![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Other technologies
This book describes the status quo of space science in China, details the scientific questions to be addressed by the Chinese space science community in 2016-2030, and proposes key strategic goals, space science programs and missions, the roadmap and implementation approaches. Further, it explores the supporting technologies needed and provides an outlook of space science beyond the year 2030. "Taikong" means "outer space" in Chinese, and space science is one of the most important areas China plans to develop in the near future. This book is authored by Ji Wu, a leader of China's space science program, together with National Space Science Center, Chinese Academy of Sciences, a leading institute responsible for planning and managing most of China's space science missions. It also embodies the viewpoints shared by many space scientists and experts on future space science development. Through this book, general readers and researchers alike will gain essential insights into the current developments and future prospects of space science in China. Government decision-makers will also find the book a useful reference for strategies and planning in the field of space science.
As the volume of marine big data has increased dramatically, one of the main concerns is how to fully exploit the value of such data in the development of marine economy and marine science and technology.The book covers data acquisition, feature classification, processing and applications of marine big data in evaluation and decision-making, using case studies such as storm surge and marine oil spill disaster.
There's a reason Noma sits atop the list of the world's best restaurants. Every bite, every dish, every course surprises, delights, challenges, and deeply satisfies in a way that's unique in the world of dining. As the New York Times's Pete Wells wrote recently in praising Noma's flavors, "sauces are administered so subtly that you don't notice anything weird going on; you just think you've never tasted anything so extraordinary in your life." In Noma 2.0, Rene Redzepi digs deep into the restaurant's magic through the creation of nearly 200 dishes, each photographed in spectacular beauty and detail. Noma 2.0--the title is a reference to the reinvention of Noma after it closed in 2018 to move to its new compound across the water--is about true seasonality, from wild game in the fall to just-picked peas in the summer. It is about using only local ingredients, to build a cuisine that is profoundly situated in its place and culture. It is about transforming the ordinary--a mushroom, a chicken wing, often through fermentation--to develop haunting, memorable flavors. It is about composing a plate that delights the eye as much as the palate, whether through the trompe l'oeil of a "flowerpot" chocolate cake or a dazzling mandala of flowers and berries. It is about pushing the boundaries of what we think we want to eat--a baby pinecone, a pudding made of reindeer brain--to open our palates with a startling confidence. And it is about how to stay creative and challenge yourself over the course of a career. For foodies, for chefs, for artists and art lovers, for thought-leaders and makers, and for the kind of reader who is compelled by the idea that sometimes one person can change everything, Noma 2.0 is the gift book of the season.
The definition of all space systems starts with the establishment of its fundamental parameters: requirements to be fulfilled, overall system and satellite design, analysis and design of the critical elements, developmental approach, cost, and schedule. There are only a few texts covering early design of space systems and none of them has been specifically dedicated to it. Furthermore all existing space engineering books concentrate on analysis. None of them deal with space system synthesis - with the interrelations between all the elements of the space system. Introduction to Space Systems concentrates on understanding the interaction between all the forces, both technical and non-technical, which influence the definition of a space system. This book refers to the entire system: space and ground segments, mission objectives as well as to cost, risk, and mission success probabilities. Introduction to Space Systems is divided into two parts. The first part analyzes the process of space system design in an abstract way. The second part of the book focuses on concrete aspects of the space system design process. It concentrates on interactions between design decisions and uses past design examples to illustrate these interactions. The idea is for the reader to acquire a good insight in what is a good design by analyzing these past designs.
There is an increasing need to construct engineering structures in the Arctic seas. The requirement is principally generated by the oil and gas industry, because of the substantial reserves that are known to exist offshore in the Beaufort Sea, the Caspian Sea, the Barents Sea, the Pacific Ocean off the coast of Sakhalin, the Canadian Arctic, and almost certainly elsewhere. Structures have to withstand the severe environmental forces generated by sea ice, a subject that is developing rapidly but is still far from completely understood. Underwater pipelines have to be safe against ice gouging and strudel scour, but also have to be constructed safely and economically. The social and human environment has to be understood and respected.This important book intentionally takes a broad view, and vividly accounts for the many and often subtle interactions between the different factors. It is illustrated by case studies of actual projects.
