![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Biochemistry > Proteins
The general field of fundamental and applied biotechnology becomes increasingly important for the production of biologicals for human and veterinary use, by using prokaryotic and eukaryotic microorganisms. The papers in the present book are refereed articles compiled from oral and poster presentations from the EFB Meeting on Recombinant Protein Production with Prokaryotic and Eukaryotic Cells. A Comparative View on Host Physiology, which was organized in Semmering/A from 5th to 8th October 2000. A special feature of this meeting was the comparison of different classes of host cells, mainly bacteria, yeasts, filamentous fungi, and animal cells, which made obvious that many physiological features of recombinant protein formation, like cell nutrition, stress responses, protein folding and secretion, or genetic stability, follow similar patterns in different expression systems. This comparative aspect is by far the point of most interest because such comparisons are rarely done, and if they are done, their results are most often kept secret by the companies who generated them. Audience: Presently, a comparable book does not exist because the compiling of manuscripts from all fields of biotechnology (prokaryotic as well as eukaryotic, up to animal cell biotechnology) is not done in general. This particularity makes this book very interesting for postgraduate students and professionals in the large field of biotechnology who want to get a more global view on the current state of the expression of recombinant biologicals in different host cell systems, the physiological problems associated with the use of different expression systems, potential approaches to solve such difficulties bymetabolic engineering or the use of other host cells, and the cooperation between process development and strain improvement, which is crucial for the optimisation of both the production strain and the process. This book should be in every library of an institution/organization involved in biotechnology.
Human cells produce at least 30,000 different proteins. Each has a specific function characterized by a unique sequence and native conformation that allows it to perform that function. While research in this post-genomic era has created a deluge of invaluable information, the field has lacked for an authoritative introductory text needed to inform researchers and students in all of those fields now concerned with protein research. Introduction to Peptides and Proteins brings together some of the most respected researchers in protein science to present a remarkably coherent introduction to modern peptide and protein chemistry. The first sections of the book delve into - Basic peptide and protein science from assembly through degradation Traditional and emerging research methods including those used in bioinformatics and proteomics New computational approaches and algorithms used to find patterns in the vast data collected by sequencing projects After providing a foundation in tools and methods, the authors closely examine six protein families, including representative classes such as enzymes, cell-surface receptors, antibodies, fibrous proteins, and bioactive peptide classes. They concentrate on biochemical mechanisms and where possible indicate therapeutic or biotechnical possibilities. Then focusing on clinical aspects, the authors investigate misfolding as found in prion diseases, miscleavage as found in Alzheimer's, and mis-sequencing as found with some cancers. Drawing from some of their own research, the authors summarize recent achievements and emerging applications. They discuss the use of proteins and peptides as drugs and the solid-phase synthesis required for drug production. They also look at the use of peptides as functional biomolecules and research tools. No longer just th
Experimental protein engineering and computational protein design are broad but complementary strategies for developing proteins with altered or novel structural properties and biological functions. By describing cutting-edge advances in both of these fields, Protein Engineering and Design aims to cultivate a synergistic approach to protein science. Experimental Protein Engineering The first half of the book discusses experimental approaches to protein engineering and starts by describing several high-throughput screening platforms for protein engineering. Key techniques used for diversity generation are also discussed. The next few chapters present examples of therapeutics, enzymes, biomaterials, and other proteins that have been engineered by rational or combinatorial approaches. The section finishes with a chapter on the use of non-natural amino acids in protein engineering. Computational Protein Design The second half of the book introduces computational protein design, beginning with a chapter on computational and informatics algorithms used in protein engineering. Core components of computational protein design are then discussed in detail, and examples of heuristic protein design are provided. Subsequent chapters present examples of how computational design has played a critical role in advancing the field of protein engineering. Concluding with a chapter outlining current challenges in the field, this book makes computational protein design and diversity-oriented protein engineering widely accessible to a broad audience in academia and industry alike.
Often considered the workhorse of the cellular machinery, proteins are responsible for functions ranging from molecular motors to signaling. The broad recognition of their involvement in all cellular processes has led to focused efforts to predict their functions from sequences, and if available, from their structures. An overview of current research directions, Computational Protein-Protein Interactions examines topics in the prediction of protein-protein interactions, including interference with protein-protein interactions and their design. Explores Computational Approaches to Understanding Protein-Protein Interactions Outlining fundamental and applied aspects of the usefulness of computations when approaching protein-protein interactions, this book incorporates different views of the same biochemical problem from sequence to structure to energetics. It covers protein-protein interaction prediction and dynamics, design, drug design for inhibition, and uses for the prediction of function. The text provides general chapters that overview the topic and also includes advanced material. The chapters detail the complexity of protein interaction studies and discuss potential caveats. Addresses the Next Big Problem in Molecular Biology While it is important to predict protein associations, this is a daunting task. Edited by two experts in the field and containing contributions from those at the forefront of research, the book provides a basic outline of major directions in computational protein-protein interactions research at the heart of functional genomics and crucial for drug discovery. It addresses the next big problem in molecular biology: how to create links between all the pieces of the cell jigsaw puzzle.
