![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Biochemistry > Proteins
Recent advances in the field of peptide chemistry and gene technology have resulted in an explosive accumulation of information on biologically active pep tides and functional proteins. Because of the importance of such peptides and proteins in the role of cellular or extracellular regulatory mechanisms and their potential therapeutic value, an understanding of their detailed interactions with the specific receptor should provide useful information for structure-activity studies. These problems have been approached in many ways. However, despite our efforts, many gaps in our knowledge of peptide chemistry remain to be filled, and some answers will no doubt be forthcoming in the next few years. This volume, the Proceedings of the 2nd Japan Symposium on Peptide Chemistry held in Shizuoka, covers all presentations. Speakers and discussants, numbering approximately 550, came from Australia, Austria, Belgium, Canada, China, Denmark, France, Germany, Israel, Italy, Russia, Sweden, Switzerland, India, the United Kingdom, the United States of America, and Japan. One very sad note was the sudden death, shortly before the conference, of Professor Emeritus Shiro Akabori, an outstanding organic chemist and a pioneer in peptide research. The news shocked his many friends and colleagues, who miss him deeply. Finally, it is a pleasure to acknowledge the help of those individuals and organizations who made the conference possible: the contributing scientists; the advisory committee and the staff of the conference; the Japanese Peptide Society, and other institutions; and the corporations which gave their financial support.
This book explains how peptide-based drug design works, what steps are needed to develop a peptide-based therapeutic, and challenges in synthesis as well as regulatory issues. It covers the design concept of peptide therapeutics from fundamental principles using structural biology and computational approaches. The chapters are arranged in a linear fashion. A fresh graduate or a scientist who works on small molecules can use this to follow the design and development of peptide therapeutics to use as understanding the basic concepts. Each chapter is written by experts from academia as well as industry. Rather than covering extensive literature, the book provides concepts of design, synthesis, delivery, as well as regulatory affairs and manufacturing of peptides in a systematic way with examples in each case. The book can be used as a reference for a pharmaceutical or biomedical scientist or graduate student who wants to pursue their career in peptide therapeutics. Some chapters will be written as a combination of basic principles and protocol so that scientists can adopt these methods to their research work. The examples provided can be used to perform peptide formulation considerations for the designed peptides. The book has nine chapters, and each chapter can be read as an independent unit on a particular concept.
Proteomics is a well-established area of Science; yet with a strong area in constant evolution, namely sample treatment. There few books that currently cover the field of emerging sample treatments in proteomics, this new volume will be the first to cover all emerging and existing studies. This unique book presents the latest advances in the field focusing on emerging trends linked to high-resolution mass spectrometry, technology addressed to treat samples faster and to attempts to simplify the proteome for the reader.
This volume provides readers with a comprehensive look at the latest techniques used to identify and characterize PDZ-mediated interactions. Chapters cover topics such as promiscuity, multimodularity, regulation, and viral recognition by PDZ domains. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and thorough, PDZ Mediated Interactions: Methods and Protocols is a valuable resource for all researchers interested in learning more about this developing field.
This second edition volume expands on the previous edition with updated research and techniques to help laboratory workers design and implement a successful purification strategy, emphasize critical aspects on practical problems, and answers questions encountered at the lab bench. The chapters in this book are divided into five parts: Part One discusses an overview of screening and design of purification strategies and covers initial aspects on high-throughput screening, methods development, and media selection; Parts Two and Three explore low- and high-resolution methods, with emphasis on affinity chromatography; Part Four describes analytical techniques of purified proteins; and Part Five presents selected examples and case studies to discuss the aforementioned. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and comprehensive, Protein Downstream Processing: Design, Development, and Application of High and Low-Resolution Methods, Second Edition is an ideal source of information to advanced students, junior researchers, and scientists involved in health sciences, cellular and molecular biology, biochemistry, biotechnology, and other related areas in both academia and industry.
Distinguished international experts offer critical reviews of the major categories of posttranslational protein modification in neurons, as well as a comprehensive collection of state-of-the-art techniques for their analysis. They provide detailed and specific methods for studying protein phosphorylation/dephospohorylation, methylation, long chain fatty acylation, ADP-ribosylation, glycosylation, and glycosylphosphatidylinositol anchors. Using both conventional analytical and novel molecular biological approaches, these experts present important techniques and reagents and cite numerous examples from the neuroscience literature in a way that allows investigators to determine the best experimental approaches for their own systems. The book offers the most complete review of protein kinase and phosphatase inhibitor applications available.
