![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Biochemistry > Proteins
Artificial riboswitches and other ligand-responsive gene regulators make it possible to switch protein synthesis ON or OFF with arbitrary ligand molecules. Artificial Riboswitches: Methods and Protocols focuses on the state-of-the-art methods developed in recent years for creating artificial riboswitches, therefore this volume could be regarded as a collection of recipes for the gene circuit elements in synthetic biology and metabolic engineering. Chapters cover topics such as screening or rational design methods for obtaining artificial riboswitches that function in either bacterial or eukaryotic translational systems, protocols for evaluating the activities of the resultant riboswitches, as well as protocols for construction of ligand-dependent, trans-acting gene regulators. Written in the successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, Artificial Riboswitches: Methods and Protocols seeks to serve not only bioengineers who aim to reprogram cell behaviors and molecular biologists who leverage these regulators for genetic studies, but to all researchers interested in this fascinating field.
With the advent of proteomics came the development of technologies, primarily mass spectrometry, which allowed high-throughput identification of proteins in complex mixtures. While the mass spectrometer resides at the heart of proteomics, its ability to characterize biological samples is only as good as the sample preparation and data analysis tools used in any study. In Proteomics for Biomarker Discovery, expert researchers in the field detail many of the methods which are now commonly used to study proteomics. These include methods and techniques include both label-free approaches and those that utilize stable isotopes incorporated both during cell growth or added via a chemical reaction once the proteome is extracted from the cell. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Proteomics for Biomarker Discovery seeks to aid scientists in the further study the different sample preparation and data analysis tools used in proteomics today.
Echinostomes are medically- and veterinary-important parasitic flatworms that invade humans, domestic animals and wildlife and also parasitize in their larval stages numerous invertebrate and cold-blooded vertebrate hosts. The interest in echinostomes in parasitology and general biology comes from several areas: (1) Human infections; (2) Experimental models; (3) Animal infections; (4) Systematics. The application of novel techniques is moving the echinostomes to the frontline of parasitology in fields such as systematics, immunobiology in vertebrate and invertebrate organisms and proteomics among others. The Biology of Echinostomes demonstrates the application of new techniques to a group of trematodes that may serve to obtain information of great value in parasitology and general biology. The book includes basic topics, such as biology and systematics, as well as more novel topics, such as immunobiology, proteomics, and genomics of echinostomes. The authors of each chapter emphasize their content with: (i) the most novel information obtained; (ii) analysis of this information in a more general context (i.e. general parasitology); and (iii) future perspectives in view of the information presented. The subjects are analyzed from a modern point of view, considering aspects such as applications of novel techniques and an analysis of host-parasite interactions.
"Directed Evolution Library Creation: Methods and Protocols, Second Edition "presents user-friendly protocols for both proven strategies and cutting-edge approaches for the creation of mutant gene libraries for directed evolution. As well as experimental methods, information on current computational approaches is provided in a user-friendly format that will allow researchers to make informed choices without needing to comprehend the full technical details of each algorithm. Directed evolution has become a fundamental approach for engineering proteins to enhance activity and explore structure-function relationships, and has supported the rapid development of the field of synthetic biology over the last decade. Divided into three convenient sections, topics include point mutagenesis strategies, recombinatorial methods wherein genetic diversity is sourced from multiple parental genes that are combined via either homology-dependent or -independent techniques and a variety of computational methods to guide the design and analysis of mutant libraries. Written in the successful "Methods in Molecular Biology" series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, "Directed Evolution Library Creation: Methods and Protocols, Second Edition "will serve as a reliable manual for both novice and experienced protein engineers and synthetic biologists and will enable further technical innovation and the exploitation of directed evolution for a deeper understanding of protein design and function.
This volume describes protocols for basic state-of-the-art approaches in the field of peptidomics. Most of these approaches are independent of the instruments used for analysis and can easily be adapted for equipment that is available in a typical proteomics facility. Chapters detail many of the basic techniques used to detect and identify peptides, methods for the relative quantitation of peptides between samples using isotopic labels or label-free approaches, and biological species as well as sample types. Written in the highly successful format of the Methods in Molecular Biology series, each chapter includes an introduction to the topic, a list of the necessary materials and reagents, reproducible step-by-step laboratory protocols, and tips on troubleshooting common problems and avoiding pitfalls. Authoritative and practical, Peptidomics: Methods and Strategies provides useful guidance for studies in the rapidly growing field of peptidomics.