This detailed book expands upon the previous edition with a collection of methods for those performing experimental work on small GTPases of the Rho family. Split into four sections, the volume explores computational modeling and imaging procedures, biochemical methods related to post-translational modifications of Rho GTPases as well as some high throughput methods, functional assays that allow for monitoring the consequences of manipulating Rho GTPases in a variety of cell types and cell biology processes, and techniques specifically designed for studies in selected non-mammalian model organisms (zebrafish, social ameba, plants and algae). Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on trouble shooting and avoiding known pitfalls. Authoritative and up-to-date, Rho GTPases: Methods and Protocols, Second Edition constitutes an invaluable tool for all those with an interest in this remarkable family of signaling proteins.
Protein folding and aggregation is the process by which newly synthesized proteins fold into the specific three-dimensional structures defining their biologically active states. It has always been a major focus of research in biochemistry and has often been seen as the unsolved second part of the genetic code. In the last 10 years we have witnessed a quantum leap in the research in this exciting area. Computational methods have improved to the extent of making possible to simulate the complete folding process of small proteins and the early stages of protein aggregation. Experimental methods have evolved to permit resolving fast processes of folding reactions and visualizing single molecules during folding. The findings from these novel experiments and detailed computer simulations have confirmed the main predictions of analytical theory of protein folding. In summary, protein folding research has finally acquired the status of a truly quantitative science, paving the way for more exciting developments in the near future. This unique book covers all the modern approaches and the many advances experienced in the field during the last 10 years. There is also much emphasis on computational methods and studies of protein aggregation which have really flourished in the last decade. It includes chapters in the areas that have witnessed major developments and are written by top experts including:computer simulations of folding, fast folding, single molecule spectroscopy, protein design, aggregation studies (both computational and experimental). Readers will obtain a unique perspective of the problems faced in the biophysical study of protein conformational behaviour in aqueous solution and how these problems are being solved with a multidisciplinary approach that combines theory, experiment and computer simulations. Protein Folding, Misfolding and Aggregation Classical Themes and Novel Approaches is essential reading for graduate students actively involved in protein folding research, other scientists interested in the recent progress of the field and instructors revamping the protein folding section of their biochemistry and biophysics courses.
This volume explores current technologies used to investigate the formation, insertion, and function of metalloclusters associated with proteins. Chapters describe relevant topics about Fe-S cluster metabolism are explored through genetic, biochemical, spectroscopic methods. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Fe-S Proteins: Methods and Protocols aims to be a useful practical guide to researchers to help further their study in this field.
This book is unique; the factual content and ideas it expounds are only just beginning to be touched upon in standard texts. Protein Electron Transfer is a major collaborative effort by leading experts and explores the molecular basis of the rapidly expan
The Coronin Family of Proteins Christoph S. Clemen, * Vasily Rybakin and Ludwig Eichinger he coronins, first described in Dictyostelium discoideum in 1991, have meanwhile been detected in all eukaryotes except plants. They belong to the superfamily of WD40-repeat Tproteins and represent a large family of proteins, which are often involved in cytoskeletal functions. Phylogenetic studies clearly distinguish 12 subfamilies of which six exclusively occur in vertebrates. In the present book we have made a sincere attempt to provide a comprehensive overview on all aspects of coronin proteins including history, structure, subcellular localization and function in different organisms. In addition, we also included a general overview on the WD40 family of proteins and the structurally related Kelch family. The book should be of interest for scientists outside the field, but is more importantly intended as a fast and competent guide for newcomers as well as doctoral and postdoctoral scientists to coronin research in all its facets. The book is divided into four major sections. It provides in the first part an introduction into two superfamilies of proteins with p-propellers, the WD40- and the Kelch-family. Lynn Cooley and Andrew M. Hudson provide evidence that the WD40- and Kelch-repeat families most likely did Figure 1. Condensed phylogenetic tree of the coronin protein family. The tree constitutes the basis of a new nomenclature and shows the evolutionary relationship of the twelve coronin subfamilies {CRN1-CRN12). See also chapter 11-2 by Reginald O. Morgan and M. Pilar Fernandez
Lectins: Analytical Technologies covers both analytical and biological aspects of lectins (functional carbohydrate (complex sugar) recognition proteins) and provides researchers in the field with a resource containing background information and 'look-up' tables detailing lectin specificity and structures. Also included are methods and practical tips for designing new lectins from existing non-lectin proteins, automated approaches to lectin proteomics and high resolution mass spectrometry techniques.
