![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Biochemistry > Proteins
In recent years, there has been a great deal of progress in the
understanding and management of milk proteins across the production
chain. This book takes a uniquely comprehensive look at those
developments and presents them in a one-source overview.
Gene function annotation has been a central question in molecular biology. The importance of computational function prediction is increasing because more and more large scale biological data, including genome sequences, protein structures, protein-protein interaction data, microarray expression data, and mass spectrometry data, are awaiting biological interpretation. Traditionally when a genome is sequenced, function annotation of genes is done by homology search methods, such as BLAST or FASTA. However, since these methods are developed before the genomics era, conventional use of them is not necessarily most suitable for analyzing a large scale data. Therefore we observe emerging development of computational gene function prediction methods, which are targeted to analyze large scale data, and also those which use such omics data as additional source of function prediction. In this book, we overview this emerging exciting field. The authors have been selected from 1) those who develop novel purely computational methods 2) those who develop function prediction methods which use omics data 3) those who maintain and update data base of function annotation of particular model organisms (E. coli), which are frequently referred
Fluorescent proteins are intimately connected to research in the life sciences. Tagging of gene products with fluorescent proteins has revolutionized all areas of biosciences, ranging from fundamental biochemistry to clinical oncology, to environmental research. The discovery of the Green Fluorescent Protein, its first, seminal application and the ingenious development of a broad palette of fluorescence proteins of other colours, was consequently recognised with the Nobel Prize for Chemistry in 2008. "Fluorescent Proteins II" highlights the physicochemical and biophysical aspects of fluorescent protein technology beyond imaging. It is tailored to meet the needs of physicists, chemists and biologists who are interested in the fundamental properties of fluorescent proteins, while also focussing on specific applications. The implementations described are cutting-edge studies and exemplify how the physical and chemical properties of fluorescent proteins can stimulate novel findings in life sciences.
The lipid-rich and otherwise challenging nature of many key tissues complicates many aspects of current research, and applications of the unique nature of lipoproteins and their biological effects has engendered unique and vital methodologies. In Lipoproteins and Cardiovascular Disease: Methods and Protocols, experts in the field present a compendium of advanced and classical molecular biology methods targeted towards lipoprotein, atherosclerosis, and vascular biology research, bringing together in a single volume an updated set of protocols and strategies for methods now driving the most recent advances, along with classical methods that are still widely used. Among the many topics covered in this cutting-edge work, the book delves into crucial techniques such as quantitative real-time PCR, microarrays, RT-PCR laser capture microdissection, and tissue-specific gene overexpression, knockout, and knockdown methodologies, including AAV as a liver-directed gene delivery vehicle. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective subjects, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and valuable notes which highlight tips on troubleshooting and avoiding known pitfalls. Comprehensive and easy to use, Lipoproteins and Cardiovascular Disease: Methods and Protocols serves both novices and experts alike as a complete guide for any researcher with an interest in lipoproteins and their significant biological effects.
The critically acclaimed laboratory standard for more than forty years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Since 1955, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 400 volumes (all of them still in print), the series contains much material still relevant today truly an essential publication for researchers in all fields of life sciences. Methods in Enzymology is now available online at ScienceDirect
full-text online of volumes 1 onwards. For more information about
the Elsevier Book Series on ScienceDirect Program, please
visit:
The goal of the characterization and discovery of G protein-coupled receptors, arguably the most important class of signaling molecules in humans and other vertebrates, has spawned numerous vital methodologies. In "Methods for the Discovery and Characterization of G Protein-Coupled Receptors," experts in the field present the very latest on the methods and technology used to characterize and discover novel mechanisms of GPCRs which, in many cases, can be used directly to design experiments for the reader s particular GPCR of interest and their specific avenue of investigation. Divided into four convenient sections, this detailed volume covers GPCRs in the genome, trafficking of GPCRs, GPCRs on the membrane, as well as the regulation of these key receptors. Chapters also feature an important section called Future Directions which gives the reader an insight into advances soon to be realized in each area. Written for the popular "Neuromethods" series, this book contains the kind of detailed description and implementation advice that is crucial for getting optimal results. Authoritative and cutting-edge, "Methods for the Discovery and Characterization of G Protein-Coupled Receptors" serves as an ideal guide for scientists determined to further our knowledge of crucially important set of receptors.