The year 2007 will see the 50th anniversary of the Space Age, which began with the launching of Sputnik by the Soviet Union in October 1957. Since that time, the development of space technology has revolutionised many aspects of life on Earth, from satellite television to mobile phones, the internet and micro-electronics. It has also helped to bring about a revolution in the use of military force by the most powerful states. Space is crucial to the politics of the postmodern world. It has seen competition and cooperation in the past fifty years, and is in danger of becoming a battlefield in the next fifty. The International Politics of Space is the first book to bring these crucial themes together and provide a clear and vital picture of how politically important space has become, and what its exploitation might mean for all our futures. Michael Sheehan analyses the space programmes of the United States, Russia, China, India and the European Space Agency, and explains how central space has become to issues of war and peace, international law, justice and international development, and cooperation between the worlds leading states. It highlights the significance of China and India's commitment to space, and explains how the theories and concepts we use to describe and explain space are fundamental to the possibility of avoiding conflict in space in the future. This ground-breaking book will be of great interest to students of international relations, space politics and security studies.
Explores the Science and Practice Of Acoustics for Arts Centers Employing the experiences of a world-renowned acoustician celebrated for the successful design of multi-use performing arts centers, Acoustics of Multi-Use Performing Arts Centers examines the complexities of this venue and discusses the challenges and solutions that arise in the concept, design, construction and commissioning phases. This book addresses the various programming needs of a multi-use performing arts center (needs that can range from symphony, opera and ballet to highly-amplified concerts and Broadway productions) and provides instruction from the planning of the initial concept to the final tuning stages. While assuming a basic understanding of the principals of sound, construction and performance, the author includes architectural drawings drawn to scale and presents case studies with in-depth discussion of undocumented halls. He also provides a full chapter on tuning multi-use halls and offers an inside look at design options for adjustable acoustics that include stage, pit and hall design. In addition, the book: Covers the fundamentals of acoustics as it relates to initial stages of multi-use hall design Explores the concepts of acoustics in terms of new and renovated spaces Defines the basic components of the building structure Examines floors, walls, ceilings, shells, and finishes and how they can be designed to achieve acoustic excellence Discusses how to use and tune adjustable acoustic systems in a multi-use hall in order to achieve acoustic excellence Designed as a step-by-step guide to achieving outstanding acoustics in multi-use performance spaces, Acoustics of Multi-Use Performing Arts Centers serves students, architects, engineers, desig
This book provides a comprehensive guide for the analysis and design of anchor systems used for mooring offshore floating structures. Much of the experience is based on applications toward the offshore oil and gas industry, but the substantial potential for offshore renewable energy systems is addressed. The major types of anchors are described with respect to their basic design concept, advantages and limitations, appropriate framework for analysis, and observed performance. This book addresses all aspects of anchor behaviour related to anchor design including the installation performance, load capacity, deformation, and structural integrity of the anchor itself. Coverage is also provided of appurtenant components of anchor systems, in particular of anchor line/chain mechanics in the soil and water columns. Much of the material presented represents relatively new developments, including several new anchors which have been developed within the last decade, so the book will provide a useful compendium of information is largely scattered in journals and conference proceedings. This book is intended for engineers engaged in offshore geotechnics and marine engineers involved in mooring system and floating structure design. While the analytical methods presented in this text have a strong theoretical basis, the emphasis is on simplified computational formats accessible to design engineers.
Geoinformatics for Marine and Coastal Management provides a timely and valuable assessment of the current state of the art geoinformatics tools and methods for the management of marine systems. This book focuses on the cutting-edge coverage of a wide spectrum of activities and topics such as GIS-based application of drainage basin analysis, contribution of ontology to marine management, geoinformatics in relation to fisheries management, hydrography, indigenous knowledge systems, and marine law enforcement. The authors present a comprehensive overview of the field of Geoinformatic Applications in Marine Management covering key issues and debates with specific case studies illustrating real-world applications of the GIS technology. This "box of tools" serves as a long-term resource for coastal zone managers, professionals, practitioners, and students alike on the management of oceans and the coastal fringe, promoting the approach of allowing sustainable and integrated use of oceans to maximize opportunities while keeping risks and hazards to a minimum.
