![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Biochemistry > Proteins
This detailed volume explores protocols for studying the many facets of Ca2+-imaging, Ca2+-signaling, and Ca2+-binding along with background information on the principles and application of these techniques. The content of the book delves into 48 chapters including subjects such as data analysis and modern technologies to study calcium-binding and signaling in cells, the superfamily of calcium-binding proteins characterized by the EF-hand structural motif, as well as their use as diagnostic and prognostic biomarkers in Laboratory Medicine and novel therapeutic drug targets. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and comprehensive, Calcium-Binding Proteins of the EF-Hand Superfamily: From Basics to Medical Applications presents state-of-the-art, lab-based methods and easy-to-follow protocols for daily use, making it interesting for basic and medical researchers, cell- and molecular biologists, clinicians, clinical chemists, and the diagnostic industry.
The past 25 years has seen the emergence of a wealth of data suggesting that novel biological functions of known proteins play important roles in biology and medicine. This ability of proteins to exhibit more than one unique biological activity is known as protein moonlighting. Moonlighting proteins can exhibit novel biological functions, thus extending the function of the proteome, and are also implicated in the pathology of a growing number of idiopathic and infectious diseases. This book, written by a cell biologist, protein evolutionary biologist and protein bioinformatician, brings together the latest information on the structure, evolution and biological function of the growing numbers of moonlighting proteins that have been identified, and their roles in human health and disease. This information is revealing the enormous importance protein moonlighting plays in the maintenance of human health and in the induction of disease pathology. Protein Moonlighting in Biology and Medicine will be of interest to a general readership in the biological and biomedical research community.
This second edition volume expands all chapters of the previous edition, which have been enhanced to cover the most recent developments, the current state of method research, and applications. Additional protocols were added to examine lipid-protein interactions by mass spectrometry, to use protein microarrays to investigate large sets of various proteins, to study membrane protein dynamics by UV resonance Raman spectroscopy, to analyze peptide-induced pore formation in membranes, and to investigate folding and insertion of membrane proteins. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and authoritative, Lipid-Protein Interactions: Methods and Protocols, Second Edition is an essential resource for all researchers who are interested in obtaining up-to-date and comprehensive information about membrane structure and function.
Covers the basic knowledge of the regulation of biosynthesis of various amino acids in plants and the application of this knowledge to the discovery of novel inhibitors of amino acid biosynthesis and for enhancing the nutritional value of plant products. Provides an exhaustive list of pathway inhibitors.
This volume presents an overview of contemporary quantitative proteomics methods along with instructions on data interpretation, while providing examples on how to implement proteomics into systems biology. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Thorough and practical, Proteomics in Systems Biology: Methods and Protocols is a valuable resource for researchers who are interested in using proteomics techniques to help answer biological and medical questions.
This book summarizes present knowledge of different mechanisms involved in the development of positive and negative consequences of cardiac adaptation. Particular attention is paid to the still underestimated adaptive cardiac responses during development, to adaptation to the frequently occurring pressure and volume overload as well as to cardiac changes, induced by enduring exercise and chronic hypoxia. "Cardiac Adaptations" will be of great value to cardiovascular investigators, who will find this book highly useful in their cardiovascular studies for finding solutions in diverse pathological conditions; it will also appeal to students, fellows, scientists, and clinicians interested in cardiovascular abnormalities."
Through all of the recent progress provided by high throughput DNA sequencing technologies, it has become clearer and clearer that the study of proteins and protein organelles will be the key to unlocking our ability to manipulate cells and intervene in human disease. In Protein Expression in Mammalian Cells: Methods and Protocols, expert researchers in the field present a compendium of vital techniques to further our knowledge of mammalian protein expression. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips for troubleshooting and avoiding known pitfalls. Authoritative and concise, Protein Expression in Mammalian Cells: Methods and Protocols will aid scientists seeking to delve deeper into our own biology through the medium of other mammalian cells and proteins.
This work covers advances in the interactions of proteins with their solvent environment and provides fundamental physical information useful for the application of proteins in biotechnology and industrial processes. It discusses in detail structure, dynamic and thermodynamic aspects of protein hydration, as well as proteins in aqueous and organic solvents as they relate to protein function, stability and folding.
