Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Physics > Particle & high-energy physics
'Dorigo provides an engaging and insightful perspective on the pursuit of physics discoveries at CDF ... DorigoaEURO (TM)s book is thus almost certainly going to be an important source for anyone interested in the history of CDF ... It is a personal yet highly informative story of discovery and almost-discovery from the perspective of someone who saw the events firsthand.'Physics TodayFrom the mid-1980s, an international collaboration of 600 physicists embarked on the investigation of subnuclear physics at the high-energy frontier. As well as discovering the top quark, the heaviest elementary particle ever observed, the physicists analyzed their data to seek signals of new physics which could revolutionize our understanding of nature.Anomaly! tells the story of that quest, and focuses specifically on the finding of several unexplained effects which were unearthed in the process. These anomalies proved highly controversial within the large team: to some collaborators they called for immediate publication, while to others their divulgation threatened to jeopardize the reputation of the experiment.Written in a confidential, narrative style, this book looks at the sociology of a large scientific collaboration, providing insight in the relationships between top physicists at the turn of the millennium. The stories offer an insider's view of the life cycle of the 'failed' discoveries that unavoidably accompany even the greatest endeavors in modern particle physics.
'Dorigo provides an engaging and insightful perspective on the pursuit of physics discoveries at CDF ... DorigoaEURO (TM)s book is thus almost certainly going to be an important source for anyone interested in the history of CDF ... It is a personal yet highly informative story of discovery and almost-discovery from the perspective of someone who saw the events firsthand.'Physics TodayFrom the mid-1980s, an international collaboration of 600 physicists embarked on the investigation of subnuclear physics at the high-energy frontier. As well as discovering the top quark, the heaviest elementary particle ever observed, the physicists analyzed their data to seek signals of new physics which could revolutionize our understanding of nature.Anomaly! tells the story of that quest, and focuses specifically on the finding of several unexplained effects which were unearthed in the process. These anomalies proved highly controversial within the large team: to some collaborators they called for immediate publication, while to others their divulgation threatened to jeopardize the reputation of the experiment.Written in a confidential, narrative style, this book looks at the sociology of a large scientific collaboration, providing insight in the relationships between top physicists at the turn of the millennium. The stories offer an insider's view of the life cycle of the 'failed' discoveries that unavoidably accompany even the greatest endeavors in modern particle physics.
This book presents, in the form of reviews by world's leading physicists in wide-ranging fields in theoretical physics, the influence and prescience of Skyrme's daring idea of 1960, originally conceived for nuclear physics, that fermions can arise from bosons via topological solitons, pervasively playing a powerful role in wide-ranging areas of physics, from nuclear/astrophysics, to particle physics, to string theory and to condensed matter physics.The skyrmion description, both from gauge theory and from gauge/gravity duality, offers solutions to some long-standing and extremely difficult problems at high baryonic density, inaccessible by QCD proper. It also offers explanations and makes startling predictions for fascinating new phenomena in condensed matter systems. In both cases, what is at the core is the topology although the phenomena are drastically different, even involving different spacetime dimensions.This second edition has been expanded with addition of new reviews and extensively updated to take into account the latest developments in the field.
When the discovery of the Higgs Boson at CERN hit the headlines in 2012, the world was stunned by this achievement of modern science. Less well appreciated, however, were the many ways in which this benefited wider society.The Large Hadron Collider - The Greatest Adventure in Town charts a path through the cultural, economic and medical gains of modern particle physics. It illustrates these messages through the ATLAS experiment at CERN, one of the two big experiments which found the Higgs particle. Moving clear of in-depth physics analysis, it draws on the unparalleled curiosity about particle physics aroused by the Higgs discovery, and relates it to developments familiar in the modern world, including the Internet, its successor 'The Grid', and the latest cancer treatments.In this book, advances made from developing the 27 kilometre particle accelerator and its detectors are presented with the benefit of first hand interviews and are extensively illustrated throughout. Interviewees are leading physicists including successive heads of ATLAS, a top historian of science, a highly original economic strategist, a Nobel Prize-winning geneticist and President of the Royal Society in London, and experts in many other fields. These informative and entertaining insights provide both specialists and non-specialists alike with a unique window into the world of modern international research and its often surprising consequences, as exemplified by the ATLAS experiment. The narrative reveals the extent and style of international collaboration necessary to achieve success, and how big companies as well as start-ups enhance their products in the process.
