Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Physics > Particle & high-energy physics
Research and development of high energy accelerators began in 1911. Since then, progresses achieved are:The impacts of the accelerator development are evidenced by the many ground-breaking discoveries in particle and nuclear physics, atomic and molecular physics, condensed matter physics, biology, biomedical physics, nuclear medicine, medical therapy, and industrial processing. This book is intended to be used as a graduate or senior undergraduate textbook in accelerator physics and science. It can be used as preparatory course material in graduate accelerator physics thesis research. The text covers historical accelerator development, transverse betatron motion, synchrotron motion, an introduction to linear accelerators, and synchrotron radiation phenomena in low emittance electron storage rings, introduction to special topics such as the free electron laser and the beam-beam interaction. Hamiltonian dynamics is used to understand beam manipulation, instability and nonlinearity. Each section is followed by exercises, which are designed to reinforce the concept discussed and to solve a realistic accelerator design problem.
Many high-energy collider experiments (including the current Large Hadron Collider at CERN) involve the collision of hadrons. Hadrons are composite particles consisting of partons (quarks and gluons), and this means that in any hadron-hadron collision there will typically be multiple collisions of the constituents - i.e. multiple parton interactions (MPI). Understanding the nature of the MPI is important in terms of searching for new physics in the products of the scatters, and also in its own right to gain a greater understanding of hadron structure. This book aims at providing a pedagogical introduction and a comprehensive review of different research lines linked by an involvement of MPI phenomena. It is written by pioneers as well as young leading scientists, and reviews both experimental findings and theoretical developments, discussing also the remaining open issues.
'What makes this collection unusual and refreshing is that it is not the more common aEURO~FestschriftaEURO (TM) written by specialists for specialists, but a broad set of topical summaries and analyses addressed to a wide readership of particle physicists. Inevitably, some of the sections are more advanced in their treatment than others, but most of the material will be accessible and helpful to researchers at all levels, and in particular to those working on experiments at CERN, where Altarelli spent many years in the theory group. It is hard to do justice to the varied contents of this excellent collection ... I can only recommend that anyone involved in particle research should turn to the web for a full description of the richness of material that is included here ... There is something here for everyone, and much for most. IaEURO (TM)m sure Altarelli would have been pleased with that! The Editors are to be complimented for their initiative in making this unique volume possible.'Contemporary PhysicsGuido Altarelli was a leading figure in 20th century particle physics. His scientific contributions and leadership played a key role in the development of the Standard Model of fundamental interactions, as well as the current search for new physics beyond it, both at and beyond CERN. This book is a collection of original contributions, at the cutting edge of scientific research, by some of the leading theoretical and experimental high-energy physicists currently in the field. These were inspired by Guido's ideas, whether directly or indirectly. This book is ideal for researchers looking to keep up with the latest developments in high-energy physics.
This book provides a survey of the current state of research into the physics of neutrinos. It is presented in a form accessible to non-specialists and graduate students, but will also be useful as a handbook for researchers in this field. The reader finds here a global view of the areas of physics in which neutrinos play important roles, including astrophysics and cosmology. The book is intended to be self-contained: Starting from the standard theory of electroweak interactions, the key notions are explained in detail and the fundamental equations are derived explicitly, so that readers can understand their precise content. Prime emphasis is given to the mass of neutrinos and its implications. The first eight chapters deal mostly with well-established knowledge whilst later chapters probe into research problems.
This second open access volume of the handbook series deals with detectors, large experimental facilities and data handling, both for accelerator and non-accelerator based experiments. It also covers applications in medicine and life sciences. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A,B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access.
In the 25 years since their introduction, Higgs bundles have seen a surprising number of interactions within different areas of mathematics and physics. There is a recent surge of interest following Ngo Bau Chau's proof of the Fundamental Lemma and the work of Kapustin and Witten on the Geometric Langlands program. The program on The Geometry, Topology and Physics of Moduli Spaces of Higgs Bundles, was held at the Institute for Mathematical Sciences at the National University of Singapore during 2014. It hosted a number of lectures on recent topics of importance related to Higgs bundles, and it is the purpose of this volume to collect these lectures in a form accessible to graduate students and young researchers interested in learning more about this field.