Among the many types of DNA binding domains, C2H2 zinc finger proteins (ZFPs) have proven to be the most malleable for creating custom DNA-binding proteins. In Engineered Zinc Finger Proteins: Methods and Protocols, expert researchers from some of the most active laboratories in this field present detailed methods, guidance, and perspectives. The volume contains sections covering the engineering of ZFPs, methods for the creation, evaluation, and delivery of artificial transcription factors (ATFs), methods for the creation and evaluation of zinc finger nucleases (ZFNs), and a collection of the several applications and assays beyond ATFs and ZFNs, including zinc finger transposases and ChIP-seq methodology amongst other subjects. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Comprehensive and cutting-edge, Engineered Zinc Finger Proteins: Methods and Protocols aims to aid both seasoned practitioners and new investigators with its vital methods and insights as they seek to create the next generation of engineered ZFPs and applications.
The modern biosciences make many new proteins available. Nevertheless the handling of these proteins is quite difficult due to problems with their stability. This collection gives - in the form of tables - protein stability data for various temperatures and solvents. These data are most useful for the development of protein folding and the improvement of biotechnological stability for applications of proteins.
This detailed book gathers a broad collection of experimental approaches to assist researchers in setting up different methods to investigate protein conformational disorders. Beginning with a section on assays focusing on biophysical approaches to study protein (mis)folding, the volume continues with sections on cellular and proteostasis assays as well as assays for protein folding correction and recovery, combining methods such as thermal shift assays, in silico improvement of protein solubility, and compound screening, an important area of research as it may open avenues for therapeutic strategies. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips for troubleshooting and avoiding known pitfalls. Authoritative and practical, Protein Misfolding Diseases: Methods and Protocols serves as an ideal guide for researchers seeking to advance our knowledge of protein conformational disorders.
"Hauser and Wagner have presented the new possibilities of Mammalian Cell Biology in a very informative and stimulating manner." Prof. Dr. Hans Fritz, Ludwig-Maximilians-University Munich
The Coronin Family of Proteins Christoph S. Clemen, * Vasily Rybakin and Ludwig Eichinger he coronins, first described in Dictyostelium discoideum in 1991, have meanwhile been detected in all eukaryotes except plants. They belong to the superfamily of WD40-repeat Tproteins and represent a large family of proteins, which are often involved in cytoskeletal functions. Phylogenetic studies clearly distinguish 12 subfamilies of which six exclusively occur in vertebrates. In the present book we have made a sincere attempt to provide a comprehensive overview on all aspects of coronin proteins including history, structure, subcellular localization and function in different organisms. In addition, we also included a general overview on the WD40 family of proteins and the structurally related Kelch family. The book should be of interest for scientists outside the field, but is more importantly intended as a fast and competent guide for newcomers as well as doctoral and postdoctoral scientists to coronin research in all its facets. The book is divided into four major sections. It provides in the first part an introduction into two superfamilies of proteins with p-propellers, the WD40- and the Kelch-family. Lynn Cooley and Andrew M. Hudson provide evidence that the WD40- and Kelch-repeat families most likely did Figure 1. Condensed phylogenetic tree of the coronin protein family. The tree constitutes the basis of a new nomenclature and shows the evolutionary relationship of the twelve coronin subfamilies {CRN1-CRN12). See also chapter 11-2 by Reginald O. Morgan and M. Pilar Fernandez
Proteins Biochemistry and Biotechnology 2e is a definitive source of information for all those interested in protein science, and particularly the commercial production and isolation of specific proteins, and their subsequent utilization for applied purposes in industry and medicine. Fully updated throughout with new or fundamentally revised sections on proteomics as, bioinformatics, protein glycosylation and engineering, well as sections detailing advances in upstream processing and newer protein applications such as enzyme-based biofuel production this new edition has an increased focus on biochemistry to ensure the balance between biochemisty and biotechnology, enhanced with numerous case studies. This second edition is an invaluable text for undergraduates of biochemistry and biotechnology but will also be relevant to students of microbiology, molecular biology, bioinformatics and any branch of the biomedical sciences who require a broad overview of the various medical, diagnostic and industrial uses of proteins. Provides a comprehensive overview of all aspects of protein biochemisty and protein biotechnology Includes numerous case studies Increased focus on protein biochemistry to ensure balance between biochemisty and biotechnology Includes new section focusing on proteomics as well as sections detailing protein function and enzyme-based biofuel production "With the potential of a standard reference source on the topic, any molecular biotechnologist will profit greatly from having this excellent book. " ( Engineering in Life Sciences, 2004; Vol 5; No. 5) Few texts would be considered competitors, and none compare favorably." ( Biochemistry and Molecular Education, July/August 2002) "...The book is well written, making it informative and easy to read..." ( The Biochemist, June 2002)
An up-to-date overview of the dynamic field of whey protein utilization Whey Protein Production, Chemistry, Functionality and Applications explores the science and technology behind the rapidly increasing popularity of this most versatile of dairy by-products. With its richly nutritious qualities, whey protein has been widely used in the food industry for many years. The last decade has, however, seen manufacturers develop many innovative and exciting new applications for it, both in food and other areas. Taking account of these advances, this insightful work offers a full explanation of the technological and chemical breakthroughs that have made whey protein more in-demand than ever before. Topics covered include manufacturing technologies, thermal and chemical modifications, non-food uses, denaturation and interactions, and more. In its broad scope, the book encompasses: An up-to-date overview of recent developments and new applications Breakdowns of the chemical, nutritional, and functional properties of whey protein Commentary on the current and future outlooks of the whey protein market Examinations of the methods and manufacturing technologies that enable whey protein recovery A full guide to the numerous applications of whey protein in food production and other industries Whey Protein Production, Chemistry, Functionality and Applications is an unparalleled source of information on this highly adaptable and much sought-after commodity, and is essential reading for food and dairy scientists, researchers and graduate students, and professionals working in the food formulation and dairy processing industries.