'A remarkably hopeful and useful book...The climate crisis leaves us no choice but to build a new world and as Sanderson makes clear, we are capable of making it a better one than the dirty and dangerous planet we’ve come to take for granted.' Bill McKibben, Observer book of the week We depend on a handful of metals and rare earths to power our phones and computers. Increasingly, we rely on them to power our cars and our homes. Whoever controls these finite commodities will become rich beyond imagining. Sanderson journeys to meet the characters, companies, and nations scrambling for the new resources, linking remote mines in the Congo and Chile’s Atacama Desert to giant Chinese battery factories, shadowy commodity traders, secretive billionaires, a new generation of scientists attempting to solve the dilemma of a ‘greener’ world.
First published in 1981 as the Offshore Information Guide this guide to information sources has been hailed internationally as an indispensable handbook for the oil, gas and marine industries.
This book presents the history of the second largest arms manufacturer in Europe, the Skoda Works, and of those of its heavy guns that were transported in an innovative and unique way - gasoline-electrical trains.
The author compiles everything a student or experienced developmental engineer needs to know about the supporting technologies associated with the rapidly evolving field of robotics. From the table of contents: Design Considerations * Dead Reckoning * Odometry Sensors * Doppler and Inertial Navigation * Typical Mobility Configurations * Tactile and Proximity Sensing * Triangulation Ranging * Stereo Disparity * Active Triangulation * Active Stereoscopic * Hermies * Structured Light * Known Target Size * Time of Flight * Phase-Shift Measurement * Frequency Modulation * Interferometry * Range from Focus * Return Signal Intensity * Acoustical Energy * Electromagnetic Energy * Optical Energy * Microwave Radar * Collision Avoidance * Guidepath Following * Position-Location Systems * Ultrasonic and Optical Position-Location Systems * Wall, Doorway, andCeiling Referencing * Application-Specific Mission Sensors
This book gives a brief definition of what constitutes quality and a manufacturing environment and a detailed description of the entities that make up a computer-controlled deterministic manufacturing operation. It is useful for practicing engineer or engineering manager and academician.
It is common for us today to associate the practice of science primarily with the act of seeing-with staring at computer screens, analyzing graphs, and presenting images. We may notice that physicians use stethoscopes to listen for disease, that biologists tune into sound recordings to understand birds, or that engineers have created Geiger tellers warning us for radiation through sound. But in the sciences overall, we think, seeing is believing. This open access book explains why, indeed, listening for knowledge plays an ambiguous, if fascinating, role in the sciences. For what purposes have scientists, engineers and physicians listened to the objects of their interest? How did they listen exactly? And why has listening often been contested as a legitimate form of access to scientific knowledge? This concise monograph combines historical and ethnographic evidence about the practices of listening on shop floors, in laboratories, field stations, hospitals, and conference halls, between the 1920s and today. It shows how scientists have used sonic skills-skills required for making, recording, storing, retrieving, and listening to sound-in ensembles: sets of instruments and techniques for particular situations of knowledge making. Yet rather than pleading for the emancipation of hearing at the expense of seeing, this essay investigates when, how, and under which conditions the ear has contributed to science dynamics, either in tandem with or without the eye.
Recognized as a "Recommended" title by Choice for their November 2020 issue. Choice is a publishing unit at the Association of College & Research Libraries (ACR&L), a division of the American Library Association. Choice has been the acknowledged leader in the provision of objective, high-quality evaluations of nonfiction academic writing. Presenting a fundamental definition of resilience, the book examines the concept of resilience as it relates to space system design. The book establishes the required definitions, relates its place to existing state-of-the-art systems engineering practices, and explains the process and mathematical tools used to achieve a resilient design. It discusses a variety of potential threats and their impact upon a space system. By providing multiple, real-world examples to illustrate the application of the design methodology, the book covers the necessary techniques and tools, while guiding the reader through the entirety of the process. The book begins with space systems basics to ensure the reader is versed in the functions and components of the system prior to diving into the details of resilience. However, the text does not assume that the reader has an extensive background in the subject matter of resilience. This book is aimed at engineers and architects in the areas of aerospace, space systems, and space communications.