Christopher Schirwitz's thesis focuses on improving the quality of in situ synthesized high-complexity peptide micro arrays. Micro arrays containing proteins or small protein fragments in the form of peptides have become of great interest in proteomic research. With the help of these microarrays a large number of potential target molecules can be screened for interaction with a probe in a short timeframe. However, protein and peptide micro arrays are still lagging behind oligonucleotide arrays in terms of density, quality and manufacturing costs. A new approach developed at the German Cancer Research Center (DKFZ) has improved the synthesis of high-density peptide arrays. The current technology is capable of producing arrays with up to 40,000 different peptides per square cm by means of micro particle-based solid phase peptide synthesis. However, in situ synthesis approaches bear a conceptual disadvantage: The quality of the peptides is dependent on the efficiency of the synthesis so that peptide fragments are present in the resulting array among the desired full-length peptides. In peptide-protein interaction studies such peptide fragments. The central achievement of this thesis is the development of a new method allowing for the fast one-step purification of entire arrays without loss of resolution or spatial information. Christopher Schirwitz's work has resulted in a number of publications in high ranking journals.
Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant specialist fields, the series creates a unique service for the active research chemist with regular critical in-depth accounts of progress in particular areas of chemistry. Historically, The Royal Society of Chemistry and its predecessor, The Chemical Society, have published reports of developments in chemistry since the end of the 19th century. By 1967 however, the sheer volume of chemistry published had become so great that it was decided to split the research into specialist areas, and the series Specialist Periodical Reports was born. Current subject areas covered are Amino Acids, Peptides and Proteins. Carbohydrate Chemistry, Catalysis, Electron Spin Resonance, Nuclear Magnetic Resonance, Organometallic Chemistry. Organophosphorus Chemistry, Photochemistry and Spectroscopic Properties of Inorganic and Organometallic Compounds. From time to time, the series has altered according to the fluctuating degrees of activity in the various fields, but these volumes remain a superb reference point for researchers.
Methods in Protein Sequence Analysis -1986 brings together reports of the most recent methodology available to protein chemists for studying the molecular detail of proteins. The papers in this volume constitute the proceedings of the Sixth International Conference on Methods in Protein Sequence Analysis, which was held at the University of Washington in Seattle, Washington on August 17-21, 1986. This series of conferences has taken place during a period when new techniques in protein chemistry and molecular biology have enabled not only exploration of the control of protein function, but also deduction of the genetic origin of proteins, and labo ratory generation of rare protein molecules for therapeu tic and commercial use. The current reports are focused on the means by which experimental questions can be answered rather than on the biological implications in specific systems. The scope of the meeting was quite broad, empha sizing microanalytical techniques and the relative merits of DNA sequencing, mass spectrometry and more tradi tional degradation techniques. A highlight of the meeting was the Qrowing awareness of the role of mass spec trometry In the analysis of proteins. The complementarity of protein sequencing and DNA sequencing techniques was apparent throughout the discussions and several papers dealt with the strategy of obtaining sequence in formation from small amounts of protein in order that ap propriate oligonucleotide probes could be constructed and the encoding nucleic acids se. quenced and manipu lated."
These proceedings of the Twenty-Second European Peptide Symposium include 437 articles concerning peptide synthesis, rapid preparation/libraries, conformation, de novo design, and biological physicochemical and immunological aspects. The symposium was held under the auspices of the newly founded European Peptide Society although it is clear that the contributions are de facto international.
The objective of this volume is to provide readers with a current view of all aspects of the 'pipeline' that takes protein targets to structures and how these have been optimised. This volume includes chapters describing, in-depth, the individual steps in the Structural Genomics pipeline, as well as less detailed overviews of individual Structural Genomics initiatives. It is the first book of protocols to cover techniques in a new and emerging field.
In the post-genomic era, several plant species have been sequenced and massive genomic information is now available which contributed to expand the development of novel technical strategies for the study of additional levels of biological information of plant species. This book focuses on the "omics" approaches together with systems analysis of several different plant species, which have revealed very interesting variations on the cellular responses at the protein, transcript and metabolite levels in response to changes environmental conditions. The volume covers recent technological advances in the area of "omics" and synthesizes recent findings of the field of plant "omics" and systems biology together along with techniques that can be applied for such studies.