At a fundamental level, the interaction of quarks with gluon fields lies at the heart of our understanding of the strong nuclear force. Experimentally, however, we only observe physical hadrons such as protons and pions. This book explores the fascinating physics involved in the path between these contrasting pictures of the world. Along the way, the book discusses symmetries, which play a crucial role in understanding the parameters of the theory, and details of the spectrum of physical particles.This would be the first book to elaborate on the detailed connections between confinement and chiral symmetry, with an emphasis on a unified treatment of the non-perturbative nature of these phenomena. As such, it should be a valuable title on any particle theorist's bookshelf, containing extensive pedagogical material for scientists at the graduate level and above.
This volume is a compilation of lectures delivered at the TASI 2016 summer school, 'Anticipating the Next Discoveries in Particle Physics', held at the University of Colorado at Boulder in June 2016. The school focused on topics in theoretical particle physics, phenomenology, dark matter, and cosmology of interest to contemporary researchers in these fields. The lectures are accessible to graduate students in the initial stages of their research careers.
Linear induction accelerators are successfully used as power supplies for numerous devices of relativistic high-frequency electronics. This book addresses ways to solve physical and engineering problems arising in the calculation, design, modeling and operation of linear induction accelerators intended for supplying relativistic microwave devices. It reviews and analyzes both classic and recent studies on the topic of linear induction accelerators (LIA) for generating and amplifying microwave radiation by relativistic devices.
Walter Greiner (1935-2016) was a German physicist of the Goethe University, Frankfurt, well-known for his many contributions in scientific research and developments, in particular the field of nuclear physics. He was a well-respected science leader and a teacher who had supervised batches of young collaborators and students, many of whom are now leaders in both academics and industry worldwide. Greiner had a wide interest of science which covered atomic physics, heavy-ion physics, and nuclear astrophysics. Greiner co-founded GSI, the Helmholtz Centre for Heavy Ion Research, and the multi-disciplinary research center, FIAS (Frankfurt Institute for Advanced Studies). Besides numerous professorship with universities worldwide, including the University of Maryland, Greiner received many prestigious prizes in honor of his outstanding contributions, among others are the Otto Hahn Prize and the Max Born Prize.This memorial volume is a special tribute by Greiner's former colleagues, students, and friends honoring his contributions and passion in science. The volume begins with a writing by Greiner about his early days in science. The subsequent articles, comprising personal and scientific reminiscences of Walter Greiner, serve as timely reviews on various topics of current interest.
The XII Max Born Symposium has a special character. It was held in honour th of Jan Lopusza nski on the occasion of his 75 birthday. As a rule the Max Born Symposia organized by the Institute of Theoretical Physics at the University of Wroc law were devoted to well-de ned subjects of contemporary interest. This time, however, the organizers decided to make an exception. Lopusza nski's in?uence on and contribution to the development of th- retical physics at Wrocla w University is highly appreciable. His personality and scienti c achievements gave him authority which he used to the best - vantage of the Institute. In fact we still pro t from his knowledge, experience and judgment. Lopusza nski's scienti c activity extended over about half a century. He successfully participated in research on the most important and fascinating issues of theoretical physics. During his scienti c career he met and made friends with many outstanding physicists who shaped theoretical physics to the present form. For this reason, as well as the coincidence of the approaching end of the century, we thought that it would be interesting and instructive to give the symposium a retrospective character. We decided to trust the speakers' judgment and intuition for the choice of subjects for their talks. We just asked them to give the audience the important message based on their knowledge and experience.
The neutrino is the most fascinating elementary particle due to its elusive nature and outstanding properties that have attracted the interest of generations of physicists since 1930, when it was first postulated by Wolfgang Pauli as a 'desperate remedy' to explain the apparent energy violation in the beta decay. Many fundamental discoveries in particle physics had the neutrino involved in one way or another. To date, neutrino physics is still one of the hottest topics of modern particle physics. Key experiments and significant theoretical developments have contributed in building up what we can call now the Standard Model of Neutrino Physics.The aim of the book is to provide graduate students and young researchers a comprehensive tutorial in modern neutrino physics, specially tailored with emphasis on the educational aspects. It provides an overview of the basics and of recent achievements in the field, from both experimental and theoretical points of view.