When the discovery of the Higgs Boson at CERN hit the headlines in 2012, the world was stunned by this achievement of modern science. Less well appreciated, however, were the many ways in which this benefited wider society.The Large Hadron Collider - The Greatest Adventure in Town charts a path through the cultural, economic and medical gains of modern particle physics. It illustrates these messages through the ATLAS experiment at CERN, one of the two big experiments which found the Higgs particle. Moving clear of in-depth physics analysis, it draws on the unparalleled curiosity about particle physics aroused by the Higgs discovery, and relates it to developments familiar in the modern world, including the Internet, its successor 'The Grid', and the latest cancer treatments.In this book, advances made from developing the 27 kilometre particle accelerator and its detectors are presented with the benefit of first hand interviews and are extensively illustrated throughout. Interviewees are leading physicists including successive heads of ATLAS, a top historian of science, a highly original economic strategist, a Nobel Prize-winning geneticist and President of the Royal Society in London, and experts in many other fields. These informative and entertaining insights provide both specialists and non-specialists alike with a unique window into the world of modern international research and its often surprising consequences, as exemplified by the ATLAS experiment. The narrative reveals the extent and style of international collaboration necessary to achieve success, and how big companies as well as start-ups enhance their products in the process.
The recent observation of the Higgs boson has been hailed as the scientific discovery of the century and led to the 2013 Nobel Prize in physics. This book describes the detailed science behind the decades-long search for this elusive particle at the Large Electron Positron Collider at CERN and at the Tevatron at Fermilab and its subsequent discovery and characterization at the Large Hadron Collider at CERN. Written by physicists who played leading roles in this epic search and discovery, this book is an authoritative and pedagogical exposition of the portrait of the Higgs boson that has emerged from a large number of experimental measurements. As the first of its kind, this book should be of interest to graduate students and researchers in particle physics.
The recent observation of the Higgs boson has been hailed as the scientific discovery of the century and led to the 2013 Nobel Prize in physics. This book describes the detailed science behind the decades-long search for this elusive particle at the Large Electron Positron Collider at CERN and at the Tevatron at Fermilab and its subsequent discovery and characterization at the Large Hadron Collider at CERN. Written by physicists who played leading roles in this epic search and discovery, this book is an authoritative and pedagogical exposition of the portrait of the Higgs boson that has emerged from a large number of experimental measurements. As the first of its kind, this book should be of interest to graduate students and researchers in particle physics.
'The editors make a good point in claiming the time has come to upgrade the Standard Model into the aEURO~Standard TheoryaEURO (TM) of particle physics, and I think this book deserves a place in the bookshelves of a broad community, from the scientists and engineers who contributed to the progress of high-energy physics to younger physicists, eager to learn and enjoy the corresponding inside stories.'Carlos LourencoCERN CourierThe book gives a quite complete and up-to-date picture of the Standard Theory with an historical perspective, with a collection of articles written by some of the protagonists of present particle physics. The theoretical developments are described together with the most up-to-date experimental tests, including the discovery of the Higgs Boson and the measurement of its mass as well as the most precise measurements of the top mass, giving the reader a complete description of our present understanding of particle physics.
This user-friendly book on group theory introduces topics in as simple a manner as possible and then gradually develops those topics into more advanced ones, eventually building up to the current state-of-the-art. By using simple examples from physics and mathematics, the advanced topics become logical extensions of ideas already introduced. In addition to being used as a textbook, this book would also be useful as a reference guide for graduates and researchers in particle, nuclear and hadron physics.
We have lost one of the giants of the twentieth century physics when Yoichiro Nambu passed away in July, 2015, at the age of 94.Today's Standard Model, though still incomplete in many respects, is the culmination of the most successful theory of the Universe to date, and it is built upon foundations provided by discoveries made by Nambu in the 1960s: the mechanism of spontaneously broken symmetry in Nature (with G Jona-Lasinio) and the hidden new SU(3) symmetry of quarks and gluons (with M-Y Han).In this volume honoring Nambu's memory, World Scientific Publishing presents a unique collection of papers written by his former colleagues, collaborating researchers and former students and associates, not only citing Nambu's great contributions in physics but also many personal and private reminiscences, some never told before. This volume also contains the very last scientific writing by Professor Nambu himself, discussing the development of particle physics.This book is a volume for all who benefited not only from Nambu's contributions toward understanding the Universe but also his warm and kind persona. It is a great addition to the history of contemporary physics.