A common approach to understanding the functional repertoire of a genome is through functional genomics. With systems biology burgeoning, bioinformatics has grown to a larger extent for plant genomes where several applications in the form of protein-protein interactions (PPI) are used to predict the function of proteins. With plant genes evolutionarily conserved, the science of bioinformatics in agriculture has caught interest with myriad of applications taken from bench side to in silico studies. A multitude of technologies in the form of gene analysis, biochemical pathways and molecular techniques have been exploited to an extent that they consume less time and have been cost-effective to use. As genomes are being sequenced, there is an increased amount of expression data being generated from time to time matching the need to link the expression profiles and phenotypic variation to the underlying genomic variation. This would allow us to identify candidate genes and understand the molecular basis/phenotypic variation of traits. While many bioinformatics methods like expression and whole genome sequence data of organisms in biological databases have been used in plants, we felt a common reference showcasing the reviews for such analysis is wanting. We envisage that this dearth would be facilitated in the form of this Springer book on Agricultural Bioinformatics. We thank all the authors and the publishers Springer, Germany for providing us an opportunity to review the bioinformatics works that the authors have carried in the recent past and hope the readers would find this book attention grabbing.
This book presents a compilation of methods that detail improved protein and peptide sample preparation and identification. Chapters guide readers through methods for depletion of myofibril-associated proteins, peptide sample preparation in urinary proteomics, purification of targeted proteins from native tissues, fractionation strategies for protein analysis, and GeLC-MS as a sample preparation method for sample preparation for proteomics using minimal amount of tissue. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Tissue Proteomics: Methods and Protocols, Second Edition aims to ensure successful results in the further study of this vital field.
This book summarizes the early successes, drawbacks and accomplishments in cell biology and cell biotechnology achieved by the latest projects performed on the International Space Station ISS. It also depicts outcomes of experiments in tissue engineering, cancer research and drug design and reveals the chances that research in Space offers for medical application on Earth. This SpringerBriefs volume provides an overview on the latest international activities in Space and gives an outlook on the potential of biotechnological research in Space in future. This volume is written for students and researchers in Biomedicine, Biotechnology and Pharmacology and may specifically be of interest to scientists with focus on protein sciences, crystallization, tissue engineering, drug design and cancer research.
