![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Biochemistry > Proteins
Adhesion plays a major role in the bacterial lifestyle. Bacteria can adhere to organic and inorganic surfaces, to each other, and of course to host cells during pathogenesis. The focus of this book is: how are such adhesion phenomena best studied? Microbial genetics experiments have greatly enhanced our knowledge of what bacterial factors are involved in adhesion. For numerous reasons, though, biochemical and structural biology knowledge of the molecular interactions involved in adhesion are limited. One major problem has been a lack of interdisciplinary research and understanding in the field. On the one hand, the microbiologists lack detailed knowledge of the biophysical possibilities and have limited access to the frequently expensive instrumentation involved while on the other hand, the experts in these methods frequently do not have access to the biological materials, nor do they necessarily understand the biological questions to be answered. The purpose of this book is thus to overcome this gap in communication between researchers in biology, chemistry and physics and to display the many ways and means to investigate bacterial adhesion. We hope to stimulate new and ground-breaking research.
Proteases form one of the largest and most diverse families of enzymes known. Once considered primarily as "enzymes of digestion," it is now clear that proteases are involved in every aspect of cellular function. Members of the diverse families of proteases act to promote cellular proteolysis found in nature, and their deregulation may result in different pathophysiological conditions, such as tumor progression, vascular remodeling, atherosclerotic plaque progression, ulcer, rheumatoid arthritis, and Alzheimer's disease. Many micro-organisms require proteases for replication or use proteases as virulence factors, which have facilitated the development of protease-targeted therapies for a variety of parasitic diseases. Proteases in Health and Disease represents a comprehensive overview of the fascinating field of proteases by various renowned experts, and focuses on the recently elucidated functions of complex proteolytic systems in physiology and pathophysiology. Part A, Molecular and Biochemical Aspects of Proteases, illustrates some of the major proteases, such as calpains, matrix metalloproteases, fibrinolytic serine proteases, and aspartic proteases, which play a significant role in a variety of pathologies and may be a target for therapy either by their up regulation or down regulation. Part B, Involvement of Proteases in Diseases Processes, deals with the functional roles of the individual proteases in the progression of diseases such as cardiovascular and inflammatory lung disease, malaria, cholera, autism spectrum disorder, hepatitis, and ischemia-reperfusion injury induced cardiac diseases. With this multi-disciplinary scope, the book bridges the gap between fundamental research and biomedical and pharmaceutical applications, making this a thought-provoking reading for basic and applied scientists engaged in biomedical research.
This volume emphasizes new techniques to help understand protein cages and to apply them to a variety of technologies, highlighting the expertise of researchers based on three continents. Protein cages are currently inspiring diverse scientific disciplines and are therefore at the crossroads of extremely widely-scoped research, which is reflected in the detailed chapters of Protein Cages: Methods and Protocols. From nanomaterials studies and iron particles to computational strategies and Atomic Force Microscopy, the chapters herein collectively provide an introduction to the rich world of protein cage research and specific techniques to understand and exploit this fascinating class of proteins. Written in the highly successful Methods in Molecular Biology series format, chapters begin with an introduction to their respective topics, lists of the necessary materials, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Practical and cutting-edge, Protein Cages: Methods and Protocols will help to inspire and further propel the current multi-disciplinary enthusiasm in studying and discovering new applications for protein cages.
Proteoglycans are some of the most elaborate macromolecules of mammalian and lower organisms. The covalent attachment of at least five types of glycosami- glycan side chains to more than forty individual protein cores makes these molecules quite complex and endows them with a multitude of biological functions. Proteoglycan Protocols offers a comprehensive and up-to-date collection of prepa- tive and analytical methods for the in-depth analysis of proteoglycans. Featuring st- by-step detailed protocols, this book will enable both novice and experienced researchers to isolate intact proteoglycans from tissues and cultured cells, to establish the composition of their carbohydrate moieties, to generate strategies for prokaryotic and eukaryotic expression, to utilize methods for the suppression of specific proteoglycan gene expression and for the detection of mutant cells and degradation products, and to study specific interactions between proteoglycans and extracellular matrix proteins as well as growth factors and their receptors. The readers will find concise, yet comprehensive techniques carefully drafted by leading experts in the field. Each chapter commences with a general Introduction, followed by a detailed Materials section, and an easy-to-follow Methods section. An asset of each chapter is the extensive notation that includes troubleshooting tips and practical considerations that are often lacking in formal methodology papers. The reader will find this section most valuable because it is clearly provided by experienced scientists who have first-hand knowledge of the techniques they outline. In addition, most of the chapters are well illustrated with examples of typical data generated with each method.