This book provides a comprehensive overview of modern particle physics accessible to anyone with a true passion for wanting to know how the universe works. We are introduced to the known particles of the world we live in. An elegant explanation of quantum mechanics and relativity paves the way for an understanding of the laws that govern particle physics. These laws are put into action in the world of accelerators, colliders and detectors found at institutions such as CERN and Fermilab that are in the forefront of technical innovation. Real world and theory meet using Feynman diagrams to solve the problems of infinities and deduce the need for the Higgs boson.Facts and Mysteries in Elementary Particle Physics offers an incredible insight from an eyewitness and participant in some of the greatest discoveries in 20th century science. From Einstein's theory of relativity to the spectacular discovery of the Higgs particle, this book will fascinate and educate anyone interested in the world of quarks, leptons and gauge theories.This book also contains many thumbnail sketches of particle physics personalities, including contemporaries as seen through the eyes of the author. Illustrated with pictures, these candid sketches present rare, perceptive views of the characters that populate the field.The Chapter on Particle Theory, in a pre-publication, was termed 'superbly lucid' by David Miller in Nature (Vol. 396, 17 Dec. 1998, p. 642).
'The computer simulations can readily illustrate the physical ideas inside the equations and leave the reader immediately able to perform new simulations. The book is aimed at a new student of accelerator physics, and would be suitable for both undergraduate and postgraduate study. The book would also be interesting for a professional looking to use Matlab in their work ... The text is nicely written and easy to follow ... This book is ideally suited to a student new to the field who would like to quickly get up to speed with making real numerical simulations.'Contemporary PhysicsThis book explores a first introduction to particle beams and accelerators. The text uses the suite of tools made available in the MATLAB package. Since many colleges have a site wide license, these tools are often freely available to students. A brief introduction to those tools is made initially. Analogues in classical optics are introduced where useful. The text is compact and focuses on graphical data display and dynamical 'movies' as an aid to understanding specific systems. Hands on dialogue using command line inputs, 'apps', and 'live' tools are stressed. The extensive algebraic steps are subsumed into the associated scripts, where the symbolic math utilities spare the reader from the math manipulations. Both beams and periodic structures are covered. Dispersion, insertions, acceleration and light sources are discussed.
This book provides a comprehensive overview of modern particle physics accessible to anyone with a true passion for wanting to know how the universe works. We are introduced to the known particles of the world we live in. An elegant explanation of quantum mechanics and relativity paves the way for an understanding of the laws that govern particle physics. These laws are put into action in the world of accelerators, colliders and detectors found at institutions such as CERN and Fermilab that are in the forefront of technical innovation. Real world and theory meet using Feynman diagrams to solve the problems of infinities and deduce the need for the Higgs boson.Facts and Mysteries in Elementary Particle Physics offers an incredible insight from an eyewitness and participant in some of the greatest discoveries in 20th century science. From Einstein's theory of relativity to the spectacular discovery of the Higgs particle, this book will fascinate and educate anyone interested in the world of quarks, leptons and gauge theories.This book also contains many thumbnail sketches of particle physics personalities, including contemporaries as seen through the eyes of the author. Illustrated with pictures, these candid sketches present rare, perceptive views of the characters that populate the field.The Chapter on Particle Theory, in a pre-publication, was termed 'superbly lucid' by David Miller in Nature (Vol. 396, 17 Dec. 1998, p. 642).