Focuses on Biology, Pharmacology, and Therapeutic Applications The study and diverse applications of bioactive peptides traverse many sub-disciplines within chemistry, biology, physics, and medicine. Answering a long-standing need, Bioactive Peptides focuses on the biology, pharmacology, and therapeutic applications of endogenous peptide mediators and their analogues. Moving peptide science beyond chemical synthesis strategies and into the realms of peptide biology and therapeutics, it presents the overall contribution that peptide science has made to molecular, cellular, and whole organism biology, while also discussing future targets and therapeutic applications. Beneficial for Experts and Novices Alike Part I provides details of bioactive peptides that interact with common drug targets and analyzes some of the most competitive areas of current research worldwide. While it is widely known that mammalian physiological systems utilize bioactive peptides that have yet to be discovered, other animals provide a rich and valuable source of bioactive peptides. This fascinating area of science is the theme of Part II. Parts III and IV investigate the unique bioactivities of various peptides that are ripe for further exploration. This definitive reference also includes: A detailed description and analysis of a broad range of peptides that interact with G protein-coupled receptors, the quantitatively dominant drug target A discussion of non-ribosomal peptides, which hold promise as sources of endogenous mediators Important examples of common methodologies employed to identify, characterize, and further develop bioactive peptides from a range of natural sources With mounting worldwide interest in their therapeutic potential, bioactive peptides-includ
How to design, execute, and interpret experiments for protein sequencing using mass spectrometry The rapid expansion of searchable protein and DNA databases in recent years has triggered an explosive growth in the application of mass spectrometry to protein sequencing. This timely and authoritative book provides professionals and scientists in biotechnology research with complete coverage of procedures for analyzing protein sequences by mass spectrometry, including step-by-step guidelines for sample preparation, analysis, and data interpretation. Michael Kinter and Nicholas Sherman present their own high-quality, laboratory-tested protocols for the analysis of a wide variety of samples, demonstrating how to carry out specific experiments and obtain fast, reliable results with a 99% success rate. Readers will get sufficient experimental detail to apply in their own laboratories, learn about the proper selection and operation of instruments, and gain essential insight into the fundamental principles of mass spectrometry and protein sequencing. Coverage includes:
And much more
This volume arranged into three sections describes biochemical, in vitro, and in vivo protocols on Semaphorins. Chapters focus on approaches that would allow the novice to study Semaphorins and employ robust assays to characterize mechanisms of action. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Semaphorin Signaling: Methods and Protocols aims to ensure successful results in the further study of this vital field.
Addressing the increased use of protein and peptide candidates as treatments for previously untreatable diseases, this comprehensive and progressive source provides the reader with a roadmap to an increased understanding of issues critical for successfully developing a protein or peptide therapeutic candidate. Proteins and Peptides is an invaluable source for drug discovery and development scientists in the biopharmaceutical industry who frequently navigate the maze of protein and peptide pharmacokinetics, pharmacodynamics, and metabolism. Key features include: issues related to delivery of protein and peptide therapeutics in elderly populations and pharmacogenomics lessons learned on the major marketed areas of proteins and peptides, including interleukins, interferons, growth factors, and peptide hormones innovations for protein and peptide delivery such as needle-less delivery strategies for delivery of these molecules to locations such as the eye and brain generic issues of proteins and peptides
The book gives a comprehensive review of the most advanced multiscale methods for protein structure prediction, computational studies of protein dynamics, folding mechanisms and macromolecular interactions. It approaches span a wide range of the levels of coarse-grained representations, various sampling techniques and variety of applications to biomedical and biophysical problems. This book is intended to be used as a reference book for those who are just beginning their adventure with biomacromolecular modeling but also as a valuable source of detailed information for those who are already experts in the field of biomacromolecular modeling and in related areas of computational biology or biophysics.
Biological membranes have long been identified as key elements in a wide variety of cellular processes including cell defense communication, photosynthesis, signal transduction, and motility; thus they emerge as primary targets in both basic and applied research. This book brings together in a single volume the most recent views of experts in the area of proteina "lipid interactions, providing an overview of the advances that have been achieved in the field in recent years, from very basic aspects to specialized technological applications. Topics include the application of X-ray and neutron diffraction, infrared and fluorescence spectroscopy, and high-resolution NMR to the understanding of the specific interactions between lipids and proteins within biological membranes, their structural relationships, and the implications for the biological functions that they mediate. Also covered in this volume are the insertion of proteins and peptides into the membrane and the concomitant formation of definite lipid domains within the membrane.
This book discusses the paradigm-shifting phenomenon of intrinsically disordered proteins (IDPs) and hybrid proteins containing ordered domains and functional IDP regions (IDPRs). The properties of IDPs and IDPRs are highly complementary to those deriving from the presence of a unique and well-defined three-dimensional fold. Ignored for a long time in high-resolution studies of proteins, intrinsic protein disorder is now recognized as one of the key features for a large variety of cellular functions, where structural flexibility presents a functional advantage in terms of binding plasticity and promiscuity and this volume explores this exciting new research. Recent progress in the field has radically changed our perspective to study IDPs through NMR: increasingly complex IDPs can now be characterized, a wide range of observables can be determined reporting on the structural and dynamic properties, computational methods to describe the structure and dynamics are in continuous development and IDPs can be studied in environments as complex as whole cells. This volume communicates the new exciting possibilities offered by NMR and presents open questions to foster further developments. Intrinsically Disordered Proteins Studied by NMR Spectroscopy provides a snapshot to researchers entering the field as well as providing a current overview for more experienced scientists in related areas. |
You may like...
|