Radar-based imaging of aircraft targets is a topic that continues to attract a lot of attention, particularly since these imaging methods have been recognized to be the foundation of any successful all-weather non-cooperative target identification technique. Traditional books in this area look at the topic from a radar engineering point of view. Consequently, the basic issues associated with model error and image interpretation are usually not addressed in any substantive fashion. Moreover, applied mathematicians frequently find it difficult to read the radar engineering literature because it is jargon-laden and device specific, meaning that the skills most applicable to the problem's solution are rarely applied. Enabling an understanding of the subject and its current mathematical research issues, Radar Imaging of Airborne Targets: A Primer for Applied Mathematicians and Physicists presents the issues and techniques associated with radar imaging from a mathematical point of view rather than from an instrumentation perspective. The book concentrates on scattering issues, the inverse scattering problem, and the approximations that are usually made by practical algorithm developers. The author also explains the consequences of these approximations to the resultant radar image and its interpretation, and examines methods for reducing model-based error.
In 1961, President John F. Kennedy issued a challenge: the United States would land a man on the moon and return him safely to Earth before the end of the decade. It seemed like an impossible task and one that the Russians--who had launched the first satellite and put the first man into Earth orbit--would surely perform before us. The ingenuity, passion, and sacrifice of thousands of ordinary men and women, from all walks of life, enabled the space program to meet this extraordinary goal. In all, six crews would land on the moon before Congress withdrew financial backing for the program. This is the story of those men and women who worked behind the scenes, without fanfare or recognition, to make these missions a success. Thirty years later, they still speak of Apollo with pride, sometimes even awe. After Apollo moonwalker John Young told journalist Billy Watkins in a 1999 interview that "nobody knows anything about the people who helped make those flights so successful," Watkins made it his mission to identify the unsung heroes and learn their stories. His subjects include: BLJulian Scheer (NASA publicist): Argued for and won the inclusion of a television camera on Apollo 11, enabling Armstrong's walk on the moon to be broadcast and recorded for posterity. BLSonny Morea, lead designer of the Lunar Rover. BLHugh Brown, one of the few African Americans who worked on the Apollo program, helped monitor for Russian submarines trying to jam NASA communication during launches, and later went on to become head of the Federal Reserve Bank in Atlanta. BLJoAnn Morgan, launch control: One of the few women involved in the space program, Morgan was designated the "lightning specialist." Herknowledge was crucial when the Apollo 12 spacecraft was struck by lightning only seconds after liftoff, nearly causing an abort. She was one of the few specialists allowed in the "firing room" during liftoff. BLJoan Roosa, widow of Apollo 14 astronaut Stuart Roosa, talks about the sacrifices of the families and their devotion to "The Program." BLJoe Schmitt, veteran suit technician was responsible for making sure the suits were leak-proof and hooked up correctly--knowing any mistake would mean instant death in space. BLJoseph Laitin, who came up with the idea for the Apollo 8 astronauts to read the first ten verses of Genesis during their Christmas Eve television broadcast from the moon. BLClancy Hatelberg, the Navy diver, who plucked the first humans to walk on the moon from the Pacific Ocean after the Apollo 11 landing.
When the first sputnik was launched and the space era began, few gave thought to the possible negative impact of putting satellites into orbit. In fact, man's space activity has led to the formation of a new media named "space debris," i.e. man-made objects and their fragments launched into space, currently inactive and no longer serving any useful purpose. Space Debris: Hazard Evaluation and Mitigation will appeal to readers unfamiliar with the issues, as well as experts and designers. It introduces concepts behind the problems of space ecology. The volume features actual data on the space debris environment; new mathematical models for space debris evolution, production and self-production; description of the existing software and concepts for shield design. The author also reviews methods of collision risk assessment, including the attitudes and inclinations of orbits, collision hazard evaluation and suggestions for preventative measures.
