Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Physics > Particle & high-energy physics
This Open Access biography chronicles the life and achievements of the Norwegian engineer and physicist Rolf Wideroe. Readers who meet him in the pages of this book will wonder why he isn't better known. The first of Wideroe's many pioneering contributions in the field of accelerator physics was the betatron, the second, the linear accelerator, both summarized in a 27 page PhD. The betatron revolutionized the fields of cancer treatment through radiation therapy and also nondestructive testing; hospitals worldwide installed Wideroe's machine and today's modern radiation treatment equipment is based on his inventions. The most recent renaissance of the linac provides unprecedented x-ray intensities at Free Electron Laser (FEL) facilities in operation and construction worldwide. . Wideroe's story also includes a fair share of drama, particularly during World War II when both Germans and the Allies vied for his collaboration. Wideroe held leading positions in multinational industry groups and was one of the consultants for building the world's largest nuclear laboratory, CERN, in Switzerland. He gained over 200 patents, received several honorary doctorates and a number of international awards. The author, a professional writer and maker of TV documentaries, has gained access to hitherto restricted archives in several countries, which provided a wealth of new material and insights, in particular in relation to the war years. She tells here a gripping and illuminating story.
Choice Recommended Title, July 2020 Bringing together material scattered across many disciplines, Semiconductor Radiation Detectors provides readers with a consolidated source of information on the properties of a wide range of semiconductors; their growth, characterization and the fabrication of radiation sensors with emphasis on the X- and gamma-ray regimes. It explores the promise and limitations of both the traditional and new generation of semiconductors and discusses where the future in semiconductor development and radiation detection may lie. The purpose of this book is two-fold; firstly to serve as a text book for those new to the field of semiconductors and radiation detection and measurement, and secondly as a reference book for established researchers working in related disciplines within physics and engineering. Features: The only comprehensive book covering this topic Fully up-to-date with new developments in the field Provides a wide-ranging source of further reference material
Awarded one of BookAuthority's best new Particle Physics books in 2019! Hands-On Accelerator Physics Using MATLAB (R) provides an introduction into the design and operational issues of a wide range of particle accelerators, from ion-implanters to the Large Hadron Collider at CERN. Many aspects from the design of beam optical systems and magnets, to the subsystems for acceleration, beam diagnostics, and vacuum are covered. Beam dynamics topics ranging from the beam-beam interaction to free-electron lasers are discussed. Theoretical concepts and the design of key components are explained with the help of MATLAB (R) code. Practical topics, such as beam size measurements, magnet construction and measurements, and radio-frequency measurements are explored in student labs without requiring access to an accelerator. This unique approach provides a look at what goes on 'under the hood' inside modern accelerators and presents readers with the tools to perform their independent investigations on the computer or in student labs. This book will be of interest to graduate students, postgraduate researchers studying accelerator physics, as well as engineers entering the field. Features: Provides insights into both synchrotron light sources and colliders Discusses technical subsystems, including magnets, radio-frequency engineering, instrumentation and diagnostics, correction of imperfections, control, and cryogenics Accompanied by MATLAB (R) code, including a 3D-modeler to visualize the accelerators, and additional appendices which are available on the CRC Press website
Written by the leading names in this field, this book introduces the technical properties, design and fabrication details, measurement results, and applications of three-dimensional silicon radiation sensors. Such devices are currently used in the ATLAS experiment at the European Centre for Particle Physics (CERN) for particle tracking in high energy physics. These sensors are the radiation hardest devices ever fabricated and have applications in ground-breaking research in neutron detection, medical dosimetry and space technologies and more. Chapters explore the essential features of silicon particle detectors, interactions of radiation with matter, radiation damage effects, and micro-fabrication, in addition to a providing historical overview of the field. This book will be a key reference for students and researchers working with sensor technologies. Features: The first book dedicated to this unique and growing subject area, which is also widely applicable in high-energy physics, medical physics, space science and beyond Authored by Sherwood Parker, the inventor of the concept of 3D detectors; Cinzia Da Via, who has brought 3DSi technology to application; and Gian-Franco Dalla Betta, a leading figure in the design and fabrication technology of these devices Explains to non-experts the essential features of silicon particle detectors, interactions of radiation with matter, radiation damage effects, and micro-fabrication
This book offers a comprehensive and cohesive overview of transport processes associated with all kinds of charged particles, including electrons, ions, positrons, and muons, in both gases and condensed matter. The emphasis is on fundamental physics, linking experiment, theory and applications. In particular, the authors discuss: The kinetic theory of gases, from the traditional Boltzmann equation to modern generalizations A complementary approach: Maxwell's equations of change and fluid modeling Calculation of ion-atom scattering cross sections Extension to soft condensed matter, amorphous materials Applications: drift tube experiments, including the Franck-Hertz experiment, modeling plasma processing devices, muon catalysed fusion, positron emission tomography, gaseous radiation detectors Straightforward, physically-based arguments are used wherever possible to complement mathematical rigor. Robert Robson has held professorial positions in Japan, the USA and Australia, and was an Alexander von Humboldt Fellow at several universities in Germany. He is a Fellow of the American Physical Society. Ronald White is Professor of Physics and Head of Physical Sciences at James Cook University, Australia. Malte Hildebrandt is Head of the Detector Group in the Laboratory of Particle Physics at the Paul Scherrer Institut, Switzerland.
