![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Particle & high-energy physics
This book takes the reader from some elementary ideas about groups to the essence of the Standard Model of particle physics along a relatively straight and intuitive path. Groups alone are first used to arrive at a classical analog of the Dirac equation. Using elementary quantum mechanics, this analog can be turned into the actual Dirac equation, which governs the motion of the quarks and leptons of the Standard Model. After an introduction to the gauge principle, the groups introduced in the beginning of the book are used to give an introduction to the Standard Model. The idea is to give an Olympian view of this evolution, one that is often missing when absorbing the detailed subject matter of the Standard Model as presented in an historical approach to the subject.
The book aims to explain the historical development of particle physics, with special emphasis on CERN and collider physics. It describes in detail the LHC accelerator and its detectors, describing the science involved as well as the sociology of big collaborations, culminating with the discovery of the Higgs boson. Readers are led step-by-step to understanding why we do particle physics, as well as the tools and problems involved in the field. It provides an insider's view on the experiments at the Large Hadron Collider.
This book introduces the phenomenology and theory of hadron form factors in a consistent manner, deriving step-by-step the key equations, defining the form factors from the matrix elements of hadronic transitions and deriving their symmetry relations. Explained are several general concepts of particle theory and phenomenology exemplified by hadron form factors. The main emphasis here is on learning the analytical methods in particle phenomenology. Many examples of hadronic processes involving form factors are considered, from the pion electromagnetic scattering to heavy B-meson decays. In the second part of the book, modern techniques of the form factor calculation, based on the method of sum rules in the theory of strong interactions, quantum chromodynamics, are introduced in an accessible manner. This book will be a useful guide for graduate students and early-career researchers working in the field of particle phenomenology and experiments. Features: * The first book to address the phenomenology of hadron form factors at a pedagogical level in one coherent volume * Contains up-to-date descriptions of the most important form factors of the electroweak transitions investigated in particle physics experiments
The 2013 discovery of the Higgs boson posed a challenge to both physics undergraduates and their instructors. Since particle physics is seldom taught at the undergraduate level, the question 'what is the Higgs and why does its discovery matter?' is a common question among undergraduates. Equally, answering this question is a problem for physics instructors.This book is an attempt to put the key concepts of particle physics together in an appealing way, and yet give enough extra tidbits for students seriously considering graduate studies in particle physics. It starts with some recapitulation of relativity and quantum mechanics, and then builds on it to give both conceptual ideas regarding the Standard Model of particle physics as well as technical details. It is presented in an informal lecture style, and includes 'remarks' sections where extra material, history, or technical details are presented for the interested student. The last lecture presents an assessment of the open questions, and where the future might take us.
This book provides a philosophically informed and mathematically
rigorous introduction to the 'standard model' of particle physics.
The standard model is the currently accepted and experimentally
verified model of all the particles and interactions in our
universe. All the elementary particles in our universe, and all the
non-gravitational interactions -the strong nuclear force, the weak
nuclear force, and the electromagnetic force - are collected
together and, in the case of the weak and electromagnetic forces,
unified in the standard model.
There is a unity to physics; it is a discipline which provides the most fundamental understanding of the dynamics of matter and energy. To understand anything about a physical system you have to interact with it and one of the best ways to learn something is to use electrons as probes. This book is the result of a meeting, which took place in Magdalene College Cambridge in December 2001. Atomic, nuclear, cluster, soHd state, chemical and even bio- physicists got together to consider scattering electrons to explore matter in all its forms. Theory and experiment were represented in about equal measure. It was meeting marked by the most lively of discussions and the free exchange of ideas. We all learnt a lot. The Editors are grateful to EPSRC through its Collaborative Computational Project program (CCP2), lOPP, the Division of Atomic, Molecular, Optical and Plasma Physics (DAMOPP) and the Atomic Molecular Interactions group (AMIG) of the Institute of Physics for financial support. The smooth running of the meeting was enormously facilitated by the efficiency and helpfulness of the staff of Magdalene College, for which we are extremely grateful. This meeting marked the end for one of us (CTW) of a ten-year period as a fellow of the College and he would like to take this opportunity to thank the fellows and staff for the privilege of working with them.