This volume covers methods that analyze various Argonaute proteins from a variety of organisms to help researchers better understand their properties ranging from a molecular level to an organismal level. The chapters in this book explore the following topics: identification and expression analysis of guide nucleic acids and their targets; analysis of biochemical properties of Argonautes; biological functions of Argonautes; and obtaining materials and setting up analysis platforms. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and authoritative, Argonaute Proteins: Methods and Protocols is a valuable resource for researchers and scientists looking to expand their knowledge of Argonaute proteins and their functions.
Integrins play pivotal roles not only across a wide range of physiological processes including tissue morphogenesis, immune responses, wound healing, and regulation of cell growth and differentiation, but also in numerous pathological phenomena such as autoimmunity, thrombosis, and cancer metastasis/progression. Therefore, investigations on integrins often demand multi-disciplinary approaches, making researchers long for a handy collection of comprehensive and practical protocols that detail experimental methods for studying integrin and related cell adhesion molecule functionality. "Integrin and Cell Adhesion Molecules: Methods and Protocols "aims to provide readers not only with basic protocols in studying integrin functions, but also with summaries on those state-of-the-art technologies that have been utilized for understanding integrin functionality at the cellular, molecular, structural, and organismal levels. Divided into six convenient sections, this detailed volume covers basic protocols for the study of integrin and related cell adhesion molecule functionality "in vitro," illustrates structural biology approaches for studying integrins and related cell adhesion molecules, focuses on emerging imaging technologies for investigating cell migration, presents strategies to elucidate signaling through cell adhesion molecules, includes experimental techniques to investigate integrin functions at organismal levels in a physiological context, and showcases the most promising methods and technologies for the development of novel therapeutics and diagnostics. Written in the successful "Methods in Molecular Biology " series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Both experts and non-experts in the scientific community who wish to study cell adhesion molecules and diagnostics will find "Integrin and Cell Adhesion Molecules: Methods and Protocols" authoritative, easily accessible, and vastly informative.
Modification of target protein properties by reversible phosphorylation events has been found to be one of the most prominent cellular control processes in all organisms. Recent advances in the areas of molecular biology and biochemistry are presenting new possibilities for reaching an unprecedented depth and a proteome-wide understanding of phosphorylation processes in plants as well as in other species. The major goal of "Plant Kinases: Methods and Protocols" is to provide the experimentalist with a detailed account of the practical steps necessary for successfully carrying out each protocol in his or her own laboratory. Plant protein kinases specifically addressed in this volume are members of the plant MAP kinase cascade, cyclin- and Calcium-dependent protein kinases, and plant sensor and receptor kinases. Written in the highly successful "Methods in Molecular Biology " series format, chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and accessible, "Plant Kinases: Methods and Protocols "will prove a useful laboratory companion to both novice and seasoned researchers by facilitating the practical work that will lead them to new and exciting insights in this dynamic field. "
The book focuses on the aqueous interface of biomolecules, a vital yet overlooked area of biophysical research. Most biological phenomena cannot be fully understood at the molecular level without considering interfacial behavior. The author presents conceptual advances in molecular biophysics that herald the advent of a new discipline, epistructural biology, centered on the interactions of water and bio molecular structures across the interface. The author introduces powerful theoretical and computational resources in order to address fundamental topics such as protein folding, the physico-chemical basis of enzyme catalysis and protein associations. On the basis of this information, a multi-disciplinary approach is used to engineer therapeutic drugs and to allow substantive advances in targeted molecular medicine. This book will be of interest to scientists, students and practitioners in the fields of chemistry, biophysics and biomedical engineering.
In Flavins and Flavoproteins: Methods and Protocols, expert researchers in the field detail many of the methods which are now commonly used to study flavins and flavoproteins. These include review style methods and protocols to exemplify the variety, the power and the success of modern techniques and methods in application to flavoproteins. Part I of this Volume covers general properties, syntheses and applications of free flavins as well as its analogs and flavoproteins. Part II covers characterizations of flavins and flavoproteins using modern experimental techniques as well as theoretical methods. Written in the highly successful Methods in Molecular Biology series format, the chapters include the kind of detailed description and implementation advice that is crucial for getting optimal results in the laboratory. Thorough and intuitive, Flavins and Flavoproteins: Methods and Protocols aids scientists in continuing to tackle the countless questions that need to be answered to more fully comprehend the vast diversity and specificity of flavin-governed biological processes.