Conceived with the intention of providing an array of strategies and technologies currently in use for glyco-engineering distinct living organisms, this book contains a wide range of methods being developed to control the composition of carbohydrates and the properties of proteins through manipulations on the production host rather than in the protein itself. The first five sections deal with host-specific glyco-engineering and contain chapters that provide protocols for modifications of the glycosylation pathway in bacteria, yeast, insect, plants and mammalian cells, while the last two sections explore alternative approaches to host glyco-engineering and selected protocols for the analysis of the N-glycans and glyco-profiling by mass spectrometry. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols and tips on troubleshooting and avoiding known pitfalls. Authoritative and extensive, Glyco-Engineering: Methods and Protocols offers vast options to help researchers to choose the expression system and approach that best suits their intended protein research or applications.
Part I covers modern advances in the determination of
The critically acclaimed laboratory standard for more than forty years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Since 1955, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 400 volumes (all of them still in print), the series contains much material still relevant today truly an essential publication for researchers in all fields of life sciences. Methods in Enzymology is now available online at ScienceDirect
full-text online of volumes 1 onwards. For more information about
the Elsevier Book Series on ScienceDirect Program, please
visit:
This new edition of "Fluorescent Proteins" presents current applications of autofluorescent proteins in cell and molecular biology authored by researchers from many of the key laboratories in the field. Starting from a current review of the broad palette of fluorescent proteins available, several chapters focus on key autofluorescent protein variants, including spectral variants, photodynamic variants as well as chimeric FP approaches. Molecular applications are addressed in chapters that detail work with single molecules, approaches to generating protein fusions and biosensors as well as analysis of protein-protein interactions in vivo by FRET, fluorescence polarization and fluorescence cross correlation techniques. A number of approaches to in vivo dynamics are presented, including FRAP, photoactivation, and 4-dimensional microscopy. Behavior of spindle components, membrane proteins, mRNA trafficking as well as analysis of cell types in tissues and in development are detailed and provide models for a wide variety of experimental approaches. In addition, several chapters deal directly with the computational issues involved in processing multidimensional image data and using fluorescent imaging to probe cellular behavior with quantitative modeling. This volume brings together the latest perspective and techniques on fluorescent proteins and will be an invaluable reference in a wide range of laboratories.
Medicinal chemistry is both science and art. The science of medicinal chemistry offers mankind one of its best hopes for improving the quality of life. The art of medicinal chemistry continues to challenge its practitioners with the need for both intuition and experience to discover new drugs. Hence sharing the experience of drug research is uniquely beneficial to the field of medicinal chemistry. Drug research requires interdisciplinary team-work at the interface between chemistry, biology and medicine. Therefore, the topic-related series Topics in Medicinal Chemistry covers all relevant aspects of drug research, e.g. pathobiochemistry of diseases, identification and validation of (emerging) drug targets, structural biology, drugability of targets, drug design approaches, chemogenomics, synthetic chemistry including combinatorial methods, bioorganic chemistry, natural compounds, high-throughput screening, pharmacological in vitro and in vivo investigations, drug-receptor interactions on the molecular level, structure-activity relationships, drug absorption, distribution, metabolism, elimination, toxicology and pharmacogenomics. In general, special volumes are edited by well known guest editors.
Now in its third edition and supplemented with more online material, this book aims to make the "new" information-based (rather than gene-based) bioinformatics intelligible both to the "bio" people and the "info" people. Books on bioinformatics have traditionally served gene-hunters, and biologists who wish to construct family trees showing tidy lines of descent. While dealing extensively with the exciting topics of gene discovery and database-searching, such books have hardly considered genomes as information channels through which multiple forms and levels of information have passed through the generations. This "new bioinformatics" contrasts with the "old" gene-based bioinformatics that so preoccupies previous texts. Forms of information that we are familiar with (mental, textual) are related to forms with which we are less familiar (hereditary). The book extends a line of evolutionary thought that leads from the nineteenth century (Darwin, Butler, Romanes, Bateson), through the twentieth (Goldschmidt, White), and into the twenty first (the final works of the late Stephen Jay Gould). Long an area of controversy, diverging views may now be reconciled.