We have lost one of the giants of the twentieth century physics when Yoichiro Nambu passed away in July, 2015, at the age of 94.Today's Standard Model, though still incomplete in many respects, is the culmination of the most successful theory of the Universe to date, and it is built upon foundations provided by discoveries made by Nambu in the 1960s: the mechanism of spontaneously broken symmetry in Nature (with G Jona-Lasinio) and the hidden new SU(3) symmetry of quarks and gluons (with M-Y Han).In this volume honoring Nambu's memory, World Scientific Publishing presents a unique collection of papers written by his former colleagues, collaborating researchers and former students and associates, not only citing Nambu's great contributions in physics but also many personal and private reminiscences, some never told before. This volume also contains the very last scientific writing by Professor Nambu himself, discussing the development of particle physics.This book is a volume for all who benefited not only from Nambu's contributions toward understanding the Universe but also his warm and kind persona. It is a great addition to the history of contemporary physics.
The search for neutrinoless double beta decay is one of the highest priority areas in particle physics today; it could provide insights to the nature of neutrino masses (currently not explained by the Standard Model) as well as how the universe survived its early stages. One promising experimental approach involves the use of large volumes of isotope-loaded liquid scintillator, but new techniques for background identification and suppression must be developed in order to reach the required sensitivity levels and clearly distinguish the signal. The results from this thesis constitute a significant advance in this area, laying the groundwork for several highly effective and novel approaches based on a detailed evaluation of state-of-the-art detector characteristics. This well written thesis includes a particularly clear and comprehensive description of the theoretical motivations as well as impressively demonstrating the effective use of diverse statistical techniques. The professionally constructed signal extraction framework contains clever algorithmic solutions to efficient error propagation in multi-dimensional space. In general, the techniques developed in this work will have a notable impact on the field.
At Les Houches in January 2015, experts in the field of charged particle trapping came together for the Second Winter School on Physics with Trapped Charged Particles. This textbook collates the lectures delivered there, covering the fundamental physics of particle traps and the different types of applications of these devices.Taken as a whole, the book gives an overview of why traps for charged particles are important, how they work, their special features and limitations, and their application in areas such as precision measurements, mass spectrometry, optical clocks, plasma physics, antihydrogen creation, quantum simulation and quantum information processing. Chapters from various world experts include those on the basic properties of Penning traps and RF traps, as well as those covering important practical aspects such as vacuum systems, detection techniques, and different types of particle cooling, including laser cooling.Each individual chapter provides information and guidance on the application of the above methods. Additionally, each chapter is complemented by fully worked problems and solutions, making Trapped Charged Particles perfect for advanced undergraduate and postgraduate students new to this topic.
During the last six decades, Yang-Mills theory has increasingly become the cornerstone of theoretical physics. It is seemingly the only fully consistent relativistic quantum many-body theory in four space-time dimensions. As such it is the underlying theoretical framework for the Standard Model of Particle Physics, which has been shown to be the correct theory at the energies we now can measure. It has been investigated also from many other perspectives, and many new and unexpected features have been uncovered from this theory. In recent decades, apart from high energy physics, the theory has been actively applied in other branches of physics, such as statistical physics, condensed matter physics, nonlinear systems, etc. This makes the theory an indispensable topic for all who are involved in physics.The conference celebrated the exceptional achievements using Yang-Mills theory over the years but also many other truly remarkable contributions to different branches of physics from Prof C N Yang. This volume collects the invaluable talks by Prof C N Yang and the invited speakers reviewing these remarkable contributions and their importance for the future of physics.