"Nuclear envelope (NE) defects have been linked to cancer biology since the mid-1800s, but it was not until the last few years that we have begun to understand these historical links and to realize that there are myriad ways that the NE impacts on tumorigenesis. The NE is a complex double membrane system that encloses the genome while providing structural support through the intermediate filament lamin polymer and regulating protein/ mRNA trafficking and signaling between the nucleus and cytoplasm via the nuclear pore complexes (NPCs). These functions already provide some mechanisms for NE influences on cancer biology but work in the past few years has elucidated many others. Lamins and many recently identified NE transmembrane proteins (NETs) have been now shown to function in DNA repair, regulation of cell cycle and signaling, apoptosis, cell migration in metastasis and nuclear architecture and morphology. This volume presents a comprehensive overview of the wide range of functions recently identified for NE proteins and their relevance in cancer biology, providing molecular mechanisms and evidence of their value as prognostic and diagnostic markers and suggesting new avenues for the treatment of cancer. Indeed some of these recent links are already yielding promising therapies, such as the current clinical trial of selective inhibitors of the nuclear export factor exportin in certain types of leukemia, melanoma and kidney cancer."
This volume explores the technological improvements in protein engineering, expression, purification, and crystallization of several rhodopsin photoactive intermediates, thus increasing our understanding of rhodopsin activation. The first chapters of the book focus on methods developed to study fundamentals of rhodopsin structure and function, starting with improved purification protocols of native and mutated rhodopsin, followed by methods used for rhodopsin reconstitution into lipid bilayers stabilizing rhodopsin function properties, and finally describing recently developed methods to study structural dynamics of rhodopsin activation and its mechanistic properties. Subsequently, chapters underline various techniques that have been developed to visualize the rhodopsin dimer and to study its functional significance. The next few chapters highlight cutting-edge imaging techniques of photoreceptors, rhodopsin trafficking, and its diffusion within signaling membranes. Finally the book concludes with recent developments that could be potentially beneficial in patient treatments, and treatment strategies for retinal degenerative diseases. Written in the highly successful Methods in Molecular Biology series format, the chapters include the kind of detailed description and implementation advice that is crucial for getting optimal results in the laboratory. Timely and practical, Rhodopsin: Methods and Protocols reaches out to researchers and health practitioners, and provides timely protocol useful for studying structural and functional properties of rhodopsin.
For bacteria ..."the times are achanging..". The genomes of over 60 different bacteria have now been sequenced, and we know a lot about the important research organism Escherichia coli, the important industrial organism Bacillus subtilis, and about important plant and human pathogens. It will not take long before we know all the gene products and their functions of a few of these bacteria. Some of us already begin to think about a digital model E. coli or Bacillus cell. For that end we need to know all the physiological activities and metabolic routes of the cell. But in addition we like to know how things work at the molecular level and how protein and membranes as well as other (macromolecular) structures work together to carry out specific cell functions. Protein Secretion Pathways in Bacteria describes all the known folding and targeting routes of inner and outer membrane proteins as well as of proteins that are secreted by several specific export routes. The book gives detailed molecular information about the structures that are important for the different mechanisms involved. This is a valuable contribution to the understanding of how rather simple and yet complex bacterial cells work.
This book focuses on the three most important aspects of ageing research: nutrition, physical exercise and epigenetics. The contributors discuss ways that age-related epigenetic imprints such as DNA methylation and histone acetylation are modified by these two interventions. The emphasis on epigenetics helps to illuminate the underlying mechanisms of anti-ageing interventions, as ageing and disease are predominately epigenetic phenomena. Among the highlights are chapter-length discussion of such topics as: how anti-inflammatory action of calorie restriction underlies the retardation of ageing and age-related diseases (Chapter 3); epigenetic modification of gene expression by exercise (Chapter 5); the role of functional foods and their bioactive components in bone health (Chapter 8); and an account of the first decade of a study of calorie restriction in nonhuman primates, conducted by the National Institute on Ageing.
This updated and expanded volume reflects the current state of the structural protein field with improved and refined protocols that have been applied to particularly challenging proteins, notably integral membrane proteins and multi-protein complexes. Structural Proteomics: High-Throughput Methods, Second Edition begins by exploring the resources available for curation, annotation, and structure prediction in silico, and continues with methods for sample preparation of both proteins and crystals, as well as structural characterization techniques. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Practical and up-to-date, Structural Proteomics: High-Throughput Methods, Second Edition will aid researchers in expanding our knowledge of this vital and expansive area of protein science.