Phospholipases generate lipid signaling molecules through their hydrolytic action on phospholipids and are known to regulate function of a variety of cells under normal and diseased conditions. While several physiological, biochemical and molecular techniques have identified key players involved in different disease processes, phospholipases have also emerged as critical players in the pathogenesis of a number of different diseases including cancer and heart disease. In addition, phospholipases are also implicated in such conditions as brain disorder/injury, kidney and immune cell dysfunction. Phospholipases in Health and Disease is a compilation of review articles dedicated to the study of the field with respect to biochemical and molecular mechanisms of normal and abnormal cell function. The wide range of area covered here is of interest to basic research scientists, clinicians and graduate students, who are engaged in studying pathophysiological basis of a variety of diseases. Furthermore, this book highlights the potential of the different phospholipases as therapeutic targets as well as part of prevention strategies. Twenty three articles in this book are organized in four sections that are designed to emphasize the most characterized forms of the phospholipases in mammalian cells. The first section discusses general aspect of phospholipases. Section two covers the role and function of phospholipase A in different pathophysiological conditions. The third section is focussed on phospholipase C which is believed to play a central role in transmembrane signaling. The final section covers phospholipase D which is present in a variety of different cells. The book illustrates that the activation of phospholipases is of fundamental importance in signal transduction affecting cell function. Overall, this book discusses the diverse mechanisms of phospholipase mediated signal transduction in different pathophysiological conditions and raises the possibility of specific forms of phospholipases serving as novel targets for drug development.
Amino Acids Biosynthesis presents the current knowledge of fundamental as well as applied microbiology of amino acids. Topics discussed are the amino acid biosynthetic pathways, their genetic and biochemical regulation, transport of amino acids and genomics of producing microorganisms. The characterization of the control mechanisms of amino acid biosynthesis has revealed insights into principles of genetic and biochemical regulation, such as transcriptional regulators and a new class of regulatory elements, the riboswitch. The volume further deals with the metabolic engineering of microorganisms for the biotechnological production of amino acids for use as pharmaceuticals and, particularly, as food and feed additives. Comprehensive reviews are given of recent achievements to enable or improve production of amino acids and dipeptides by fermentation and enzyme catalysis. Here, the particular focus is on metabolic engineering, the rational improvement of metabolic functions using recombinant DNA technology.
Life is produced by the interplay of water and biomolecules. This book deals with the physicochemical aspects of such life phenomena produced by water and biomolecules, and addresses topics including "Protein Dynamics and Functions," "Protein and DNA Folding," and "Protein Amyloidosis." All sections have been written by internationally recognized front-line researchers. The idea for this book was born at the 5th International Symposium "Water and Biomolecules," held in Nara city, Japan, in 2008. Written for: Scientists, academic libraries, advanced students
Amyloid-forming proteins are implicated in over 30 human diseases. The proteins involved in each disease have unrelated sequences and dissimilar native structures, but they all undergo conformational alterations to form fibrillar polymers. The fibrillar assemblies accumulate progressively into disease-specific lesions in vivo. Substantial evidence suggests these lesions are the end state of aberrant protein folding whereas the actual disease-causing culprits likely are soluble, non-fibrillar assemblies preceding the aggregates. The non-fibrillar protein assemblies range from small, low-order oligomers to spherical, annular, and protofibrillar species. Oligomeric species are believed to mediate various pathogenic mechanisms that lead to cellular dysfunction, cytotoxicity, and cell loss, eventuating in disease-specific degeneration and systemic morbidity. The particular pathologies thus are determined by the afflicted cell types, organs, systems, and the proteins involved. Evidence suggests that the oligomeric species may share structural features and possibly common mechanisms of action. In many cases, the structure function interrelationships amongst the various protein assemblies described in vitro are still elusive. Deciphering these intricate structure function correlations will help understanding a complex array of pathogenic mechanisms, some of which may be common across different diseases albeit affecting different cell types and systems."
