![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Biochemistry > Proteins
Protein conversion from a water-soluble native conformation to the insoluble aggregates and fibrils, which can deposit in amyloid plaques, underlies more than 20 human diseases, representing a major public health problem and a scientific challenge. Such a conversion is called protein misfolding. Protein misfolding can also involve errors in the topology of the folded proteins and their assembly in lipid membranes. Lipids are found in nearly all amyloid deposits in vivo, and can critically influence protein misfolding in vitro and in vivo in many different ways. This book focuses on recent advances in our understanding of the role of lipids in modulating the misfolding of various proteins. The main emphasis is on the basic biophysical studies that address molecular basis of protein misfolding and amyloid formation, and the role of lipids in this complex process.
Heat Shock Proteins and Plants provides the most up-to-date and concise reviews and progress on the role of heat shock proteins in plant biology, structure and function and is subdivided into chapters focused on Small Plant HSPs (Part I), Larger Plant HSPs (Part II) and HSPs for Therapeutic Gain (Part III). This book is written by eminent leaders and experts from around the world and is an important reference book and a must-read for undergraduate, postgraduate students and researchers in the fields of Agriculture, Botany, Crop Research, Plant Genetics and Biochemistry, Biotechnology, Drug Development and Pharmaceutical Sciences.
Protein engineering is a fascinating mixture of molecular biology, protein structure analysis, computation, and biochemistry, with the goal of developing useful or valuable proteins. Protein Engineering Protocols will consider the two general, but not mutually exclusive, strategies for protein engineering. The first is known as rational design, in which the scientist uses detailed knowledge of the structure and function of the protein to make desired changes. The s- ond strategy is known as directed evolution. In this case, random mutagenesis is applied to a protein, and selection or screening is used to pick out variants that have the desired qualities. By several rounds of mutation and selection, this method mimics natural evolution. An additional technique known as DNA shuffling mixes and matches pieces of successful variants to produce better results. This process mimics recombination that occurs naturally during sexual reproduction. The first section of Protein Engineering Protocols describes rational p- tein design strategies, including computational methods, the use of non-natural amino acids to expand the biological alphabet, as well as impressive examples for the generation of proteins with novel characteristics. Although procedures for the introduction of mutations have become routine, predicting and und- standing the effects of these mutations can be very challenging and requires profound knowledge of the system as well as protein structures in general.
Molecular chaperones are involved in a wide variety of essential cellular processes in living cells. A subset of molecular chaperones have been initially described as heat shock proteins protecting cells from stress damage by keeping cellular proteins in a folding competent state and preventing them from irreversible aggregation. Later it became obvious that molecular chaperones are also expressed constitutively in the cell and are involved in complex processes such as protein synthesis, intracellular protein transport, post-translational modification and secretion of proteins as well as receptor signalling. Hence, it is not surprising that molecular chaperones are implicated in the pathogenesis of many relevant diseases and could be regarded as potential pharmacological targets. Starting with the analysis of the mode of action of chaperones at the molecular, cellular and organismic level, this book will then describe specific aspects where modulation of chaperone action could be of pharmacological and therapeutic interest.
Protein Liquid Chromatography is a handbook-style guide to liquid chromatography as a tool for isolating and purifying proteins, consisting of 25 individual chapters divided into three parts: Part A covers commonly-used, classic modes of chromatography such as ion-exchange, size-exclusion, and reversed-phase; Part B deals with various target protein classes such as membrane proteins, recombinant proteins, and glycoproteins; and Part C looks at various miscellaneous related topics, including coupling reaction, buffer solution additives, and software. The text as a whole can be viewed as a systematic survey of available methods and how best to use them, but also attempts to provide an exhaustive coverage of each facet. How to solve a specific problem using a chosen method is the overall essence of the volume. The principle philosophy of this compilation is that practical application is everything; therefore, both classical and modern methods are presented in detail, with examples involving conventional, medium- and high-pressure techniques. Over-exposure to history, concept, and theory has deliberately been avoided. The reader will find a wealth of tips and tricks from users for users, including advice on the advantages and disadvantages of each method. Easy-to-read sections on "Getting started now" and "Where to go from here" attempt to provide hands-on, fool-proof detailed practical procedures with complete and even standard model runs for any scientist or technician at work in this area.