This volume focuses on protein analysis, and covers a wide array of uses of protein microarray for disease analysis. The chapters in this book discuss different stages of protein microarrays from their construction to their use, including different types of protein microarrays such as recombinant proteins, antibody, phage, and NAPPA protein microarrays, in planar format or in solution via beads arrays. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Comprehensive and cutting-edge, Protein Microarrays for Disease Analysis: Methods and Protocols is a valuable resource for graduate and post-doctoral fellows interested in protein microarrays, as well as senior researchers interested in gaining more insight into this developing field.
Leading experts in nanobiotechnology comprehensively review the most recent advances in instrumentation and methodology, as well as their applications in genomics and proteomics. The authors provide a wide variety of techniques and methods for dealing with protein functions and structures at the nanoscale level, including nanostructured systems, nanomaterials, carbon nanotubes and nanowires, optical nanosensors, and nanoelectrodes. Among the highlights are techniques for the in vivo tracking of biochemical processes using fluorescent molecular probes and nanosensors, and the exploration of biochemical processes and submicroscopic structures of living cells at unprecedented resolutions using near-field optics. Also discussed is the development of nanocarrier methodology for the targeted delivery of drugs whose shells are conjugated with antibodies for targeting specific antigens.
Proteins act as macromolecular machinery that mediate many diverse biological processes - the molecular mechanisms of this machinery has fascinated biologists for decades. Analysis of the kinetic and thermodynamic features of these mechanisms could reveal unprecedented aspects of how the machinery function and will eventually lead to a novel understanding of various biological processes. This dissertation comprehensively demonstrates how two universally conserved guanosine triphosphatases in the signal recognition particle and its membrane receptor maintain the efficiency and fidelity of the co-translational protein targeting process essential to all cells. A series of quantitative experiments reveal that the highly ordered and coordinated conformational states of the machinery are the key to their regulatory function. This dissertation also offers a mechanistic view of another fascinating system in which multistate protein machinery closely control critical biological processes. Written while completing graduate work at California Institute of Technology.
Proteases in Tissue Remodelling of Lung and Heart is unique for its comprehensive presentation of protease function in lung and heart under both physiological conditions and major diseases manifesting in these two organs. The individual chapters have been written by leaders in the field who paid much attention to outline in great detail the role of proteases in the pathogenesis, diagnosis and treatment of disease. Available animal models (of disease, transgenic, or knock-out) are extensively referred to and experimental data obtained thereby are discussed in the context of patient-derived data. Proteases in Tissue Remodelling of Lung and Heart
This first of two volumes provides a general overview of the genetics, structure, mechanism and regulation of the Ras superfamily proteins and describes in detail the signaling pathways and processes regulated by specific members of this family. The focus of this first volume is on the Rho and Ras subfamily of small G proteins. Renowned scientists provide insights into the biochemistry of the classical and non-classical small G-protein family members, their spatio-temporal regulation, their effectors and their roles in health and disease. Together with Volume 2, this book provides a comprehensive and state-of-the-art work on small G-proteins (GTPases). It is intended for graduates and professors in biochemistry and cell biology already working on small G-proteins (small GTPases), but also offers an extremely valuable resource for those readers who are new to the field.
Actin is an extremely abundant protein that comprises a dynamic polymeric network present in all eukaryotic cells, known as the actin cytoskeleton. The structure and function of the actin cytoskeleton, which is modulated by a plethora of actin-binding proteins, performs a diverse range of cellular roles. Well-documented functions for actin include: providing the molecular tracks for cytoplasmic streaming and organelle movements; formation of tethers that guide the cell plate to the division site during cytokinesis; creation of honeycomb-like arrays that enmesh and immobilize plastids in unique subcellular patterns; supporting the vesicle traffic and cytoplasmic organization essential for the directional secretory mechanism that underpins tip growth of certain cells; and coordinating the elaborate cytoplasmic responses to extra- and intracellular signals. The previous two decades have witnessed an immense accumulation of data relating to the cellular, biochemical, and molecular aspects of all these fundamental cellular processes. This prompted the editors to put together a diverse collection of topics, contributed by established international experts, related to the plant actin cytoskeleton. Because the actin cytoskeleton impinges on a multitude of processes critical for plant growth and development, as well as for responses to the environment, the book will be invaluable to any researcher, from the advanced undergraduate to the senior investigator, who is interested in these areas of plant cell biology.
