many issues requiring attention in coastal engineering are also outlined.
Collision and Grounding of Ships and Offshore Structures contains the latest research results and innovations presented at the 6th International Conference on Collision and Grounding of Ships and Offshore Structures (Trondheim, Norway, 17-19 June 2013). The book comprises contributions made in the field of numerical and analytical analysis of collision and grounding consequences for ships and offshore structures in various scenarios, such as narrow passageways and arctic conditions including accidental ice impact. A wide range of topics is covered: - Recent large-scale collision experiments - Innovative concepts and procedures to improve the crashworthiness of ships and offshore structures - Ship collisions with offshore renewable energy installations - Residual strength of damaged ship structures as well as mitigation measures for the consequences of such accidents - Statistical analysis of collision and grounding incidents to analyse and predict the probability of their occurrence - Developments concerning rational rules for structural design to avoid collisions - Grounding actions comprising the use of general risk assessment methodologies Collision and Grounding of Ships and Offshore Structures contributes significantly to increasing the safety and reliability of seaborne transport and operations, and will be useful to academics and engineers involved in marine technology-related research and the marine industry. |
![]() ![]() You may like...
|