Protein kinase CK2 (formerly casein kinase II or 2) is known to play a critical role in the control of cell growth and cell death and is thus intimately involved in the development of cancer. More specifically, CK2 has been found to be elevated in all cancers examined. While CK2 levels are known to be high in proliferating normal cells, CK2 has also been found to be a potent suppressor of apoptosis and is a link to the cancer cell phenotype, which is characterized by deregulation of both cell proliferation and cell death. Indeed, it would appear that CK2 impacts many of the hallmarks of cancer and it has now gained considerable attention as a potential target for cancer therapy. Protein Kinase CK2 and Cellular Function in Normal and Disease States increases knowledge of the role of CK2 in the development of cellular dysfunction and emphasizes that this protein may serve as a target of drug development for improved cancer therapy. In addition, it is a handy tool that provides cancer researchers, graduate students, and all scientists involved in CK2 research with one main source for the latest advances in CK2 research.
Membrane proteins, representing nearly 40% of all proteins, are key components of cells involved in many cellular processes, yet only a small number of their structures have been determined. Membrane Protein Structure Determination: Methods and Protocols presents many detailed techniques for membrane protein structure determination used today by bringing together contributions from top experts in the field. Divided into five convenient sections, the book covers various strategies to purify membrane proteins, approaches to get three dimensional crystals and solve the structure by x-ray diffraction, possibilities to gain structural information for a membrane protein using electron microscopy observations, recent advances in nuclear magnetic resonance (NMR), and molecular modelling strategies that can be used either to get membrane protein structures or to move from atomic structure to a dynamic understanding of a molecular functioning mechanism. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Comprehensive and easy to use, Membrane Protein Structure Determination: Methods and Protocols serves as an ideal reference for scientists seeking to further our knowledge of these vital and versatile proteins as well as our overall understanding of the complicated world of cell biology.
In an ever-increasing domain of activity Amino Acids Peptides and Proteins provides an annual compilation of the world's research effort into this important area of biological chemistry. Volume 30 provides a review of literature published during 1997. Comprising a comprehensive review of significant developments at this biology/chemistry interface each volume opens with an overview of amino acids and their applications. Work on peptides is reviewed over several chapters ranging from current trends in their synthesis and conformational and structural analysis to peptidomimetics and the discovery of peptide-related molecules in nature. The application of advanced techniques in structural elucidation is incorporated into all chapters whilst periodic chapters on metal complexes of amino acids, peptides and beta-lactams extend the scope of coverage. Efficient searching of specialist topics is facilitated by the sub-division of chapters into discrete subject areas allowing annual trends to be monitored. All researchers in the pharmaceutical and allied industries and at the biology/chemistry interface in academia will find this an indispensable reference source.
After a little more than 20 years since the original discovery of neuropeptide Y (NPY) by Tatemoto and colleagues, the field of NPY research has made remarkable progress and is coming of age.The present volume addresses all major topics in connection with NPY and related peptides by established leaders in their respective areas. Experienced NPY-aficionados will certainly find new and useful additional information in this volume and newcomers to the field will hopefully discover how much exciting research this still has to offer.
Protein-protein interactions (PPIs) are strongly predictive of functional relationships among proteins in virtually all processes that take place in the living cell. Therefore, the comprehensive exploration of interactome networks is one of the major goals in systems biology. The aim of Two Hybrid Technologies: Methods and Protocols is to provide a compendium of state-of-the art protocols for the investigation of binary PPIs with the classical yeast two-hybrid (Y2H) approach, Y2H variants and other in vivo methods for PPI mapping. Divided into two convenient sections, the first gives a survey of protocols that are currently employed for Y2H high-throughput screens by different expert labs in the field. Rather than detailing the principles of screening, which have been described previously, the focus is on different implementations of Y2H interactome mapping. The second section of the book considers innovative PPI detection methods that have the potential to emerge as alternative high-throughput methodologies. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and accessible, Two Hybrid Technologies: Methods and Protocols supplies researchers with a comprehensive toolbox for the identification of biologically relevant protein interactions.