This volume gathers the content of the courses held at the Third IDPASC School, which took place in San Martino Pinario, Hospederia and Seminario Maior, in the city of Santiago de Compostela, Galiza, Spain, from January 21st to February 2nd, 2013. This school is the annual joint program of the International Doctorate Network in Particle Physics, Astrophysics, and Cosmology (IDPASC). The purpose of the school series is to present doctoral students from different universities and laboratories in Europe and beyond with a broad range of the latest results and current state of the art in the fields of Particle Physics, Astrophysics, and Cosmology, and to further introduce them to both the questions now posed by the potentials of physics and to challenges connected with current and future experiments - in particular, with the newly available energy ranges. Following these guidelines, the content of this third edition of the IDPASC School was jointly planned by the Academic Council and by the network's International Committee, whose members ensure every year its timely formulation, keeping up with the constant evolution of these fields. The program covers a balanced range of the latest developments in these fields worldwide, with courses offered by internationally acknowledged physicists on the Basic Features of Hadronic Processes, Quantum Chromodynamics, Physics and Technology of ALICE, LHCb Physics-Parity Violation, the Higgs System in and beyond the Standard Model, Higgs Searches at the LHC, Theory and Experiments with Cosmic Rays, Numerical Methods and Data Analysis in Particle Physics, Theoretical Cosmology, and AdS/CFT Correspondence. Most of these courses were complemented by practical and discussion sessions.
International Young Physicists' Tournament (IYPT), is one of the most prestigious international physics contests among high school students. This book is based on the solutions of 2015 IYPT problems. The authors are undergraduate students who participated the CUPT (Chinese Undergraduate Physics Tournament). It is intended as a college level solution to the challenging open-ended problems. It provides original, quantitative solutions in fulfilling seemingly impossible tasks. The young authors provide quantitative solutions to practical problems in everyday life.This is a good reference book for undergraduates, advanced high school students, physics educators and curious public interested in the intriguing phenomenon in daily life.
This volume contains contributions to the workshop, which was largely focused on the strong coupling gauge theories in search for theories beyond the standard model, particularly, the LHC experiments and lattice studies of conformal fixed point. The main topics include walking technicolor and the role of conformality in view of the 125 GeV Higgs as a light composite Higgs (technidilaton, and other composite Higgs, etc.). Nonperturbative studies like lattice simulations and stringy/holographic approaches are extensively discussed in close relation to the phenomenological studies.After the discovery of 125 GeV Higgs at LHC, the central issue of particle physics is now to reveal the dynamical origin of the Higgs itself. One of the possibilities would be the composite Higgs based on the strong coupling gauge theory in the TeV region, such as the technidilaton predicted in walking technicolor with infrared conformality. The volume contains, among others, many of the latest important reports on walking technicolor and related subjects in the general context of conformality, in a way of direct relevance to the LHC phenomenology as well as the lattice studies. It is very timely to study full theoretical implications in the exciting era when the LHC is vigorously working. This volume is of great importance for that purpose.Speakers of 40 talks (plus posters) include K-I Aoki, Y Aoki, K Bamba, E Bennett, R S Chivukula, H Georgi, A Hasenfratz, D-K Hong, K Itoh, D Elander, G Fleming, H Fukano, Y Iwasaki, M Jarvinen, D Kadoh, S Kim, R Kitano, K-I Kondo, J Kuti, D Lin, N Maru, H Matsufuru, S Matsuzaki, K-I Nagai, C Nonaka, H Ohki, E Pallante, M Rho, E Rinaldi, F Sannino, D Schaich, A Shibata, R E Shrock, E H Simmons, K Tuominen, C H Wong, N Yamada, M J S Yang, and K Yamawaki.
The 2013 discovery of the Higgs boson posed a challenge to both physics undergraduates and their instructors. Since particle physics is seldom taught at the undergraduate level, the question 'what is the Higgs and why does its discovery matter?' is a common question among undergraduates. Equally, answering this question is a problem for physics instructors.This book is an attempt to put the key concepts of particle physics together in an appealing way, and yet give enough extra tidbits for students seriously considering graduate studies in particle physics. It starts with some recapitulation of relativity and quantum mechanics, and then builds on it to give both conceptual ideas regarding the Standard Model of particle physics as well as technical details. It is presented in an informal lecture style, and includes 'remarks' sections where extra material, history, or technical details are presented for the interested student. The last lecture presents an assessment of the open questions, and where the future might take us.