The book on Heavy-Fermion Systems is a part of the Book series
"Handbook of Metal Physics," each volume of which is written to
facilitate the research of Ph.D. students, faculty and other
researchers in a specific area. The Heavy-Fermions (sometimes known
as Heavy-Electrons) is a loosely defined collection of
intermetallic compounds containing rare-earth (mostly Ce) or
actinide (mostly U) elements. These unusual names were given due to
the large effective mass (100-1,000 times greater than the mass of
a free electron) below a critical temperature. They have a variety
of ground states including superconducting, antiferromagnetic,
paramagnetic or semiconducting. Some display unusual magnetic
properties such as magnetic quantum critical point and
metamagnetism. This book is essentially a summary as well as a
critical review of the theoretical and experimental work done on
Heavy Fermions.
DROPOUT. PACIFIST. PHYSICIST. CASANOVA. REFUGEE. REBEL. GENIUS. THINK YOU KNOW EINSTEIN? THINK AGAIN His face is instantly recognisable. His name is shorthand for genius. Today, he's a figurehead as much as a man, symbolic of things larger than himself: of scientific progress, of the human mind, even of the age. But who was Einstein really? The Nobel Prize-winning physicist who discovered relativity, black holes and E = mc2, dined with Charlie Chaplin in Hollywood and was the inspiration for (highly radioactive) element 99, Albert Einstein was also a high school dropout with an FBI file 1,400 pages long. In this book, Samuel Graydon brings history's most famous scientist back to life. From his lost daughter to escaping the Nazis, from his love letters to unlikely inventions, from telling jokes to cheer up his sad parrot Bibo to refusing the Presidency of Israel, through the discoveries and thought experiments that changed science, Einstein in Time and Space tells 99 unforgettable stories of the man who redefined how we view our universe and our place within it.
The Science and Technology of Particle Accelerators provides an accessible introduction to the field, and is suitable for advanced undergraduates, graduate students, and academics, as well as professionals in national laboratories and facilities, industry, and medicine who are designing or using particle accelerators. Providing integrated coverage of accelerator science and technology, this book presents the fundamental concepts alongside detailed engineering discussions and extensive practical guidance, including many numerical examples. For each topic, the authors provide a description of the physical principles, a guide to the practical application of those principles, and a discussion of how to design the components that allow the application to be realised. Features: Written by an interdisciplinary and highly respected team of physicists and engineers from the Cockcroft Institute of Accelerator Science and Technology in the UK Accessible style, with many numerical examples Contains an extensive set of problems, with fully worked solutions available Rob Appleby is an academic member of staff at the University of Manchester, and Chief Examiner in the Department of Physics and Astronomy. Graeme Burt is an academic member of staff at the University of Lancaster, and previous Director of Education at the Cockcroft Institute. James Clarke is head of Science Division in the Accelerator Science and Technology Centre at STFC Daresbury Laboratory. Hywel Owen is an academic member of staff at the University of Manchester, and Director of Education at the Cockcroft Institute. All authors are researchers within the Cockcroft Institute of Accelerator Science and Technology and have extensive experience in the design and construction of particle accelerators, including particle colliders, synchrotron radiation sources, free electron lasers, and medical and industrial accelerator systems.
The work described in this PhD thesis is a study of a real implementation of a track-finder system which could provide reconstructed high transverse momentum tracks to the first-level trigger of the High Luminosity LHC upgrade of the CMS experiment. This is vital for the future success of CMS, since otherwise it will be impossible to achieve the trigger selectivity needed to contain the very high event rates. The unique and extremely challenging requirement of the system is to utilise the enormous volume of tracker data within a few microseconds to arrive at a trigger decision. The track-finder demonstrator described proved unequivocally, using existing hardware, that a real-time track-finder could be built using present-generation FPGA-based technology which would meet the latency and performance requirements of the future tracker. This means that more advanced hardware customised for the new CMS tracker should be even more capable, and will deliver very significant gains for the future physics returns from the LHC.