During the last six decades, Yang-Mills theory has increasingly become the cornerstone of theoretical physics. It is seemingly the only fully consistent relativistic quantum many-body theory in four space-time dimensions. As such it is the underlying theoretical framework for the Standard Model of Particle Physics, which has been shown to be the correct theory at the energies we now can measure. It has been investigated also from many other perspectives, and many new and unexpected features have been uncovered from this theory. In recent decades, apart from high energy physics, the theory has been actively applied in other branches of physics, such as statistical physics, condensed matter physics, nonlinear systems, etc. This makes the theory an indispensable topic for all who are involved in physics.The conference celebrated the exceptional achievements using Yang-Mills theory over the years but also many other truly remarkable contributions to different branches of physics from Prof C N Yang. This volume collects the invaluable talks by Prof C N Yang and the invited speakers reviewing these remarkable contributions and their importance for the future of physics.
This thesis addresses the feasibility of the production of ultra-high-energy cosmic rays in starburst galaxies and active galactic nuclei. These astrophysical objects were theoretically proposed as candidate sources a long time ago. Nevertheless, the interest in them has been recently renewed due to the observational data collected by the Pierre Auger Observatory and the Telescope Array. In this work, a comprehensive review of the current status of the research on cosmic rays accelerators is provided, along with a summary of the principal concepts needed to connect these relativistic particles with electromagnetic and neutrino observations in the multi-messenger era. On one hand, the hypothesis of accelerating particles with energies above 10(1)8 eV in starburst superwinds is carefully revisited, taking into account the constraints imposed by the most recent electromagnetic observations. On the other hand, an alternative new model for the gamma emission of the nearby active galaxy NGC 1068 is presented. The implications of the results of these studies are discussed in terms of the contemporary observatories and prospects for future experiments are offered.
As accelerator science and technology progressed over the past several decades, the accelerators themselves have undergone major improvements in multiple performance factors: beam energy, beam power, and beam brightness. As a consequence, accelerators have found applications in a wide range of fields in our life and in our society. The current volume is dedicated to applications in energy and security, two of the most important and urgent topics in today's world.This volume makes an effort to provide a review as complete and up to date as possible of this broad and challenging subject. It contains overviews on each of the two topics and a series of articles for in-depth discussions including heavy ion accelerator driven inertial fusion, linear accelerator-based ADS systems, circular accelerator-based ADS systems, accelerator-reactor interface, accelerators for fusion material testing, cargo inspection, proton radiography, compact neutron generators and detectors. It also has a review article on accelerator science and technology in Canada with a focus on the TRIUMF laboratory, and an article on the life of Bruno Touschek, a renowned accelerator physicist.
The past 100 years of accelerator-based research have led the field from first insights into the structure of atoms to the development and confirmation of the Standard Model of physics. Accelerators have been a key tool in developing our understanding of the elementary particles and the forces that govern their interactions. This book describes the past 100 years of accelerator development with a special focus on the technological advancements in the field, the connection of the various accelerator projects to key developments and discoveries in the Standard Model, how accelerator technologies open the door to other applications in medicine and industry, and finally presents an outlook of future accelerator projects for the coming decades.
The investigation of discrete symmetries is a fascinating subject which has been central to the agenda of physics research for 50 years, and has been the target of many experiments, ongoing and in preparation, all over the world. This book approaches the subject from a somewhat less traditional angle: while being self-contained and suitable to the reader who wants to acquire a solid knowledge of the topic, it puts more emphasis on the experimental aspects of the field, trying to provide a wider picture than usual and to convey the intellectual challenge of experimental physics. The book includes the related connection to phenomenology, a purpose for which the precision experiments in this field - often rather elegant and requiring a good amount of ingenuity - are very well suited. The book discusses discrete symmetries (parity, charge conjugation, time reversal, and of course CP symmetry) in microscopic (atomic, nuclear, and particle) physics, and includes the detailed description of some key or representative experiments. The book discusses their principles and challenges more than the historical development. The main past achievements and the most recent developments are both included. The level goes from introductory to advanced. While mainly addressed to graduate students, the book can also be useful to undergraduates (by skipping some of the more advanced sections, and utilizing the brief introductions to some topics in the appendices), and to young researchers looking for a wider modern overview of the issues related to CP symmetry.
This is the fifth volume in the series on the subject of quark-gluon plasma, a unique phase created in heavy-ion collisions at high energy. It contains review articles by the world experts on various aspects of quark-gluon plasma taking into account the advances driven by the latest experimental data collected at both the Relativistic Heavy-Ion Collider (RHIC) and the Large Hadron Collider (LHC). The articles are pedagogical and comprehensive which can be helpful for both new researchers entering the field as well as the experienced physicists working on the subject.