'A light read, this book will appeal to all the scientists who at some point in their career stepped on the floor of Fermilab. It will also appeal to those readers who are interested in discovering more about the history of the laboratory through the records of the people who participated in it, whether it was directly or indirectly.'CERN CourierFermilab - originally called the National Accelerator Laboratory - began operations in Illinois on June 15, 1967. Operated and managed by The University of Chicago and Universities Research Association, LLC for the US Department of Energy, it has the distinction of being the only US national laboratory solely dedicated to the advancement of high-energy particle physics, astrophysics and cosmology. It has been the site of major discoveries and observations: the top and bottom quarks; the tau neutrino; direct CP violation in kaon decays; a quasar 27 billion light years away from us; origin of high-energy cosmic rays; and confirmation of the evidence of dark energy, among others. For 25 years it operated the world's highest energy particle collider, the Tevatron. Fermilab contributed collaboratively to the Tevatron's successor, the Large Hadron Collider, which discovered the Higgs boson in 2012. Fermilab's core competencies in accelerators, superconducting technologies, detectors and computing have positioned the laboratory for a bright future at the frontiers of science. Today Fermilab scientists, engineers, technicians together with partners from 50 countries are working to explore the nature of the elusive neutrino, enable future x-ray photon science facilities, and construct and exploit higher-energy and higher-intensity particle accelerators. Fermilab is a designated 'American Physical Society Historic Site'.In this commemorative volume, scientific leaders from around the world celebrate Fermilab's 50th anniversary with thoughts on the laboratory's past, present and future.
This book takes the reader from some elementary ideas about groups to the essence of the Standard Model of particle physics along a relatively straight and intuitive path. Groups alone are first used to arrive at a classical analog of the Dirac equation. Using elementary quantum mechanics, this analog can be turned into the actual Dirac equation, which governs the motion of the quarks and leptons of the Standard Model. After an introduction to the gauge principle, the groups introduced in the beginning of the book are used to give an introduction to the Standard Model. The idea is to give an Olympian view of this evolution, one that is often missing when absorbing the detailed subject matter of the Standard Model as presented in an historical approach to the subject.
The Science and Technology of Particle Accelerators provides an accessible introduction to the field, and is suitable for advanced undergraduates, graduate students, and academics, as well as professionals in national laboratories and facilities, industry, and medicine who are designing or using particle accelerators. Providing integrated coverage of accelerator science and technology, this book presents the fundamental concepts alongside detailed engineering discussions and extensive practical guidance, including many numerical examples. For each topic, the authors provide a description of the physical principles, a guide to the practical application of those principles, and a discussion of how to design the components that allow the application to be realised. Features: Written by an interdisciplinary and highly respected team of physicists and engineers from the Cockcroft Institute of Accelerator Science and Technology in the UK Accessible style, with many numerical examples Contains an extensive set of problems, with fully worked solutions available Rob Appleby is an academic member of staff at the University of Manchester, and Chief Examiner in the Department of Physics and Astronomy. Graeme Burt is an academic member of staff at the University of Lancaster, and previous Director of Education at the Cockcroft Institute. James Clarke is head of Science Division in the Accelerator Science and Technology Centre at STFC Daresbury Laboratory. Hywel Owen is an academic member of staff at the University of Manchester, and Director of Education at the Cockcroft Institute. All authors are researchers within the Cockcroft Institute of Accelerator Science and Technology and have extensive experience in the design and construction of particle accelerators, including particle colliders, synchrotron radiation sources, free electron lasers, and medical and industrial accelerator systems.