As a continuation of the author's earlier work (Gaseous Radiation Detectors: Fundamental and Applications, Cambridge University Press 2014), this book describes in detail the recent developments and applications of advanced micro-pattern gaseous devices. Across different chapters, readers will learn of the most basic observations, measurements and applications of this novel technology within particle physics, astrophysics, medicine, cultural heritage studies and more. The content is based richly on a pool of information distilled from a large number of papers and reports on the subject, as well as presentations at topical Conferences and Symposia.The author, Fabio Sauli, is an expert with several hundreds of publications in the field. He is also the inventor of one of the major technologies described - the Gas Electron Multiplier - widely used in particle physics and other applied fields.
Any student working with the celebrated Feynman Lectures will ?nd a chapter in it with the intriguing title Electromagnetic Mass [2, Chap. 28]. In a way, it looks rather out of date, and it would be easy to skate over it, or even just skip it. And yet all bound state particles we know of today have electromagnetic mass. It is just that we approach the question differently. Today we have multiplets of mesons or baryons, and we have colour symmetry, and broken ?avour symmetry, and we think about mass and energy through Hamiltonians. This book is an invitation to look at all these modern ideas with the help of an old light. Everything here is quite standard theory, in fact, classical electromagnetism for the main part. The reader would be expected to have encountered the theory of elec tromagnetism before, but there is a review of all the necessary results, and nothing sophisticated about the calculations. The reader could be any student of physics, or any physicist, but someone who would like to know more about inertia, and the clas sical precursor of mass renormalisation in quantum ?eld theory. In short, someone who feels it worthwhile to ask why F= ma.
This book covers a very broad spectrum of experimental and theoretical activity in particle physics, from the searches for the Higgs boson and physics beyond the Standard Model, to detailed studies of Quantum Chromodynamics, the B-physics sectors and the properties of hadronic matter at high energy density as realised in heavy-ion collisions. Starting with a basic introduction to the Standard Model and its most likely extensions, the opening section of the book presents an overview of the theoretical and phenomenological framework of hadron collisions and current theoretical models of frontier physics. In part II, discussion of the theory is supplemented by chapters on the detector capabilities and search strategies, as well as an overview of the main detector components, the initial calibration procedures and physics samples and early LHC results. Part III completes the volume with a description of the physics behind Monte Carlo event generators and a broad introduction to the main statistical methods used in high energy physics. "LHC Phenomenology" covers all of these topics at a pedagogical level, with the aim of providing young particle physicists with the basic tools required for future work on the various LHC experiments. It will also serve as a useful reference text for those working in the field.
This engaging and beautifully written book gives an authoritative but accessible account of some of the most exciting and unexpected recent developments in theoretical physics. - Professor Lionel J Mason, Mathematical Institute, University of Oxford String theory is often paraded as a theory of everything, but there are a large number of untold stories in which string theory gives us insight into other areas of physics. Here, Bill Spence does an excellent job of explaining the deep connections between string theory, particle physics, and the novel way of viewing space and time. - Professor David Tong, Department of Applied Mathematics and Theoretical Physics, University of Cambridge Foremost amongst Nature's closest-guarded secrets is how to unite Einstein's theory of gravity with quantum theory - thereby creating a 'quantum space-time'. This problem has been unsolved now for more than a century, with the standard methods of physics making little headway. It is clear that much more radical ideas are needed, and our front-line researchers are showing that string theory provides these. This book describes these extraordinary developments, which are helping us to think in entirely new ways about how physical reality may be structured at its deepest level. Amongst these ideas are that Everything can happen at the same time - it is all Now; Hidden spaces, large and small, are everywhere amongst us; The basic objects are 'membranes' that behave like soap bubbles and can explore the shape of spacetime in new ways; We are holographic projections from higher dimensions; You can take the 'square root' of gravity; Ideas from the ancient Greeks are resurfacing in a beautiful new form; And the very latest work shows that 'staying positive' is essential. The book is aimed at a general audience, using analogies, diagrams, and simple examples throughout. It is intended as a brief tour, enabling the reader to become aware of the main ideas and recent work. A full list of further resources is supplied. Bill Spence is the founding Director of the Centre for Research in String Theory at Queen Mary University of London. He has worked on string theory for over three decades.