The book aims to explain the historical development of particle physics, with special emphasis on CERN and collider physics. It describes in detail the LHC accelerator and its detectors, describing the science involved as well as the sociology of big collaborations, culminating with the discovery of the Higgs boson. Readers are led step-by-step to understanding why we do particle physics, as well as the tools and problems involved in the field. It provides an insider's view on the experiments at the Large Hadron Collider.
Murray Gell-Mann is one of the leading physicists of the world. He was awarded the Nobel Prize in Physics in 1969 for his work on the classification and symmetries of elementary particles, including the approximate SU(3) symmetry of hadrons. His list of publications is impressive; a number of his papers have become landmarks in physics. In 1953, Gell-Mann introduced the strangeness quantum number, conserved by the strong and electromagnetic interactions but not by the weak interaction. In 1954 he and F E Low proposed what was later called the renormalization group. In 1958 he and R P Feynman wrote an important article on the V-A theory of the weak interaction. In 1961 and 1962 he described his ideas about the SU(3) symmetry of hadrons and its violation, leading to the prediction of the O- particle. In 1964 he proposed the quark picture of hadrons. In 1971 he and H Fritzsch proposed the exactly conserved "color" quantum number and in 1972 they discussed what they later called quantum chromodynamics (QCD), the gauge theory of color. These major publications and many others are collected in this volume, providing physicists with easy access to much of Gell-Mann's work. Some of the articles are concerned with his recollections of the history of elementary particle physics in the third quarter of the twentieth century.
This book contains a systematic and pedagogical exposition of recent developments in particle physics and cosmology. It starts with two introductory chapters on group theory and the Dirac theory. Then it proceeds with the formulation of the Standard Model (SM) of Particle Physics, particle content and symmetries, fully exploiting the material of the first two chapters. It discusses the concept of gauge symmetries and emphasizes their role in particle physics. It then analyses the Higgs mechanism and the spontaneous symmetry breaking (SSB). It explains how the particles (gauge bosons and fermions) after the SSB acquire a mass and get admixed. The various forms of charged currents are discussed in detail as well as how the parameters of the SM, which cannot be determined by the theory, are fixed by experiment, including the recent LHC data and the Higgs discovery. Quantum chromodynamics is discussed and various low energy approximations to it are presented. The Feynman diagrams are introduced and applied, at the level of first year graduate students. Examples are the evaluation of the decay widths of the gauge bosons and some cross sections for interesting processes such as Rutherford scattering, electron-proton scattering (elementary proton or described by a form factor, and inelastic scattering) and Compton scattering. After that the classic topics like the role of C, P, CP symmetries and the experimental methods needed to verify their conservation or violation are discussed in some detail. Topics beyond the standard model, like supersymmetry for pedestrians and grand unification, are discussed. To this end neutrino oscillations, dark matter and baryon asymmetry are also briefly discussed at the first year graduate level. Finally, the book contains an exhibition of recent developments in cosmology, especially from the elementary particle point of view.
Since its invention in the 1920s, particle accelerators have made tremendous progress in accelerator science, technology and applications. However, the fundamental acceleration principle, namely, to apply an external radiofrequency (RF) electric field to accelerate charged particles, remains unchanged. As this method (either room temperature RF or superconducting RF) is approaching its intrinsic limitation in acceleration gradient (measured in MeV/m), it becomes apparent that new methods with much higher acceleration gradient (measured in GeV/m) must be found for future very high energy accelerators as well as future compact (table-top or room-size) accelerators. This volume introduces a number of advanced accelerator concepts (AAC) - their principles, technologies and potential applications. For the time being, none of them stands out as a definitive direction in which to go. But these novel ideas are in hot pursuit and look promising. Furthermore, some AAC requires a high power laser system. This has the implication of bringing two different communities - accelerator and laser - to join forces and work together. It will have profound impact on the future of our field.Also included are two special articles, one on 'Particle Accelerators in China' which gives a comprehensive overview of the rapidly growing accelerator community in China. The other features the person-of-the-issue who was well-known nuclear physicist Jerome Lewis Duggan, a pioneer and founder of a huge community of industrial and medical accelerators in the US.