'The authors provide an up-to-date, well-organised background and essential elements of supergravity notions as well as all relevant aspects of Chern-Simons forms in gravitation. The book is a self-contained, informative, and much-needed broad introduction into the latest quantum gravity concepts, with a main focus on Chern-Simons gravity and supersymmetry ... The book represents a comprehensive and systematic pedagogical exposition on gravitational Chern-Simons (Super)gravity theories, their applications, together with a selection of related recent developments in the field.'Contemporary PhysicsThis book grew out of a set of lecture notes on gravitational Chern-Simons (CS) theories developed over the past decade for several schools and different audiences including graduate students and researchers.CS theories are gauge-invariant theories that can include gravity consistently. They are only defined in odd dimensions and represent a very special class of theories in the Lovelock family. Lovelock gravitation theories are the natural extensions of General Relativity for dimensions greater than four that yield second-order field equations for the metric. These theories also admit local supersymmetric extensions where supersymmetry is an off-shell symmetry of the action, as in a standard gauge theory.Apart from the arguments of mathematical elegance and beauty, the gravitational CS actions are exceptionally endowed with physical attributes that suggest the viability of a quantum interpretation. CS theories are gauge-invariant, scale-invariant and background independent; they have no dimensional coupling constants. All constants in the Lagrangian are fixed rational coefficients that cannot be adjusted without destroying gauge invariance. This exceptional status of CS systems makes them classically interesting to study, and quantum mechanically intriguing and promising.
Takaaki Kajita and Arthur McDonald have been jointly awarded the 2015 Nobel Prize in Physics 'for the discovery of neutrino oscillations, which shows that neutrinos have mass'. Takaaki Kajita is a Japanese physicist who is well known for neutrino experiments at the Kamiokande and the even more outsized Super-Kamiokande.This volume of collected works of Kajita on neutrino oscillations provides a good glimpse into the rise of Asian research in the frontiers of neutrino physics. Japan is now a major force in the study of the three families of neutrinos. Much remains to be done to clarify the Dirac vs. Majorana nature of the neutrino, and the cosmological implications of the neutrino. The collected works of Kajita and his Super-Kamiokande group will leave an indelible footprint in the history of big and better science.Copyright of the cover image belongs to Kamioka Observatory, ICRR (Institute for Cosmic Ray Research), The University of Tokyo.
This book aims to present the history and developments of particle physics from the introduction of the notion of particles by the Ionian school until the discovery of the Higgs boson at LHC in 2012. Neutrino experiments and particle accelerators where different particles have been discovered are reviewed. In particular, details about the CERN accelerators are presented. This book also discusses the future developments of the field and the work to popularize high energy physics. A short presentation of some features of astrophysics and its connection to particle physics is also included. At the end of the book, some useful tools in the research of particle physics are given for the advanced readers.
This book aims to present the history and developments of particle physics from the introduction of the notion of particles by the Ionian school until the discovery of the Higgs boson at LHC in 2012. Neutrino experiments and particle accelerators where different particles have been discovered are reviewed. In particular, details about the CERN accelerators are presented. This book also discusses the future developments of the field and the work to popularize high energy physics. A short presentation of some features of astrophysics and its connection to particle physics is also included. At the end of the book, some useful tools in the research of particle physics are given for the advanced readers.
The embedding method is a powerful theoretical and computational technique used in exploring surface and interface electronic structure, adsorption, physics of nanostructures, molecular electronics, plasmonics and photonics. Supplemented with demonstration programmes, code and examples this book provides a thorough review of the method |
You may like...
Memorial Volume For Jack Steinberger…
Julia Steinberger, Weimin Wu, …
Hardcover
R2,241
Discovery Miles 22 410
Low-Energy Nuclear Reactions and New…
Jan Marwan, Steven Krivit
Hardcover
R5,773
Discovery Miles 57 730
Frank Wilczek: 50 Years Of Theoretical…
Antti Niemi, Alfred Shapere, …
Hardcover
R1,845
Discovery Miles 18 450
|