A wide range of researchers are currently investigating different properties and applications for copper-containing proteins. Biochemists researching metal metabolism in organisms ranging from bacteria to plants to animals are working in a completely different area of discovery than scientists studying the transportation and regulation of minerals and small molecule nutrients. They are both working with copper-containing proteins, but in very different ways and with differing anticipated outcomes.
This volume presents the latest developments of the main pillars of protein analysis, such as sample preparation, separation and characterization. The book begins by describing basic but important sample preparation protocols. It then goes on to describe more sophisticated procedures on enriching specific protein classes and concludes with detailed descriptions of integrated work-flows for comprehensive protein analysis and characterization. The authors of the individual chapters are renowned protein biochemists who have all set value to provide a detailed representation of their lab work. Throughout the chapters, these authors share important tips and tricks for a successful and reproducible employment of their protocols in other laboratories. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Proteomic Profiling: Methods and Protocols is the perfect guide for students of Biochemistry, Biomedicine, Biology, and Genomics and will be an invaluable source for the experienced, practicing scientists.
This book presents an in-depth overview on the topic of protein
synthesis, covering all areas of protein science, including protein
targeting, secretion, folding, assembly, structure, localization,
quality control, degradation, and antigen presentation. Chapters
also include sections on the history of the field as well as
summary panels for quick reference. Numerous color illustrations
complement the presentation of material. This book is an essential
reference for anyone in biochemistry and protein science, as well
as an excellent textbook for advanced students in these and related
fields.
This volume documents this unique family of cell surface proteins. Despite masquerading as intractable and difficult to clone and characterize, ENOX proteins have and continue to offer remarkable opportunities for research, commercial development and outside confirmation of therapeutic, diagnostic and new paradigms to help explain complex biological processes.
The aim of the book is to discuss the application of molecular pathology in cancer research, and its contribution in the classification of different tumors and identification of potential molecular targets, as well as how this knowledge may be translated into clinical practice, and the huge impact this field is likely to have in the next 5 to 10 years.
Over the past thirty years, many elegant genetic and biochemical approaches have been combined in order to advance the study of protein secretion and the necessary navigation through cell membranes, yet, despite this progress, less than two hundred membrane protein structures are known, nowhere near the complete inventory that the discovered protein export systems suggest. In Protein Secretion: Methods and Protocols, leading experts in the field provide robust, well-established protocols to elucidate the multiplicity of tools that have been developed to study protein sorting, membrane targeting, transmembrane crossing, and secretion across multiple membranes. With examples involving both prokaryotic and eukaryotic organisms, the volume covers subjects ranging from bioinformatics and proteomics to fundamental enzymology and genetics to cell biology, structural analyses, and biophysics. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters contain introductions to their respective topics, lists of the key materials and reagents, step-by-step, readily reproducible protocols, and detailed notes on troubleshooting and avoiding known pitfalls. Comprehensive and dependable, Protein Secretion: Methods and Protocols focuses on well-characterized paradigms so that scientists studying a vast array of subjects from biochemistry and genetics to biotechnology and biopharmaceuticals can benefit and expand upon their vital research.
Protein Physics is a lively presentation of the most general
problems of protein structure, folding and function from the
physics and chemistry perspective, based on lectures given by the
authors. It deals with fibrous, membrane and, most of all, with the
best studied water-soluble globular proteins, in both their native
and denatured states. The major aspects of protein physics are
covered systematically, physico-chemical properties of polypeptide
chains; their secondary structures; tertiary structures of proteins
and their classification; conformational transitions in protein
molecules and their folding; intermediates of protein folding;
folding nuclei; physical backgrounds of coding the protein
structures by their amino acid sequences and protein functions in
relation to the protein structure. The book will be of interest to
undergraduate and graduate level students and researchers of
biophysics, biochemistry, biology and material science.
The liver is responsible for a wide range of critical functions essential to life, and is composed of several different cell types. In Liver Proteomics: Methods and Protocols, expert researchers in the field detail many of the methods that are used to study the live. These methods include the most up-to-date strategies being used to characterize the liver proteome at the global, cellular, subcellular, post translational and functional level.Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Liver Proteomics: Methods and Protocols seeks to aid scientists in the further study of this crucially important organ.