The remarkable recent discovery of the Higgs boson at the CERN Large Hadron Collider completed the Standard Model of particle physics and has paved the way for understanding the physics which may lie beyond it. String/M theory has emerged as a broad framework for describing a plethora of diverse physical systems, which includes condensed matter systems, gravitational systems as well as elementary particle physics interactions. If string/M theory is to be considered as a candidate theory of Nature, it must contain an effectively four-dimensional universe among its solutions that is indistinguishable from our own. In these solutions, the extra dimensions of string/M theory are "compactified" on tiny scales which are often comparable to the Planck length. String phenomenology is the branch of string/M theory that studies such solutions, relates their properties to data, and aims to answer many of the outstanding questions of particle physics beyond the Standard Model.This book contains perspectives on string phenomenology from some of the leading experts in the field. Contributions will range from pedagogical general overviews and perspectives to more technical reviews. We hope that the reader will get a sense of the significant progress that has been made in the field in recent years (e.g. in the topic of moduli stabilization) as well as the topics currently being researched, outstanding problems and some perspectives for the future.
This book provides insight into concept of the weak interaction and its integration into the conceptual structure of elementary particle physics. It exhibits the important role of the weak interaction in nuclear, particle and astrophysics together with the close connection between these areas.
This book provides a self-contained description of the measurements of the magnetic dipole moments of the electron and muon, along with a discussion of the measurements of the fine structure constant, and the theory associated with magnetic and electric dipole moments. Also included are the searches for a permanent electric dipole moment of the electron, muon, neutron and atomic nuclei. The related topic of the transition moment for lepton flavor violating processes, such as neutrinoless muon or tauon decays, and the search for such processes are included as well. The papers, written by many of the leading authors in this field, cover both the experimental and theoretical aspects of these topics.
Vladimir Gribov was one of the founding fathers of high-energy elementary particle physics. This book derives from a lecture course he delivered to graduate students in the 1970s. It thus provides today's graduate students and researchers with the opportunity to learn from the teaching of one of the twentieth century's greatest physicists. Its content is still deeply relevant to modern research, for example exploring properties of the relativistic theory of hadron interactions in a domain of peripheral collisions and large distances that quantum chromodynamics has barely approached. It covers a combination of topics not treated elsewhere, whilst remaining self-contained and thus accessible at graduate level. In guiding the reader, step-by-step, from the basics of quantum mechanics and relativistic kinematics to the most challenging problems of high-energy hadron interactions with simplifying models and physical analogies, it demonstrates general methods of addressing difficult problems in theoretical physics.
The electron is fundamental to almost all aspects of modern life, controlling the behavior of atoms and how they bind together to form gases, liquids, and solids. Flash of the Cathode Rays: A History of J.J. Thomson's Electron presents the compelling story of the discovery of the electron and its role as the first subatomic particle in nature. The book traces the evolution of the concept of electrical charge, from the earliest glow discharge studies to the final cathode ray and oil drop experiments of J.J. Thomson and Robert Millikan. It also provides an overview of the history of modern physics up to the advent of the old quantum theory around 1920. Consolidating scholarly material while incorporating new material discovered by the well-respected author, the book covers the continental and English race for the source of the cathode rays, culminating in Thomson's corpuscle in 1897. It explores the events leading to Millikan's unambiguous isolation of the electron and the simultaneous circumstances surrounding the birth of Ernest Rutherford's nuclear atom and the discovery of radioactivity in 1896. The author also focuses on the controversies over N-rays, Becquerel's positive electron, and the famous Ehrenhaft-Millikan dispute over subelectrons. Scholarly yet accessible to those with basic physics knowledge, this book should be of interest to historians of science, professional scientists and engineers, teachers and students of physics, and general readers interested in the development of modern physics.