The third edition of this classic guide to protein purification updates methods, principles and references. As in the widely-acclaimed earlier editions, Scopes guides both the novice and the experienced researcher from theory to application. Using the book, the reader is able to integrate methods effectively into optimum protocols for the task at hand. Reviews of earlier editions of Protein Purification described it as "good practical advice that is presented in a pleasantly readable form" (Analytical Biochemistry), "well organized and written clearly" (American Scientist), and "should be on every laboratory shelf where protein are being handled or purified...a feast and a genuine pleasure to read" (Nature).
The Discovery of Ribonuclease P and Enzymatic Activity of Its RNA Subunit Sydney Brenner and Francis H. C. Crick had a specific project in mind when they offered Sidney Altman a position in their group in 1969 to conduct postdoctoral research at the Medical Research Council Laboratory of Molecular Biology (LMB) in Cambridge, England. At the time, an intense international competition was on- ing in as many as a dozen labs to determine the three-dimensional structure of tRNA. At the LMB, Aaron Klug was attacking the structure by crystallographic analysis with Brian F. C. Clark providing large amounts of purified phenylalanine tRNA. (Eventually, Aaron announced his empirically determined 3-D structure of yeast phenylalanine tRNA, a structure that is generally common to tRNAs, due in part to several conserved, novel three-way nucleotide interactions. ) Concurrently, Michael Levitt, a Ph. D. student of Francis, was visually scrutinizing the cloverleaf secondary structure of the 14 tRNA sequences known at the time. Levitt was searching for nucleotide covariation in different parts of the molecules that were conserved in the 14 sequences known at the time. He identified a possible covariation of an apparent Watson-Crick pairing type between the residues at position 15 from the 5' end of the tRNA and residue 48. This association implied these parts of the tRNA, namely the D loop containing residue 15 and the 5' end of the T stem-adjoining residue 48, folded on one another in a tertiary structure shared by different tRNAs.
The number of investigators focusing their attention on lactoferrin has increased dramatically in recent years. Lactoferrin is a protein with more than one known structure and a number of proposed biological functions, including several with important regulatory consequences. In many ways it has been an easy pro tein to investigate; however, there have been difficulties under standing specific structure / function relationships, particularly as it functions in vivo. Research funding dedicated to this protein has previously been limited, but is now increasing. As lactoferrin begins to emerge formally as a protein of significance to the medi and industry, it is more important than ever to coor cal profession dinate and integrate research efforts whenever possible and to share the results of these efforts within the expanding array of medical and scientific diSciplines involved. It was our intention to provide a forum to summarize and disseminate the most recent advances in this field. Included in Lactoferrin: Interactions and Biological Functions are selected presentations representing the many disciplines involved in defining lactoferrin function in terms of its known structural features, including its carbohydrate side-chains, receptor binding sites, its capacity to bind different metal ions, and other newly discovered bioactive domains. Several of the possible physiologi cal functions of lactoferrin are described and summarized in detail, including the role of laetoferrin in bacterial killing, its in volvement in cell growth and proliferation, in the modulation of immune function, and in iron absorption."
This thesis presents the first report of the comprehensive and quantitative analysis of the effects of tumor-derived mutations on the tetrameric structure of tumor suppressor protein p53, which plays a central role in maintaining genomic integrity. Inactivation of p53 via mutation of its gene is a key step in tumorigenesis. Biophysical analyses revealed that the stability of the mutant peptides varied widely. Formation of a tetrameric structure is to be critical for protein-protein interactions, DNA binding, and the post-translational modification of p53. A small destabilization of the tetrameric structure therefore could result in dysfunction of tumor suppressor activity. This work suggests that the threshold for loss of tumor suppressor activity, in terms of the disruption of p53's tetrameric structure, could be extremely low. Furthermore, functional control of p53 via tetramer formation was demonstrated, based on the structure-function analysis of mutant p53. The results disclosed that relatively small changes in tetramer formation, induced by the stabilization or inhibition of homo-tetramerization, could control p53 function.