High-fidelity chromosomal DNA replication underpins all life on the planet. In humans, there are clear links between chromosome replication defects and genome instability, genetic disease and cancer, making a detailed understanding of the molecular mechanisms of genome duplication vital for future advances in diagnosis and treatment. Building on recent exciting advances in protein structure determination, the book will take the reader on a guided journey through the intricate molecular machinery of eukaryotic chromosome replication and provide an invaluable source of information, ideas and inspiration for all those with an interest in chromosome replication, whether from a basic science, translational biology and medical research perspective.
Small proteins with molecular weights of <25 kDa are involved in major biological processes such as ribosome formation, stress adaption and cell cycle control. The study of the low-molecular-weight proteome has identified many central regulators of biology such as cytokines, chemokines, peptide hormones and proteolytic fragments of larger proteins. Due to the unique features of these proteins, the technical challenges are different from those in "common" proteomics. In The Low Molecular Weight Proteome: Methods and Protocols expert researchers from the field provide protocols for analysis of low molecular weight proteins and peptides, protocols for such methods applied in clinical research and an up-to-date review of quantitative protein profiling by labeling. These include methods suitable for both peptide and protein analysis with focus on methods and application that can be used for small protein analysis. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, The Low Molecular Weight Proteome: Methods and Protocolsis a useful resource for experienced proteomics practitioners as well as an aid to newcomers who wish to become acquainted with the theory and practice of a wide array of methods in analyzing small proteins or peptides.
The ubiquitin-proteasome system (UPS) and ubiquitin-related modifiers are not only involved in cellular protein quality control but also in the regulation of many fundamental cellular processes/pathways as well as in their disease-relevant aberrations. Ubiquitin Family Modifiers and Proteasome: Reviews and Protocols presents both novel developments in UPS research and important methods related to the main recent advances in the field of ubiquitin family modifiers. Divided into five convenient sections, this volume focuses on the enzymology and substrate identification of ubiquitin family modifiers, the recognition and chain formation of these modifiers, the analysis of proteasome biogenesis and function, protein quality control, and finally the use of small molecules and strategies to study or manipulate the function of the UPS and of ubiquitin family modifiers, respectively. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, Ubiquitin Family Modifiers and Proteasome: Reviews and Protocols will be of great use to investigators and students engaged in both basic and applied research in life sciences.
This book updates the latest development in production, stabilization and structural analysis techniques of membrane proteins. This field has made significant advances since the elucidation of the first 3-D structure of a recombinant G Protein Coupled Receptor (GPCR), rhodopsin, with the structure of several more GPCRs having been solved in the past five years. In fact, the 2012 Nobel Prize in Chemistry was awarded for groundbreaking discoveries on the inner workings of GPCRs. This book is essential reading for all researchers, biochemists and crystallographers working with membrane proteins, who are interested by the structural characterization of their favorite protein and who wish to follow the expression, migration, modifications and recycling of a membrane protein.
With the development of new quantitative strategies and powerful bioinformatics tools to cope with the analysis of the large amounts of data generated in proteomics experiments, liquid chromatography with tandem mass spectrometry (LC-MS/MS) is making possible the analysis of proteins on a global scale, meaning that proteomics can now start competing with cDNA microarrays for the analysis of whole genomes. In LC-MS/MS in Proteomics: Methods and Applications, experts in the field provide protocols and up-to-date reviews of the applications of LC-MS/MS, with a particular focus on MS-based methods of protein and peptide quantification and the analysis of post-translational modifications. Beginning with overviews of the use of LC-M/MS in protein analysis, the book continues with topics such as protocols for the analysis of post-translational modifications, with particular focus on phosphorylation and glycosylation, popular techniques for quantitative proteomics, such as multiple reaction monitoring, metabolic labelling, and chemical tagging, biomarker discovery in biological fluids, as well as novel applications of LC-MS/MS. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective subjects, lists of necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Comprehensive and cutting-edge, LC-MS/MS in Proteomics: Methods and Applications presents the techniques and concepts necessary in order to aid proteomic practitioners in the application of LC-MS/MS to essentially any biological problem.