This engaging and beautifully written book gives an authoritative but accessible account of some of the most exciting and unexpected recent developments in theoretical physics. - Professor Lionel J Mason, Mathematical Institute, University of Oxford String theory is often paraded as a theory of everything, but there are a large number of untold stories in which string theory gives us insight into other areas of physics. Here, Bill Spence does an excellent job of explaining the deep connections between string theory, particle physics, and the novel way of viewing space and time. - Professor David Tong, Department of Applied Mathematics and Theoretical Physics, University of Cambridge Foremost amongst Nature's closest-guarded secrets is how to unite Einstein's theory of gravity with quantum theory - thereby creating a 'quantum space-time'. This problem has been unsolved now for more than a century, with the standard methods of physics making little headway. It is clear that much more radical ideas are needed, and our front-line researchers are showing that string theory provides these. This book describes these extraordinary developments, which are helping us to think in entirely new ways about how physical reality may be structured at its deepest level. Amongst these ideas are that Everything can happen at the same time - it is all Now; Hidden spaces, large and small, are everywhere amongst us; The basic objects are 'membranes' that behave like soap bubbles and can explore the shape of spacetime in new ways; We are holographic projections from higher dimensions; You can take the 'square root' of gravity; Ideas from the ancient Greeks are resurfacing in a beautiful new form; And the very latest work shows that 'staying positive' is essential. The book is aimed at a general audience, using analogies, diagrams, and simple examples throughout. It is intended as a brief tour, enabling the reader to become aware of the main ideas and recent work. A full list of further resources is supplied. Bill Spence is the founding Director of the Centre for Research in String Theory at Queen Mary University of London. He has worked on string theory for over three decades.
This revised edition provides an up-to-date summary of the field of ultra-high energy cosmic rays, dealing with their origin, propagation, and composition,. The authors reflect the enormous strides made since the first edition in the realm of experimental work, in particular the use of vastly improved, more sensitive and precise detectors. The level remains introductory and pedagogical, suitable for students and researchers interested in moving into this exciting field. Throughout the text, the authors focus on giving an introductory overview of the key physics issues, followed by a clear and concise description of experimental approaches and current results. Key Features: Updates the most coherent summary of the field available, with new text that provides the reader with clear historical context. Brand new discussion of contemporary space-based experiments and ideas for extending ground-based detectors. Completely new discussion of radio detection methods. Includes a new chapter on small to intermediate-scale anisotropy. Offers new sections on modern hadronic models and software packages to simulate showers.
This book is written for students who ever wondered about the mysterious and fascinating world of particle accelerators. What exciting physics and technologies lie within? What clever and ingenious ideas were applied in their seven decades of evolution? What promises still lay ahead in the future?Accelerators have been driving research and industrial advances for decades. This textbook illustrates the physical principles behind these incredible machines, often with intuitive pictures and simple mathematical models. Pure formalisms are avoided as much as possible. It is hoped that the readers would enjoy the fascinating physics behind these state-of-the-art devices.The style is informal and aimed for a graduate level without prerequisite of prior knowledge in accelerators. To serve as a textbook, references are listed only on the more established original literature and review articles instead of the constantly changing research frontiers.
Nuclear structure Physics connects to some of our fundamental questions about the creation of universe and its basic constituents. At the same time, precise knowledge on the subject has lead to develop many important tools of human kind such as proton therapy, radioactive dating etc. This book contains chapters on some of the crucial and trending research topics in nuclear structure, including the nuclei lying on the extremes of spin, isospin and mass. A better theoretical understanding of these topics is important beyond the confines of the nuclear structure community. Additionally, the book will showcase the applicability and success of the different nuclear effective interaction parameters near the drip line, where hints for level reordering have already been seen, and where one can test the isospin-dependence of the interaction. The book offers comprehensive coverage of the most essential topics, including: * Nuclear Structure of Nuclei at or Near Drip-Lines * Synthesis challenges and properties of Superheavy nuclei * Nuclear Structure and Nuclear models - Ab-initio calculations, cluster models, Shell-model/DSM, RMF, Skyrme * Shell Closure, Magicity and other novel features of nuclei at extremes * Structure of Toroidal, Bubble Nuclei, halo and other exotic nuclei These topics are not only very interesting from theoretical nuclear physics perspective but are also quite complimentary for ongoing nuclear physics experimental program worldwide. It is hoped that the book chapters written by experienced and well known researchers/experts will be helpful for the master students, graduate students and researchers and serve as a standard & uptodate research reference book on the topics covered.