When I received an invitation from Ron Landes (Landes Bioscience) to edit a book on CtBP family proteins, I was gratified to realize that the importance of these proteins has reached the level of deserving a 'separate' book. As the reader can see, there has been significant advancement in our understanding of the fijnctions of these proteins in the past ten years since CtBPl was cloned in our laboratory. Genetic and biochemical studies with Drosophila provided the critical evidence to show that dCtBP is a transcriptional CO repressor. Genetic studies with mutant mice have established that these proteins are essential for animal development. The CtBP family proteins are unique in several aspects. They were the first among proteins containing a metabolic enzyme fold to be implicated in transcriptional regulation. The vertebrate CtBPs exhibit distinct nuclear and cytosolic activities. The crystal struaures of CtBPl and molecular modeling studies have illuminated the mo- lecular basis of its dual activity and the interaction with target peptides. The organization of the vertebrate CtBP2 gene has provided a novel example of genomic consolidation indicating how a single gene could code for two di- verse proteins. I believe that this book will be a valuable reference source for new researchers to understand more about the CtBP family proteins and their role in growth, development and oncogenesis.
In this book leading researchers in the field discuss the state-of-the-art of many aspects of SAPK signaling in various systems from yeast to mammals. These include various chapters on regulatory mechanisms as well as the contribution of the SAPK signaling pathways to processes such as gene expression, metabolism, cell cycle regulation, immune responses and tumorigenesis. Written by international experts, the book will appeal to cell biologists and biochemists.
From small beginnings in the early 1970s, the study of complement
regulatory proteins has grown in the last decade to the point where
it dominates the complement field. This growth has been fueled by
the discovery of new regulators, the cloning of old and new
regulators, the discovery that many of the regulators are
structurally and evolutionarily related to each other and the
development of recombinant forms for use in therapy. There are now
more proteins known to be involved in controlling the complement
system than there are components of the system and the list
continues to grow. The time is ripe for a comprehensive review of
our current knowledge of these intriguing proteins. This book does
just that. The first few chapters discuss the "nuts-and-bolts" of
the complement regulators, describing their structures, functional
roles and modes of action. The roles of the complement regulators
"in vivo" are then described, focusing on the consequences of
deficiency, roles in the reproductive system, interactions with
pathogens and exploitation for therapy. The interesting
developments in defining the complement regulators expressed in
other species are also discussed. The book is written as a
monograph, albeit by two people. The text is as readable as
possible without compromising on scientific accuracy and
completeness. The conversational style very evident in some
sections is deliberate Placing all references in a single
bibliography at the end of the text further improves readability.
The reader will go to the book to discover a specific fact but be
persuaded to read more and derive pleasure from the process. The
authors' enthusiasm for the subject comes over strongly in the
text, and this enthusiasm proves infectious.
In an ever-increasing domain of activity Amino Acids Peptides and Proteins provides an annual compilation of the world's research effort into this important area of biological chemistry. Volume 29 provides a review of literature published during 1996. Comprising a comprehensive review of significant developments at this biology/chemistry interface each volume opens with an overview of amino acids and their applications. Work on peptides is reviewed over several chapters ranging from current trends in their synthesis and conformational and structural analysis to peptidomimetics and the discovery of peptide-related molecules in nature. The application of advanced techniques in structural elucidation is incorporated into all chapters whilst periodic chapters on metal complexes of amino acids, peptides and beta-lactams extend the scope of coverage. Efficient searching of specialist topics is facilitated by the sub-division of chapters into discrete subject areas allowing annual trends to be monitored. All researchers in the pharmaceutical and allied industries and at the biology/chemistry interface in academia will find this an indispensable reference source.
With the end of the Human Genome Project in sight, the next important step is to determine the function of genes. Proteome Research is an important approach to this study and is the first book to comprehensively cover the application of two-dimensional electrophoresis, the central methodology in proteome research. The state-of-the-art is described in detail and the available detection methods are extensively covered. Sufficient detail is given to allow readers to apply these technologies to their own particular requirements.