DNA (sometimes referred to as the molecule of life), is the most
interesting and most important of all molecules. Electrochemistry
of Nucleic Acids and Proteins: Towards Electrochemical Sensors for
Genomics and Proteomics is devoted to the electrochemistry of DNA
and RNA and to the development of sensors for detecting DNA damage
and DNA hybridization. Volume 1, in the brand new series
Perspectives in Bioanalysis, looks at the electroanalytical
chemistry of nucleic acids and proteins, development of
electrochemical sensors and their application in biomedicine and in
the new fields of genomics and proteomics. The authors have
expertly formatted the information for a wide variety of readers,
including new developments that will inspire students and young
scientists to create new tools for science and medicine in the 21st
century.
Proteomics and peptidomics is the detailed understanding of the role that proteins and peptides play in health and disease and is a necessary compliment to genetic analysis. The functional expression analysis of both proteins and peptides plays a central role in modern drug discovery as well as drug development, and is also a key research area in systems biology. Proteomics and Peptidomics captures the width as well as the depth within the area and exemplifies the variety as well as the traditional basis of analytical chemistry that is needed in order to move forward in expression analysis studies. As a fast emerging field, it gives and overview of parts within the field combined with highly specialized and dedicated topics that are intended to compliment each other.
Utilizing high speed computational methods to extrapolate to the rest of the protein universe, the knowledge accumulated on a subset of examples, protein bioinformatics seeks to accomplish what was impossible before its invention, namely the assignment of functions or functional hypotheses for all known proteins. The Ten Most Wanted Solutions in Protein Bioinformatics considers the ten most significant problems occupying those looking to identify the biological properties and functional roles of proteins. -Problem One considers the challenge involved with detecting the existence of an evolutionary relationship between proteins. -Two and Three studies the detection of local similarities between protein sequences and analysis in order to determine functional assignment. -Four, Five, and Six look at how the knowledge of the three-dimensional structures of proteins can be experimentally determined or inferred, and then exploited to understand the role of a protein. -Seven and Eight explore how proteins interact with each other and with ligands, both physically and logically. -Nine moves us out of the realm of observation to discuss the possibility of designing completely new proteins tailored to specific tasks. -And lastly, Problem Ten considers ways to modify the functional properties of proteins. After summarizing each problem, the author looks at and evaluates the current approaches being utilized, before going on to consider some potential approaches. introbul Features
Helps researchers in proteomics and oncology work together to understand, prevent, and cure cancer Proteomic data is increasingly important to understanding the origin and progression of cancer; however, most oncologic researchers who depend on proteomics for their studies do not collect the data themselves. As a result, there is a knowledge gap between scientists, who devise proteomic techniques and collect the data, and the oncologic researchers, who are expected to interpret and apply proteomic data. Bridging the gap between proteomics and oncology research, this book explains how proteomic technology can be used to address some of the most important questions in cancer research. "Proteomic Applications in Cancer Detection and Discovery "enables readers to understand how proteomic data is acquired and analyzed and how it is interpreted. Author Timothy Veenstra has filled the book with examples--many based on his own firsthand research experience--that clearly demonstrate the application of proteomic technology in oncology research, including the discovery of novel biomarkers for different types of cancers. The book begins with a brief introduction to systems biology, explaining why cancer is a systems biology disease. Next, it covers such topics as: Mass spectrometry in cancer researchApplication of proteomics to global phosphorylation analysisSearch for biomarkers in biofluidsRise and fall of proteomic patterns for cancer diagnosticsEmergence of protein arraysRole of proteomics in personalized medicine The final chapter is dedicated to the future prospects of proteomics in cancer research. By guiding readers through the latest proteomic technologies and their applications in cancer research, "Proteomic Applications in Cancer Detection and Discovery" enhances the ability of researchers in proteomics and researchers in oncology to collaborate in order to better understand cancer and develop strategies to prevent and treat it.