A cofactor is a component part of many enzymes and functions by
uniting with another molecule in order to become active.
The subject of this volume is a comprehensive examination of the biochemistry and biology of all classes of known PAS proteins, with the intention that readers will find insight into their own work and ideas from study of the multitude of PAS protein functions. PAS proteins control numerous physiological and developmental events, and span phylogeny from bacteria to man. Bacterial and plant PAS proteins act as sensors of environmental stimuli, including light, oxygen, and energy status. Not surprising, given these roles, there is intense investigation of the roles of bHLH-PAS proteins in issues of human health including: (1) cancer induction, (2) cancer growth and vascularity, (3) birth defects, including Down syndrome, (4) appetite control and obesity, (5) sleep rhythm disorders, and (6) mental health disorders such as social interactions and learning. PAS proteins encompass many fields of biology, and scientists who work in these fields (circadian rhythms, oxygen regulation, toxin metabolism, bacterial sensors, and development) are an audience, particularly those who actively work on PAS proteins and researchers interested in transcriptional control, signal transduction, and evolution.
The papers in this volume are from the workshop on Protein
Flexibility and Folding held in Traverse City, Michigan from August
13 - 17, 2000. The purpose of the workshop was to bring together
diverse people interested in protein folding and flexibility from
theoretical, computational and experimental perspectives and to
encourage discussion on new approaches and challenges in the field.
The workshop was held in the Park Plaza Hotel with 43 participants,
including 24 invited speakers. The small size of the group made for
easy exchanges, and many of the presentations by the invited
speakers appear in this volume. There was also a very lively poster
session.
Regulated turnover of extracellular matrix (ECM) is an important component of tissue homeostasis. In recent years, the enzymes that participate in, and control ECM turnover have been the focus of research that touches on development, tissue remodeling, inflammation and disease. This volume in the Biology of Extracellular Matrix series provides a review of the known classes of proteases that degrade ECM both outside and inside the cell. The specific EMC proteases that are discussed include cathepsins, bacterial collagenases, matrix metalloproteinases, meprins, serine proteases, and elastases. The volume also discusses the domains responsible for specific biochemical characteristics of the proteases and the physical interactions that occur when the protease interacts with substrate. The topics covered in this volume provide an important context for understanding the role that matrix-degrading proteases play in normal tissue remodeling and in diseases such as cancer and lung disease. The series Biology of Extracellular Matrix is published in collaboration with the American Society for Matrix Biology.
Blurb for Volume 2
The development of proteomic analyses using advanced mass spectrometry techniques has revolutionized the way proteins are studied, namely, as individual molecules within a complex system. HIV-1 Proteomics: From Discovery to Clinical Application comprehensively covers protein analysis from the early classic experimental days to current state-of-the-art HIV-1 proteomics in a clear informative style that brings expert-level understanding to the novice. Discussion of important clinical applications and future directions for the field also make this an ideal read for the expert. After finishing this book, the reader will have a complete and functional understanding of protein analysis from traditional biochemistry to modern proteomics.
Since the first edition of Protein Nanotechnology Protocols Instruments and Applications the intersection of protein science and nanotechnology has become an exciting frontier in interdisciplinary sciences. The second edition of Protein Nanotechnology Protocols Instruments and Applications expands upon the previous editions with current, detailed chapters that provide examples of proteins which are now being harnessed for a wide range of applications, some more developed than others. This book also delves into engineering proteins and an overview of the sorts of tools that are now readily available to manipulate the structure and function of proteins, both rationally and using methods inspired by evolution. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Protein Nanotechnology Protocols Instruments and Applications, Second Edition seeks to provide an overview of this multi-faceted field and a useful guide to those who wish to contribute to it. |
You may like...
Essays in Logic and Ontology
Jacek Malinowski, Andrzej Pietruszczak
Hardcover
R4,030
Discovery Miles 40 300
Mixed-Effects Models in S and S-PLUS
Jose Pinheiro, Douglas Bates
Hardcover
R5,909
Discovery Miles 59 090
Studying and Designing Technology for…
Tejinder Judge, Carman Neustaedter
Paperback
Renewable Energy Systems - Modelling…
Ahmad Taher Azar, Nashwa Ahmad Kamal
Paperback
R3,687
Discovery Miles 36 870
|