The central role of RNA in many cellular processes, in
biotechnology, and as pharmaceutical agents, has created an
interest in experimental methods applied to RNA molecules. This
book provides scientists with a comprehensive collection of
thoroughly tested up-to-date manuals for investigating RNA-protein
complexes "in vitro." The protocols can be performed by researchers
trained in standard molecular biological techniques and require a
minimum of specialized equipment. The procedures include
recommendation of suppliers of reagents.
This thorough book covers the most recent proteomics techniques, databases, bioinformatics tools, and computational approaches that are used for the identification and functional annotation of proteins and their structure. The most recent proteomic resources widely used in the biomedical scientific community for storage and dissemination of data are discussed. In addition, specific MS/MS spectrum similarity scoring functions and their application in the field of proteomics, statistical evaluation of labeled comparative proteomics using permutation testing, and methods of phylogenetic analysis using MS data are also described in detail. Written for the highly successful Methods in Molecular Biology series, chapters contain the kind of detail and key implementation advice to ensure successful results. Authoritative and cutting-edge, Proteome Bioinformatics serves as a useful resource for researchers who are beginners as well as advanced investigators in the field of proteomics.
The central role of RNA in many cellular processes, in
biotechnology, and as pharmaceutical agents, has created an
interest in experimental methods applied to RNA molecules. This
book provides scientists with a comprehensive collection of
thoroughly tested up-to-date manuals for investigating RNA-protein
complexes "in vitro." The protocols can be performed by researchers
trained in standard molecular biological techniques and require a
minimum of specialized equipment. The procedures include
recommendation of suppliers of reagents.
The Academic Press FactsBooks series has established itself as the
best source of easily-accessible and accurate facts about protein
groups. Described as 'a growing series of excellent manuals' by
"Molecular Medicine Today," and 'essential works of reference' by
"Trends in Biochemical Sciences," the FactsBooks have become the
most popular comprehensive data resources available. As they are
meticulously researched and use an easy-to-follow format, the
FactsBooks will keep you up-to-date with the latest advances in
structure, amino acid sequences, physicochemical properties, and
biological activity.
Assisting Oxidative Protein Folding: How Do Protein Disulphide-Isomerases Couple Conformational and Chemical Processes in Protein Folding?, by A. Katrine Wallis and Robert B. Freedman Peptide Bond cis/trans Isomerases: A Biocatalysis Perspective of Conformational Dynamics in Proteins, by Cordelia Schiene-Fischer, Tobias Aumuller and Gunter Fischer Small Heat-Shock Proteins: Paramedics of the Cell, by Gillian R. Hilton, Hadi Lioe, Florian Stengel, Andrew J. Baldwin und Justin L. P. Benesch Allostery in the Hsp70 Chaperone Proteins, by Erik R. P. Zuiderweg, Eric B. Bertelsen, Aikaterini Rousaki, Matthias P. Mayer, Jason E. Gestwicki and Atta Ahmad Hsp90: Structure and Function, by Sophie E. Jackson Extracellular Chaperones, by Rebecca A. Dabbs, Amy R. Wyatt, Justin J. Yerbury, Heath Ecroyd and Mark R. Wilson"
The interfacial behaviour of surfactants and proteins, and their mixtures, is of importance in a wide range of areas such as food technology, detergency, cosmetics, coating processes, biomedicine, pharmacy and biotechnology. Methods such as surface and interfacial tension measurements and interfacial dilation and shear rheology characterise the relationships between these interfacial properties and the complex behaviour of foams and emulsions is established. Recently-developed experimental techniques, such as FRAP which enable the measurement of molecular mobility in adsorption layers, are covered in this volume. The development of theories to describe the thermodynamic surface state or the exchange of matter for proteins and protein/surfactant mixtures is also described. Features of this book: - Reflects the state-of-the-art research and application of protein interfacial layers rather than a snapshot of only some recent developments. - Emphasis is placed on experimental details as well as recent theoretical developments. - New experimental techniques applied to protein interfacial layers are described, such as FRAP or ADSA, or rheological methods to determine the mechanical behaviour of protein-modified interfaces. - A large number of practical applications, ranging from emulsions relevant in food technology for medical problems such as lung surfactants, to the characterisation of foams intrinsic to beer and champagne production. The book will be of interest to research and university institutes dedicated to interfacial studies in chemistry, biology, pharmacy, medicine and food engineering. Industrial departments for research and technology in food industry, pharmacy, medicine and brewery research will also find this volume of value.