The broad range of G protein-coupled receptors (GPCRs) encompasses all areas of modern medicine and have an enormous impact on the process of drug development. Using disease-oriented methods to cover everything from screening to expression and crystallization, G Protein-Coupled Receptors in Drug Discovery describes the physiological roles of GPCRs and their involvement in various human diseases. The book presents current approaches in drug discovery that include target selection, establishment of screening and functional assays. It also covers recombinant GPCR expression for drug screening and structural biology, different methods for structural characterization of GPCRs, and the importance of bioinformatics. The book has been carefully edited to avoid overlapping information, some duplication has been intentionally permitted so that each chapter can function as an independent unit. Providing in-depth discussions on structure and dynamics of GPCRs, this book outlines the importance of the GPCRs to drug discovery in general and drug targets specifically. Daniel E. Levy, editor of the Drug Discovery Series, is the founder of DEL BioPharma, a consulting service for drug discovery programs. He also maintains a blog that explores organic chemistry.
This detailed collection explores techniques involved in the main strategies of nanopore sensing, such as translocation, analyte trapping, and interactions with external binding sites. Opening with a section on nanopore design and nanopore production, the book continues with parts devoted to various biological nanopores, nanopore engineering, and their uses in single molecule sensing, computational methods to study intrinsic nanopore behavior, characterizing the specific translocation activity of a vesicle particle through a nanopore, as well as the use of the technique droplet interface bilayer (DIB) in nanopore and membrane biophysical studies. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Nanopore Technology: Methods and Protocols, with its focus on nanopore technology and biomolecule characterization, will hold the interest of the biophysicists, biochemists, bioengineers, and molecular biologists who are working toward further understanding this key field of research.
This book brings together recent, international contributions to the study of gluten proteins from leading experts in the field. Gluten proteins have gained greater importance due not only to their fundamental role in determining technological quality of wheat end products, but also to the apparently increased number of people showing different degrees of gluten intolerance or allergy. Along with classical subjects such as gluten genetics, quality and rheology, The Gluten Proteins covers new tools and research fields, including the use of proteomics and genomics. Furthermore, information dedicated to intolerances and allergies is included and opens the possibility to widen future research opportunities, promoting cooperation between wheat breeders, medical researchers and gluten chemists and geneticists. The Gluten Proteins provides an authoritative source of information for researchers, professionals and postgraduate students wishing to increase their knowledge of the molecular bases of gluten functionality and nutritional role, as well as touching on possible future research opportunities.
This book presents a compilation of methods that detail improved protein and peptide sample preparation and identification. Chapters guide readers through methods for depletion of myofibril-associated proteins, peptide sample preparation in urinary proteomics, purification of targeted proteins from native tissues, fractionation strategies for protein analysis, and GeLC-MS as a sample preparation method for sample preparation for proteomics using minimal amount of tissue. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Tissue Proteomics: Methods and Protocols, Second Edition aims to ensure successful results in the further study of this vital field.
Based upon a workshop entitled "The Small HSP World" held in Quebec 2-5 October 2014. Twenty-five scientists provided chapters for the book. The chapters are from the best scientists currently working in this field. These colleagues include Arrigo, Benesch, Benjamin, Buchner-Haslbeck-Weinkauf, Benndorf, Boelens, Carra, Chang, Currie, Ecroyd, Emanuelsson, Fu, Garrido, Golenhofen, Gusev, Hightower, Kampinga, Lavoie, MacRae, Quinlan, Tanguay, Vierling, Vigh, Weeks and Wu. Briefly, the book starts with the structure of small heat shock proteins, moving to their functions and finishing with their involvement in diseases. Although this is quite broad, the structural aspect will be the unifying theme of the book.
Omics is an emerging and exciting area in the field of science and medicine. Numerous promising developments have been elucidated using omics (including genomics, transcriptomics, epigenomics, proteomics, metabolomics, interactomics, cytomics and bioinformatics) in cancer research. The development of high-throughput technologies that permit the solution of deciphering cancer from higher dimensionality will provide a knowledge base which changes the face of cancer understanding and therapeutics. This is the first book to provide such a comprehensive coverage of a rapidly evolving area written by leading experts in the field of omics. It complies and details cutting-edge cancer research that covers the broad advances in the field and its application from cancer-associated gene discovery to drug target validation. It also highlights the potential of using integration approach for cancer research. This unique and timely book provides a thorough overview of developing omics, which will appeal to anyone involved in cancer research. It will be a useful reference book for graduate students of different subjects (medicine, biology, engineering, etc) and senior scientists interested in the fascinating area of advanced technologies in cancer research. Readership: This is a precious book for all types of readers cancer researchers, oncologists, pathologists, biologists, clinical chemists, pharmacologists, pharmaceutical specialists, biostatisticians, and bioinformaticists who want to expand their knowledge in cancer research."