Direct cell-cell communication is a common property of multicellular organisms that is achieved through membrane channels which are organized in gap junctions. The protein subunits of these intercellular channels, the connexins, form a multigene family that has been investigated in great detail in recent years. It has now become clear that, in different tissues, connexins speak several languages that control specific cellular functions. This progress has been made possible by the availability of new molecular tools and the improvement of basic techniques for the study of membrane channels, as well as by the use of genetic approaches to study protein function in vivo. More important, connexins have gained visibility because mutations in some connexin genes have been found to be linked to human genetic disorders. Connexin Methods and Protocols presents in detail a collection of te- niques currently used to study the cellular and molecular biology of connexins and their physiological properties. The field of gap junctions and connexin research has always been characterized by a multidisciplinary approach c- bining morphology, biochemistry, biophysics, and cellular and molecular biology. This book provides a series of cutting-edge protocols and includes a large spectrum of practical methods that are available to investigate the fu- tion of connexin channels. Connexin Methods and Protocols is divided into three main parts.
"Laboratory Methods in Enzymology: Protein Part B" brings together
a number of core protocols concentrating on protein, carefully
written and edited by experts.
Molecular chaperones are a fundamental group of proteins that have been identified only relatively recently. They are key components of a protein quality machinery in the cell which insures that the folding process of any newly-synthesized polypeptide chain results in the formation of a properly folded protein and that the folded protein is maintained in an active conformation throughout its functional lifetime. Molecular chaperones have been shown to play essential roles in cell viability under both normal and stress conditions. Chaperones can also assist in the unfolding and degradation of misfolded proteins and in disaggregating preformed protein aggregates. Chaperones are also involved in other cellular functions including protein translocation across membranes, vesicle fusion events, and protein secretion. In recent years, tremendous advances have been made in our understanding of the biology, biochemistry, and biophysics of function of molecular chaperones. In addition, recent technical developments in the fields of proteomics and genomics allowed us to obtain a global view of chaperone interaction networks. Finally, there is now a growing interest in the role of molecular chaperones in diseases. This bookwill providea comprehensive analysis of the structure and function of the diverse systems of molecular chaperones and their role in cell stress responses and in diseases from a global network perspective. "
In this volume we have brought together a number of core
protocols concentrating on Protein, carefully written and edited by
experts.
The Fifteen American Peptide Symposium (15APS) was held in Nashville, Tennessee, on June 14-19, 1997. This biennial meeting was jointly sponsored by the American Peptide Society and Vanderbilt University. The attendance of 1,081 participants from 37 countries was lower than the two previously held Symposia. However, the number of participating countries was the largest. Thus, it was gratifying to see that this meeting retained both its international flavor and participant loyalty at a time when there are many more symposia held each year on similar subjects. The scientific program, thanks to the insights and efforts of the Program Committee as well as Dr. Peter Schiller, the President of the American Peptide Society, was extraordinarily rich, diverse, and exciting. It was comprised of 124 oral and 550 poster presentations. Three prominent format changes were installed. First, the Symposium started on Saturday instead of Sunday. Second, the program opened on Saturday afternoon with a Mini-symposium by the Young Investigators to give them an early start and attention. Finally, 40 short and definitive reports were given in two parallel sessions. The expanded format permitted an unprecedented number of lectures and enabled wider participation by the attending delegates.
This book brings together three decades worth of collaborative research to address the question "What sustains life?" In part a scientific response to Schroedinger's work "What is Life?" Urry's text contains elements of memoir, history, and a solid, informative scientific core that will interest both the general reader, student, and professional researcher.
The first volume in this Methods Molecular Biology series, Proteins (1984), concentrated on basic techniques for the analysis and purification of peptides and proteins. As the series developed, more specialized volumes on proteins were introduced, such as those on Immunochemical Protocols (vol. 10), Practical Protein Chro- tography (vol. 11), Analysis Glycoprotein Biomedicine (vol. 14), Protein-DNA Interactions (vol. 30), Biomembrane Protocols (vols. 19 and 27), Analyses and Methods (vol. 17), and Optical Spectroscopy, Microscopy, and Macroscopic Techniques (vol. 22). Further specialist volumes on peptides, monoclonal antibodies, immunoassays, ELISA, protein engineering, protein stability, mass spectrometry of proteins, automated sequence analysis, and protein NMR are currently in preparation. Since it is now a decade since the initial volume was published, it seems an especially appropriate moment to extensively reorganize, update, and revise the earlier volume. In an attempt to be more c- prehensive in our coverage, this current volume, Basic Protein and Peptide Protocols, is totally committed to basic analytical methods; a planned companion volume will later concentrate on preparative techniques. Those analytical techniques requiring expensive speci- ized instrumentation, such as NMR, mass spectrometry, X-ray cr- tallography, spectroscopy, and automated sequence analysis, are not described here, but in the appropriate specialized volumes listed above.