Compiled with the help of an internationally acclaimed panel of experts, the Ocean Engineering Handbook is the most complete reference available for professionals. It offers you comprehensive coverage of important areas of the theory and practice of oceanic/coastal engineering and technology. This well organized text includes five major sections: Marine Hydro Dynamics and Vehicles Control, Modeling Considerations, Position Control Systems for Offshore Vessels, Applications of Computational Intelligence in the Ocean's Environment, and Fiber Optics in Oceanographic Applications. Designed to be used as a traditional handbook, it thoroughly covers position control theory and implementations and offers a close look at the present state of ocean engineering. With 200 tables and over 100 figures, the Ocean Engineering Handbook will give you a head start in many aspects of oceanic engineering.
The book comprises two parts: Pressure and Flow Well Testing (Part I) and Temperature Well Testing (Part II), and contains numerous authors' developments. Due to the similarity in Darcy's and Fourier's laws the same differential diffusivity equation describes the transient flow of incompressible fluid in porous medium and heat conduction in solids. Therefore it is reasonable to assume that the techniques and data processing procedures of pressure well tests can be applied to temperature well tests. The book presents new methods to determine the formation of permeability and skin factors from tests conducted in simulated wells, designing interference well tests, processing constant bottom-hole pressure tests, estimation of the formation temperature and geothermal gradients from temperature surveys and logs, in-situ determination of the formation thermal conductivity and contact thermal resistance of boreholes, temperature regime of boreholes (cementing of production liners), and the recovery of thermal equilibrium in deep and superdeep wells. Processing and analysis of pressure and geothermal data are shown on numerous field examples from different regions of the world. The book is intended for students, engineers, and researchers in the field of hydrocarbon geophysics and geology, groundwater searching and exploitation, and subsurface environment examination. It will be also useful for specialists studying pressure and temperature in parametric deep and superdeep wells.
Filled with practical applications and research, Biodegradation of Nitroaromatic Compounds and Explosives presents an international perspective on environmental contamination from explosives. It covers biodegradation strategies for DNT and a wide variety of other nitroaromatic compounds of environmental significance and makes the information accessible to practicing environmental and chemical engineers. Biodegradation of Nitroaromatic Compounds and Explosives gives you a synthesis of ongoing research and an appreciation of the remarkable range of biochemical strategies available for the transformation of nitroaromatic compounds. It provides a realistic assessment of the current and potential field applications of the various strategies.
Digital Sampling is the first book about the design and use of sampling technologies that have shaped the sounds of popular music since the 1980s. Written in two parts, Digital Sampling begins with an exploration of the Fairlight CMI and how artists like Kate Bush and Peter Gabriel used it to sample the sounds of everyday life. It also focuses on E-mu Systems and the use of its keyboards and drum machines in hip-hop. The second part follows users across a range of musical worlds, including US/UK garage, indie folk music, and electronic music made from the sounds of sewers, war zones, and crematoriums. Using material from interviews and concepts from the field of Science and Technology Studies (STS), Digital Sampling provides a new and alternative approach to the study of sampling and is crucial reading for undergraduates, postgraduates, and researchers from a wide range of disciplines, including music technology, media, communication, and cultural studies.
This book provides a comprehensive description of the latest theory-supported numerical technologies, as well as scientific and engineering applications for water surface waves. Its contents are crafted to cater to a step-by-step learning of computational wave dynamics and ocean wave modeling. It provides a comprehensive description from underlying theories of free-surface flows, to practical computational applications for coastal and ocean engineering on the basis of computational fluid dynamics (CFD).The text may be used as a textbook for advanced undergraduate students and graduate students to understand the theoretical background of wave computations, and the recent progress of computational techniques for free-surface and interfacial flows, such as Volume of Fluid (VOF), Constrained Interpolation Profile (CIP), Lagrangian Particle (SPH, MPS), Distinct Element (DEM) and Euler-Lagrange Hybrid Methods.It is also suitable for researchers and engineers who wish to apply CFD techniques to ocean modeling and practical coastal problems involving sediment transport, wave-structure interaction and surf zone flows. |
![]() ![]() You may like...
Tumors of the Lower Respiratory Tract
William D. Travis, Andrew G. Nicholson, …
Hardcover
Everything: Sustainable Energy - Power…
National Geographic Kids
Paperback
R218
Discovery Miles 2 180
Hypertension and the Heart - Proceedings…
Alberto Zanchetti, Etc
Hardcover
R2,663
Discovery Miles 26 630
|