Exploring the 2-D gel mapping field, the chapters in this book are separated into four different categories: Part I talks about 2-D maps reproducibility and maps modeling; Part II describes the image analysis tools that provide spot volume datasets; Part III is about the statistical methods applied to spot volume datasets to identify candidate biomarkers; and Part IV discusses differential analysis from direct image analysis tools. 2-D PAGE Map Analysis: Methods and Protocols provides a unique approach to 2-D gel mapping, in that it helps users avoid drawbacks due to ignorance of the basic theoretical mechanisms underlying the technique, including data handling and proper tools for spot analysis. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and thorough, 2-D PAGE Map Analysis: Methods and Protocols, is a useful resource for any scientist or researcher, with a mathematical background, who is interested in 2-D gel mapping.
This second of two volumes discusses subfamily proteins which function in molecular and vesicular transport mechanisms inside the cell. In this volume the focus lies on the Rab, Ran and Arf subfamily members. As in Volume 1, the book is written by international renowned scientists in the field of small G-proteins. In elaborate reviews, biochemistry, structure, function and G-protein - effector interactions are described. Together with Volume 1 this book provides an comprehensive state-of-the-art work on small G-proteins (GTPases). It is written for Graduates and Professors in Biochemistry and Cell Biology interested in the mechanism and function of small G-proteins but are extremely valuable for those who want to move into the field.
This book discusses a broad range of basic and advanced topics in the field of protein structure, function, folding, flexibility, and dynamics. Starting with a basic introduction to protein purification, estimation, storage, and its effect on the protein structure, function, and dynamics, it also discusses various experimental and computational structure determination approaches; the importance of molecular interactions and water in protein stability, folding and dynamics; kinetic and thermodynamic parameters associated with protein-ligand binding; single molecule techniques and their applications in studying protein folding and aggregation; protein quality control; the role of amino acid sequence in protein aggregation; muscarinic acetylcholine receptors, antimuscarinic drugs, and their clinical significances. Further, the book explains the current understanding on the therapeutic importance of the enzyme dopamine beta hydroxylase; structural dynamics and motions in molecular motors; role of cathepsins in controlling degradation of extracellular matrix during disease states; and the important structure-function relationship of iron-binding proteins, ferritins. Overall, the book is an important guide and a comprehensive resource for understanding protein structure, function, dynamics, and interaction.
Protein analysis is increasingly becoming a cornerstone in deciphering the molecular mechanisms of life. Proteomics, the large-scale and high-sensitivity analysis of proteins, is already pivotal to the new life sciences such as Systems Biology and Systems Medicine. Proteomics, however, relies heavily on the past and future advances of protein purification and analysis methods. DIGE, being able to quantify proteins in their intact form, is one of a few methods that can facilitate this type of analysis and still provide the protein isoforms in an MS-compatible state for further identification and characterization with high analytical sensitivity. Differential Gel Electrophoresis: Methods and Protocols introduces the concept of DIGE and its advantages in quantitative protein analysis. It provides detailed protocols and important notes on the practical aspects of DIGE with both generic and specific applications in the various areas of Quantitative Proteomics. Divided into four concise sections, this detailed volume opens with the basics of DIGE, the technique and its practical details with a focus on the planning of a DIGE experiment and its data analysis. The next section introduces various DIGE methods from those employed by scientists world-wide to more novel methods, providing a glance at what is on the horizon in the DIGE world. The volume closes with an overview of the wide range of DIGE applications from Clinical Proteomics to Animal, Plant, and Microbial Proteomics applications. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and accessible, Differential Gel Electrophoresis: Methods and Protocols can be used by novices with some background in biochemistry or molecular biology as well as by experts in Proteomics who would like to deepen their understanding of DIGE and its employment in many hyphenations and application areas. With its many protocols, applications, and methodological variants, it is also a unique reference for all who seek fundamental details on the working principle of DIGE and ideas for possible future uses of DIGE in novel analytical approaches. |
![]() ![]() You may like...
Gravitation, Inertia and Weightlessness…
V.I. Ferronsky
Hardcover
Exomoons to Galactic Structure - High…
Supachai Awiphan
Hardcover
|