This comprehensive, edited book explores carotenoids and their important functional roles in yeast, bacteria and plants and a profound exposition on the structures of carotenoid molecules, focusing in the first of three parts on the biosynthesis of carotenoids. The regulation of carotenoid biosynthesis in photosynthesis as well as in plant, fruits, storage roots and algae is central to the second part, and discoveries about the function of carotenoids in human health feature in the third and final part. Many helpful illustrations, explanations, overviews and examples help to bring readers up to date on relevant themes including carotenogenic genes, carotenoids in fruits and metabolic engineering. The book explores where carotenoids are synthesized in nature, including in carrots and algae. Contributing expert authors examine enzyme functions and plant models, and analyze the structure of carotenoid molecules. The function of carotenoids in photosynthesis and in photosynthetic organs as well as during fruit ripening are then explored. A whole chapter is dedicated to the latest research on apocarotenoids and further chapters cover interesting and novel themes on plastid development and the epigenetic regulation that affects carotenoid synthesis in plants. The metabolic engineering of carotenoids that has been done in fruits, plants, and seeds is another area that readers can explore, along with evidences on the function of carotenoids in human nutrition, as antioxidants, as in the control of lipid metabolism and in the absorption of carotenoids. This is a highly informative and wide-ranging work which will update researchers in the field, as well as supporting students of plant physiology and biotechnology, as supplementary reading.
Medicinal chemistry is both science and art. The science of medicinal chemistry offers mankind one of its best hopes for improving the quality of life. The art of medicinal chemistry continues to challenge its practitioners with the need for both intuition and experience to discover new drugs. Hence sharing the experience of drug research is uniquely beneficial to the field of medicinal chemistry. Drug research requires interdisciplinary team-work at the interface between chemistry, biology and medicine. Therefore, the topic-related series Topics in Medicinal Chemistry covers all relevant aspects of drug research, e.g. pathobiochemistry of diseases, identification and validation of (emerging) drug targets, structural biology, drugability of targets, drug design approaches, chemogenomics, synthetic chemistry including combinatorial methods, bioorganic chemistry, natural compounds, high-throughput screening, pharmacological in vitro and in vivo investigations, drug-receptor interactions on the molecular level, structure-activity relationships, drug absorption, distribution, metabolism, elimination, toxicology and pharmacogenomics. In general, special volumes are edited by well known guest editors.
Remarkably, while G protein-coupled receptors (GPCRs) are highly prevalent in animals and yeast, very few candidate GPCRs have been identified in plants. In G Protein-Coupled Receptor Signaling in Plants: Methods and Protocols, experts in the field describe techniques used in the study of small GTPases and related proteins. Beginning with a chapter on bioinformatics approaches for GPCR discovery, this detailed volume continues with chapters on heterotrimeric G protein subunits, Rab-GTPases, as well as lipid modifications, including myristoylation, acylation, and prenylation. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Practical and dependable, G Protein-Coupled Receptor Signaling in Plants: Methods and Protocols aims to aid further studies into the roles of small GTPases which will help elucidate numerous key processes in plants.
Recent advances in large scale DNA sequencing technology have made it possible to sequence the entire genome of an organism. Attention is now turning to the analysis of the product of the genome, the proteome, which is the set of proteins being expressed by a cell. Mass spectrometry is the method of choice for the rapid large-scale identification of these proteomes and their modifications. This is the first book to extensively cover the applications of mass spectrometry to proteome research.
This work presents a snapshot of the state of the art of modern biomolecular crystallography, from crystallisation through structure determination and even interactive presentation on the web. Methods driving the latest automated structure determination pipelines are explained, as well as how to deal with problems such as crystal pathologies that still demand expert analysis. These methods are illustrated through their application to problems of great biological interest, such as the molecular machinery underlying the complement pathway, the mechanism of action of monoamine oxidase inhibitors, and the structure of the eukaryotic ribosome. Complementary approaches, such as neutron diffraction, small angle X-ray scattering, coherent diffraction and computational modelling, are also explored. |
![]() ![]() You may like...
Peptide And Protein Engineering For…
Pierre Rousselot-pailley, Olga Iranzo
Hardcover
R4,204
Discovery Miles 42 040
Heat Shock Proteins of Malaria
Addmore Shonhai, Didier Picard, …
Hardcover
R5,167
Discovery Miles 51 670
|