This book is a collection of principles and current practices in omics research, applied to skeletal muscle physiology and disorders. The various sections are categorized according to the level of biological organization, namely, genomics (DNA), transcriptomics (RNA), proteomics (protein), and metabolomics (metabolite). With skeletal muscle as the unifying theme, and featuring contributions from leading experts in this traditional field of research, it highlights the importance of skeletal muscle tissue in human development, health and successful ageing. It also discusses other fascinating topics like developmental biology, muscular dystrophies, exercise, insulin resistance and atrophy due to disuse, ageing or other muscle diseases, conveying the vast opportunities for generating new hypotheses as well as testing existing hypotheses by combining high-throughput techniques with proper experiment designs, bioinformatics and statistical analyses. Presenting the latest research techniques, this book is a valuable resource for the physiology community, particularly researchers and grad students who want to explore the new opportunities for omics technologies in basic physiology research.
This book covers liquid chromatography, gas chromatography and capillary electrophoresis, the three main separation techniques lately available, applied to key omic sciences, such as genomics, proteomics, metabolomics and foodomics. The fundamentals of each technique are not covered herein. Instead, the recent advances in such techniques are presented focusing on the application to omics analyses and unique aspects in each case. This volume intends to offer wide ranging options available to researchers on omics sciences, and how to integrate them in order to achieve the comprehension of a biological system as a whole. Omic sciences have been of ultimate importance to comprehend the complex biochemical reactions and related events that occurs upon a biological system. The classical central dogma of molecular biology, which states that genetic information flows unidirectionally from DNA to RNA and then to proteins, has been gradually replaced by the systems biology approach. This book presents a multidisciplinary approach that explains the biological system as a whole, where the entire organism is influenced by a variety of internal events as well as by the environment, showing that each level of the biological information flux may influence the previous or the subsequent one.
This volume provides computational methods and reviews various aspects of computational studies of protein aggregation. Chapters discuss the relationship between protein misfolding and protein aggregation, methods of prediction of aggregation propensities of protein, peptides, protein structure, results of computer simulations of aggregation, and computational simulations focused on specific diseases such as Alzheimer's, Parkinson's, and preeclampsia. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Computer Simulations of Aggregation of Proteins and Peptides aims to ensure successful results in the further study of this vital field.
Actin is one of the most widespread proteins in eukaryotic cells. This book and its companion ("Molecular Interactions of Actin. Actin Structure and Actin-Binding Proteins") provide an authoritative and opinionated view of the structure and function of this essential protein. Each section includes an historical perspective and a detailed commentary on actin protein chemistry, molecular and cell biology of actin. While some chapters review the body of knowledge of the subject, others contain new experimental data. This book will appeal to research scientists seeking contemporary overviews of actin-myosin interaction and actin-based regulation. Contributors include senior scientists as well as the new breed of younger scientists.
The Networking of Chaperones by Co-chaperones updates the current understanding of how chaperones are regulated and networked. It is a resource for those in the specialized field of cell stress and chaperones. The book will also be of interest to those in broader cross-cutting field such as cellular networks and systems biology.
This volume presents the response of the eukaryotic translational apparatus to cellular stress and apoptosis, including kinases activated through both the ERK and stress-activated pathways. It further explores two agents that inhibit protein synthesis, calcium and the immunosuppressant rapamycin. Six chapters written by leading experts in the field provide both new data and comprehensive literature reviews. Both the regulation of initiation and elongation are discussed, and the mechanisms of apoptosis are related to changes in the protein synthesis machinery.
This volume provided methods and protocols on recombinant protein production in different plant systems, downstream processing, and strategies to optimize protein expression. Chapters guide readers through recombinant protein production in important plant systems, protein recovery and purification, different strategies to optimise productivity, cloning and fusion protein approaches, and the regulation and freedom to operate analysis of plant-produced proteins. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Recombinant Proteins in Plants: Methods and Protocols aims to be useful to newcomers and experienced researchers interested in expanding their expertise in the field of plant-based protein production. Chapters 6, 8 and 17 are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com. |
![]() ![]() You may like...
Eight Days In July - Inside The Zuma…
Qaanitah Hunter, Kaveel Singh, …
Paperback
![]()
Shadow State - The Politics Of State…
Ivor Chipkin, Mark Swilling, …
Paperback
The Vietnam War Files - Uncovering the…
Jeffrey Kimball
Hardcover
|