First published in 1991, Chemical Reagents for Protein Modification, 2nd Edition provides a unique combination of theoretical and practical considerations for the use of chemical reagents for site-specific modification of proteins. The book is divided into three sections, with the first section describing general techniques, including information on the organic chemistry of the various modification reactions; the separation and characterization of site-specific modified proteins, including applications to proteins separated by electrophoresis followed by blotting; the specific chemical cleavage of peptide bonds in proteins; the separation of peptides by high-performance liquid chromatography and electrophoresis; and the use of chemical reagents to assess conformational change in proteins. The second section provides an encyclopedic description of reagents and reactions for the site-specific modification of individual amino acid residues in proteins. The final section presents descriptions of the use of chemical reagents to label biologically significant sites in proteins, including enzyme active sites and the use of covalent cross-linking to measure protein-protein interactions. Particular emphasis is placed on the use of photoaffinity reagents. The book will be an extremely useful research tool for all investigators interested in the solution chemistry of proteins.
A common approach to understanding the functional repertoire of a genome is through functional genomics. With systems biology burgeoning, bioinformatics has grown to a larger extent for plant genomes where several applications in the form of protein-protein interactions (PPI) are used to predict the function of proteins. With plant genes evolutionarily conserved, the science of bioinformatics in agriculture has caught interest with myriad of applications taken from bench side to in silico studies. A multitude of technologies in the form of gene analysis, biochemical pathways and molecular techniques have been exploited to an extent that they consume less time and have been cost-effective to use. As genomes are being sequenced, there is an increased amount of expression data being generated from time to time matching the need to link the expression profiles and phenotypic variation to the underlying genomic variation. This would allow us to identify candidate genes and understand the molecular basis/phenotypic variation of traits. While many bioinformatics methods like expression and whole genome sequence data of organisms in biological databases have been used in plants, we felt a common reference showcasing the reviews for such analysis is wanting. We envisage that this dearth would be facilitated in the form of this Springer book on Agricultural Bioinformatics. We thank all the authors and the publishers Springer, Germany for providing us an opportunity to review the bioinformatics works that the authors have carried in the recent past and hope the readers would find this book attention grabbing.
This detailed collection gathers both established and recent technical procedures to study the Endosomal Sorting Complex Required for Transport (ESCRT) complexes in a wide range of biological systems: Archaea, A. thaliana, U. maydis, S. cerevisiae, S. pombe, C. elegans, D. melanogaster, and mammalian cells. Opening with a section on imaging techniques, the book continues with chapters covering biochemical approaches presenting strategies for production and characterization of recombinant ESCRT proteins, or of specific ESCRT protein domains, as well as genetic and proteomic experimental approaches. Written for the highly successful Methods in Molecular Biology series, chapters include introduction to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, The ESCRT Complexes: Methods and Protocols serves as a compact guide for researchers interested in establishing an integrated approach to investigate the ESCRT machinery functions in cell biology.
Focusing on model systems for the study of structure, folding, and association in the membrane, Membrane Proteins: Folding, Association, and Design presents an overview of methods that can be applied to these intricate systems. The volume is divided into four detailed sections, covering association of transmembrane helices, interactions with the lipid bilayer, NMR methods, as well as a variety of engineering approaches. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Membrane Proteins: Folding, Association, and Design serves as an ideal guide for researchers reaching for the tantalizing possibility of designing novel membrane proteins with tailored functionality.
This book represents the most current, comprehensive, and authoritative study of integrins on the market today. It provides an overview of the diverse biological functions of integrins, including: The structure and functions of integrin cytoplasmic domains, the role of b2 integrins in leukocyte adhesion, the role of platelet membrane fibrinogen receptor glycoprotein IIb-IIIa (aIIbb3) in thrombosis and hemostasis, the functions of aV integrin family, the role of integrins in signal transduction, the role of integrins in carcinoma cells, the role of integrins in internalization of microbial pathogens through the binding of Yersinia pseudotuberculosis invasin protein, the role of integrins in the skin, the integrin function in early vertebrate development using amphibian embryos. Key selling features: the structure and functions of integrin cytoplasmic domains the role of b2 integrins in leukocyte adhesion the role of platelet membrane fibrinogen receptor glycoprotein IIb-IIIa (aIIbb3) in thrombosis and hemostasis the functions of aV integrin family the role of integrins in signal transduction |
![]() ![]() You may like...
Protein Folding in Silico - Protein…
Irena Roterman-Konieczna
Hardcover
R3,996
Discovery Miles 39 960
Basic Epithelial Ion Transport…
Kirk L. Hamilton, Daniel C. Devor
Hardcover
R3,044
Discovery Miles 30 440
Peptide And Protein Engineering For…
Pierre Rousselot-pailley, Olga Iranzo
Hardcover
R4,184
Discovery Miles 41 840
|