Thoroughly revised and updated, this new edition presents a comprehensive overview of modern neutrino physics. The book covers all the major areas of current interest. An international group of distinguished contributors discuss the intrinsic properties of neutrinos, the theory of the interaction of neutrinos with matter, experimental investigations of the weak interaction in neutrino processes, the theory and supporting experiment for the basic properties of the interaction of neutrinos with fermions, and neutrinos in astrophysics and cosmology. This edition presents new data on solar neutrinos and an update of the results of searches for double beta decay. It also contains a new chapter on direct measurements of the neutrino mass, with high precision data from experiments at Fermilab and CERN, and at the Kamiokande Laboratory in Japan. This is an essential reference text for particle physicists, nuclear physicists and astrophysicists.
Short, comprehensive overview concentrating on major breakthroughs, disruptive ideas, and unexpected results Accessible to all interested in subatomic physics with little prior knowledge required Contains the latest developments in this exciting field
Based on a two-semester course held at the University of Heidelberg, Germany, this book provides a solid basis for postgraduate students wishing to obtain a more profound understanding of the foundations of Quantum Field Theory. The book covers a wide spectrum of topics ranging from traditional operator and modern path integral methods, to different regularization and renormalization methods, asymptotic behavior of Green functions, a particular view on the Renormalization Group, and spontaneous symmetry breaking in effective potentials. Much effort has been made to present the material in a transparent, detailed and structured way, which should help the reader to follow the material.
Based on a two-semester course held at the University of Heidelberg, Germany, this book provides a solid basis for postgraduate students wishing to obtain a more profound understanding of the foundations of Quantum Field Theory. The book covers a wide spectrum of topics ranging from traditional operator and modern path integral methods, to different regularization and renormalization methods, asymptotic behavior of Green functions, a particular view on the Renormalization Group, and spontaneous symmetry breaking in effective potentials. Much effort has been made to present the material in a transparent, detailed and structured way, which should help the reader to follow the material.
This book reports on the search for a new heavy particle, the Vector-Like Top quark (VLT), in the Large Hadron Collider (LHC) at CERN. The signal process is the pair production of VLT decaying into a Higgs boson and top quark (TT Ht+X, X=Ht, Wb, Zt). The signal events result in top-antitop quarks final states with additional heavy flavour jets. The book summarises the analysis of the data collected with the ATLAS detector in 2015 and 2016. In order to better differentiate between signals and backgrounds, exclusive taggers of top quark and Higgs boson were developed and optimised for VLT signals. These efforts improved the sensitivity by roughly 30%, compared to the previous analysis. The analysis outcomes yield the strongest constraints on parameter space in various BSM theoretical models. In addition, the book addresses detector operation and the evaluation of tracking performance. These efforts are essential to properly collecting dense events and improving the accuracy of the reconstructed objects that are used for particle identification. As such, they represent a valuable contribution to data analysis in extremely dense environments.
Short, comprehensive overview concentrating on major breakthroughs, disruptive ideas, and unexpected results Accessible to all interested in subatomic physics with little prior knowledge required Contains the latest developments in this exciting field
Quantum Chromodynamics is the theory of strong interactions: a quantum field theory of colored gluons (Yang-Mills gauge fields) coupled to quarks (Dirac fermion fields). Lattice gauge theory is defined by discretizing spacetime into a four-dimensional lattice - and entails defining gauge fields and Dirac fermions on a lattice. The applications of lattice gauge theory are vast, from the study of high-energy theory and phenomenology to the numerical studies of quantum fields.Lattice Quantum Field Theory of the Dirac and Gauge Fields: Selected Topics examines the mathematical foundations of lattice gauge theory from first principles. It is indispensable for the study of Dirac and lattice gauge fields and lays the foundation for more advanced and specialized studies. |
You may like...
Particles, Fields And Topology…
T R Govindarajan, Giuseppe Marmo, …
Hardcover
R2,981
Discovery Miles 29 810
Handbook Of Accelerator Physics And…
Alexander Wu Chao, Maury Tigner, …
Hardcover
R4,793
Discovery Miles 47 930
Memorial Volume For Jack Steinberger…
Julia Steinberger, Weimin Wu, …
Hardcover
R2,241
Discovery Miles 22 410
An Introduction to Nuclear Fission
Walid Younes, Walter D. Loveland
Hardcover
R2,338
Discovery Miles 23 380
|