This book contains a systematic and pedagogical exposition of recent developments in particle physics and cosmology. It starts with two introductory chapters on group theory and the Dirac theory. Then it proceeds with the formulation of the Standard Model (SM) of Particle Physics, particle content and symmetries, fully exploiting the material of the first two chapters. It discusses the concept of gauge symmetries and emphasizes their role in particle physics. It then analyses the Higgs mechanism and the spontaneous symmetry breaking (SSB). It explains how the particles (gauge bosons and fermions) after the SSB acquire a mass and get admixed. The various forms of charged currents are discussed in detail as well as how the parameters of the SM, which cannot be determined by the theory, are fixed by experiment, including the recent LHC data and the Higgs discovery. Quantum chromodynamics is discussed and various low energy approximations to it are presented. The Feynman diagrams are introduced and applied, at the level of first year graduate students. Examples are the evaluation of the decay widths of the gauge bosons and some cross sections for interesting processes such as Rutherford scattering, electron-proton scattering (elementary proton or described by a form factor, and inelastic scattering) and Compton scattering. After that the classic topics like the role of C, P, CP symmetries and the experimental methods needed to verify their conservation or violation are discussed in some detail. Topics beyond the standard model, like supersymmetry for pedestrians and grand unification, are discussed. To this end neutrino oscillations, dark matter and baryon asymmetry are also briefly discussed at the first year graduate level. Finally, the book contains an exhibition of recent developments in cosmology, especially from the elementary particle point of view.
This book contains a systematic and pedagogical exposition of recent developments in particle physics and cosmology. It starts with two introductory chapters on group theory and the Dirac theory. Then it proceeds with the formulation of the Standard Model (SM) of Particle Physics, particle content and symmetries, fully exploiting the material of the first two chapters. It discusses the concept of gauge symmetries and emphasizes their role in particle physics. It then analyses the Higgs mechanism and the spontaneous symmetry breaking (SSB). It explains how the particles (gauge bosons and fermions) after the SSB acquire a mass and get admixed. The various forms of the charged currents are discussed in detail as well as how the parameters of the SM, which cannot be determined by the theory, are fixed by experiment, including the recent LHC data and the Higgs discovery. Quantum chromodynamics is discussed and various low energy approximations to it are presented. The Feynman diagrams are introduced and applied, at the level of first year graduate students.Examples are the evaluation of the decay widths of the gauge bosons and some cross sections for interesting processes such as Rutherford scattering, electron-proton scattering (elementary proton or described by a form factor, and inelastic scattering) and Compton scattering.After that the classic topics like the role of C, P, CP symmetries and the experimental methods needed to verify their conservation or violation are discussed in some detail. Topics beyond the standard model, like supersymmetry for pedestrians and grand unification, are discussed.To this end neutrino oscillations, dark matter and baryon asymmetry are also briefly discussed at the first year graduate level. Finally, the book contains an exhibition of recent developments in cosmology, especially from the elementary particle point of view.
Professor Kerson Huang was a well respected theoretical physicist, who was also well versed in English and Chinese literature. He was born in Nanning, China, on 15 March 1928, and he was a fellow at the IAS, Princeton, from 1955-1957 before joining the faculty of MIT. He remained there until he retired from teaching in 1999. His research in theoretical physics included works on Bose-Einstein condensation and quantum field theory. In his long and illustrious career, Prof. Huang has worked with many prominent physicists. In 1957, he published a theory known as the hard-sphere model for Bose gases with Nobel Laureates Chen-Ning Yang and Tsung-Dao Lee. With Noble Laureate Steven Weinberg, he studied the ultimate temperature and the thermodynamics of early universe. While he was at Princeton, he also worked with atomic bomb developer J. Robert Oppenheimer. In recently years, Prof. Huang had been a visiting professor at Nanyang Technological University in Singapore, and worked on both biophysics and quantum cosmology.This memorial volume is dedicated to Prof. Huang who passed away peacefully at home on September 1, 2016 at the age of 88. The volume features the recollections of Prof. Huang by his former colleagues and students, including Profs Chen-Ning Yang and Samuel Ting, as well as their reflections on Prof. Huang's achievements in the various subdivisions of physics. |
You may like...
Handbook Of Accelerator Physics And…
Alexander Wu Chao, Maury Tigner, …
Hardcover
R4,793
Discovery Miles 47 930
Memorial Volume For Jack Steinberger…
Julia Steinberger, Weimin Wu, …
Hardcover
R2,241
Discovery Miles 22 410
Electroweak Symmetry And Its Breaking
Regina Demina, Aran Garcia-bellido
Hardcover
R2,261
Discovery Miles 22 610
An Introduction to Nuclear Fission
Walid Younes, Walter D. Loveland
Hardcover
R2,338
Discovery Miles 23 380
|