Exploring the phenomenology of the Large Hadron Collider (LHC) at CERN, LHC Physics focuses on the first years of data collected at the LHC as well as the experimental and theoretical tools involved. It discusses a broad spectrum of experimental and theoretical activity in particle physics, from the searches for the Higgs boson and physics beyond the Standard Model to studies of quantum chromodynamics, the B-physics sector, and the properties of dense hadronic matter in heavy-ion collisions. Covering the topics in a pedagogical manner, the book introduces the theoretical and phenomenological framework of hadron collisions and presents the current theoretical models of frontier physics. It offers overviews of the main detector components, the initial calibration procedures, and search strategies. The authors also provide explicit examples of physics analyses drawn from the recently shut down Tevatron. In the coming years, or perhaps even sooner, the LHC experiments may reveal the Higgs boson and offer insight beyond the Standard Model. Written by some of the most prominent and active researchers in particle physics, this volume equips new physicists with the theory and tools needed to understand the various LHC experiments and prepares them to make future contributions to the field.
Many courses on modern quantum field theory focus on the formulation and application of field theory, leaving topics related to symmetry underdeveloped. This leads to students often having an incomplete understanding of symmetries. Filling this gap, Symmetries and Symmetry Breaking in Field Theory sheds light on various aspects of symmetry in field theory. The book presents a broad selection of important topics, including constraint theory, generalized Pauli-Villars regularization, the measure approach to anomalies, zeta function regularization, and anomalous gauge theories. The author explains how some classical symmetries are broken by anomalies and how other symmetries of the theory are spontaneously broken. He discusses all of the ideas in as simple a way as possible.
The Microtron: Development and Applications is a comprehensive monograph that sums up more than 30 years of research and development in microtron technology and applications and provides a systematic presentation of results from investigations carried out in Russia and abroad. The first part describes the basic principles of various types of microtron and presents recent research into development of the machine itself. Part 2 explains how microtrons can be used as sources of neutrons and electrons, and describes the development and use of secondary beams. Part 3 is devoted to microtron applications, including materials analysis, nondestructive testing, medical diagnosis, and cancer therapy.
Choice Recommended Title, January 2020 Providing a vital resource in tune with the massive advancements in accelerator technologies that have taken place over the past 50 years, Accelerator Radiation Physics for Personnel and Environmental Protection is a comprehensive reference for accelerator designers, operators, managers, health and safety staff, and governmental regulators. Up-to-date with the latest developments in the field, it allows readers to effectively work together to ensure radiation safety for workers, to protect the environment, and adhere to all applicable standards and regulations. This book will also be of interest to graduate and advanced undergraduate students in physics and engineering who are studying accelerator physics. Features: Explores accelerator radiation physics and the latest results and research in a comprehensive single volume, fulfilling a need in the market for an up-to-date book on this topic Contains problems designed to enhance learning Addresses undergraduates with a background in math and/or science
The volume of these proceedings is devoted to a wide variety of items, both in theory and experiment, of particle physics such as electroweak theory, fundamental symmetries, tests of the standard model and beyond, neutrino and astroparticle physics, hadron physics, gravitation and cosmology, physics at the present and future accelerator.
The Standard Model of elementary particles, although very successful, contains various elements that are put in by hand. Understanding their origin requires going beyond the model and searching for "new physics". The present book elaborates on one particular proposal concerning such physics. While the original conception is 50 years old, it has not lost its appeal over time. Its basic idea is that space - an arena of events treated in the Standard Model as a classical background - is a concept which emerges from a strictly discrete quantum layer in the limit of large quantum numbers. This book discusses an extension of this view by replacing space with phase space. It combines the results of the author's research papers and places them in much broader philosophical and phenomenological contexts, thus providing further arguments in favor of the proposed alternative. The book should be of interest to the philosophically-minded readers who are willing to contemplate unorthodox ideas on the very nature of the world.