Cell membranes are not, as once believed, inert structures designed to contain the cell contents, but are in fact dynamic structures that are as me- bolically active as the cytosol and other cellular compartments they surround. Thus membranes not only contain mixtures of lipid and phospholipids, but also many proteins both embedded deeply within the membrane structure itself and also more loosely attached on the membrane surfaces. Though many such proteins have long been known to act as transport proteins, ion channels, hormone receptors, G proteins, cytoskeletal anchorage points, and so on, the major advance of recent years is the increasing understanding that the lipids and phospholipids in the membrane bilayer itself are also metabolized to b- logically active products that can diffuse either in the cytosol or in the m- brane bilayer to control the function of other proteins. Thus the concept of lipid-derived second messengers is now firmly established.
A team of expert investigators and clinical researchers comprehensively review complement's basic biology, its role in disease, methods to measure its activity, and strategies for its inhibition in patients. Each chapter focuses on a specific area of basic and applied complement biology, spelling out the activation pathways and complement receptors. Informative animal models are discussed in detail, including the relative values of each model and the important interspecies differences that can distort the interpretation of preclinical studies. The emphasis throughout is on the pros and cons of the therapeutic use of recombinant complement inhibitors in specific diseases. Cutting-edge and innovative, Therapeutic Interventions in the Complement System highlights for today's researcher and biotechnologist effective strategies of drug discovery and development that are producing valuable new complement inhibitors for the treatment of a wide variety of clinically important diseases.
How do you keep track of basic information on the proteins you work
with? Where do you find details of their physicochemical
properties, amino acid sequences, and structure? Are you tired of
scanning review articles, primary papers, and databases to locate
that elusive fact?
Protein informatics is a newer name for an already existing discipline. It encompasses the techniques used in bioinformatics and molecular modeling that are related to proteins. While bioinformatics is mainly concerned with the collection, organization, and analysis of biological data, molecular modeling is devoted to representation and manipulation of the structure of proteins. Protein informatics requires substantial prerequisites on computer science, mathematics, and molecular biology. The approach chosen here, allows a direct and rapid grasp on the subject starting from basic knowledge of algorithm design, calculus, linear algebra, and probability theory. An Introduction to Protein Informatics, a professional monograph will provide the reader a comprehensive introduction to the field of protein informatics. The text emphasizes mathematical and computational methods to tackle the central problems of alignment, phylogenetic reconstruction, and prediction and sampling of protein structure. An Introduction to Protein Informatics is designed for a professional audience, composed of researchers and practitioners within bioinformatics, molecular modeling, algorithm design, optimization, and pattern recognition. This book is also suitable as a graduate-level text for students in computer science, mathematics, and biomedicine. |
You may like...
Water, Land, and Forest Susceptibility…
Uday Chatterjee, Biswajeet Pradhan, …
Paperback
R2,964
Discovery Miles 29 640
Biotechnology for the Environment…
Spiros Agathos, W. Reineke
Hardcover
R2,693
Discovery Miles 26 930
Vertical Flow Constructed Wetlands…
Alexandros Stefanakis, Christos S. Akratos, …
Hardcover
Structural Resilience in Sewer…
Zihai Shi, Shizuo Watanabe, …
Paperback
Plastics and Sustainability - Practical…
Lee Tin Sin, Bee Soo Tueen
Paperback
R4,171
Discovery Miles 41 710
Anaerobic Biotechnology: Environmental…
Herbert Han Ping Fang, Tong Zhang
Hardcover
R4,304
Discovery Miles 43 040
The Last Taboo - Opening the Door on the…
Maggie Black, Ben Fawcett
Hardcover
R4,221
Discovery Miles 42 210
|