Quantum Chromodynamics (QCD) is the most up-to-date theory of the strong interaction. Its predictions have been verified experimentally, and it is a cornerstone of the Standard Model of particle physics. However, standard perturbative procedures fail if applied to low-energy QCD. Even the discovery of the Higgs Boson will not solve the problem of masses originating from the non-perturbative behavior of QCD. This book presents a new method, the introduction of the mass gap', first suggested by Arthur Jaffe and Edward Witten at the turn of the millennium. It attempts to show that, to explain the mass-spectrum of QCD, one needs the mass scale parameter (the mass gap) instead of other massive particles. The energy difference between the lowest order and the vacuum state in Yang-Mills quantum field theory, the mass gap is in principle responsible for the large-scale structure of the QCD ground state, and thus also for its non-perturbative phenomena at low energies. This book not only presents the mass gap, but also details the applications and outlook of the mass gap method. A detailed summary of references and problems are included as well. This book is best for scientists and highly advanced students interested in non-perturbative effects and methods in QCD.
This book provides a survey of the current state of research into the physics of neutrinos. It is presented in a form accessible to non-specialists and graduate students, but will also be useful as a handbook for researchers in this field. The reader finds here a global view of the areas of physics in which neutrinos play important roles, including astrophysics and cosmology. The book is intended to be self-contained: Starting from the standard theory of electroweak interactions, the key notions are explained in detail and the fundamental equations are derived explicitly, so that readers can understand their precise content. Prime emphasis is given to the mass of neutrinos and its implications. The first eight chapters deal mostly with well-established knowledge whilst later chapters probe into research problems.
Dark matter and dark energy are one of the central mysteries in modern physics, although modern astrophysical and cosmological observations and particle physics experiments can and will provide vital clues in uncovering its true nature. The DARK 2009 Conference brought together World's leading researchers in both astrophysics and particle physics, providing an opportunity and platform to present their latest results to the community. The topics covered are wide-ranging, from terrestrial underground experiments to space experimental efforts to search for dark matter, and on the theoretical aspects, from the generating of a fifth family as origin of dark matter, extra dimensions and dark matter to non-standard Wigner classes and dark matter. One of the new highlights was certainly a possible connection between a neutrino mass as observed by nuclear double beta decay and the dark energy. Highly important and relevant in its field, the book presents a vital snapshot of the sometimes seemingly disparate areas of dark matter research and offers an exciting overview of current ideas and future directions.
This book provides a comprehensive overview of modern particle physics accessible to anyone with a true passion for wanting to know how the universe works. We are introduced to the known particles of the world we live in. An elegant explanation of quantum mechanics and relativity paves the way for an understanding of the laws that govern particle physics. These laws are put into action in the world of accelerators, colliders and detectors found at institutions such as CERN and Fermilab that are in the forefront of technical innovation. Real world and theory meet using Feynman diagrams to solve the problems of infinities and deduce the need for the Higgs boson.Facts and Mysteries in Elementary Particle Physics offers an incredible insight from an eyewitness and participant in some of the greatest discoveries in 20th century science. From Einstein's theory of relativity to the spectacular discovery of the Higgs particle, this book will fascinate and educate anyone interested in the world of quarks, leptons and gauge theories.This book also contains many thumbnail sketches of particle physics personalities, including contemporaries as seen through the eyes of the author. Illustrated with pictures, these candid sketches present rare, perceptive views of the characters that populate the field.The Chapter on Particle Theory, in a pre-publication, was termed 'superbly lucid' by David Miller in Nature (Vol. 396, 17 Dec. 1998, p. 642). |
![]() ![]() You may like...
|