![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Biochemistry > Proteins
The objective of this volume is to provide readers with a current view of all aspects of the 'pipeline' that takes protein targets to structures and how these have been optimised. This volume includes chapters describing, in-depth, the individual steps in the Structural Genomics pipeline, as well as less detailed overviews of individual Structural Genomics initiatives. It is the first book of protocols to cover techniques in a new and emerging field.
In recent years remarkable progress has been accomplished with respect to our knowledge about bacterial protein toxins. This refers especially to structural aspects of protein toxins but also holds true for genetics, molecular biology and biochemical mechanisms underlying the action of toxins. This volume covers the very current and exciting aspects of up-to-date bacterial toxicology and comprehensively reviews the most important bacterial protein toxins such as the intracellular acting toxins which exhibit enzyme activity, as well as those toxins that interact with cell plasma membranes by damaging the membranes (pore formation) or stimulating cell receptors (superantigens). This is the most current reference work on these important bacterial protein toxins, which are presented from the point of view of different disciplines such as pharmacology, microbiology, cell biology and protein chemistry.
Quantitative Proteomics by Mass Spectrometry, from the Methods in
Molecular Biology series, is a compendium of cutting-edge protocols
for quantitative proteomics, and presents the most significant
methods used in the field today. The focus on mass spectrometry
(MS) is integral, as MS has, and will continue to be, an essential
tool in proteomics for studying complex biological systems and
human diseases. This volume, written and compiled by leading
quantitative proteomic experts, is an indispensable resource in the
search for novel biomarkers.
This book brings together contributions from internationally renowned experts in the biochip field. The authors present not only their latest research work, but also discuss current trends in biochip technology. Specific topics range from microarray technology and its applications to lab-on-a-chip technology.
This book presents broad coverage of the principles and recent developments of sample preparation and fractionation tools in Expression Proteomics in general and two-dimensional electrophoresis (2-DE) in particular. With its unique capacity to resolve thousands of proteins in a single run, 2-DE is still a fundamental research tool for nearly all protein-related scientific projects.
Volume One of this two-volume sequence focuses on the basic characterization of known protein structures, and structure prediction from protein sequence information. Eleven chapters survey of the field, covering key topics in modeling, force fields, classification, computational methods, and structure prediction. Each chapter is a self contained review covering definition of the problem and historical perspective; mathematical formulation; computational methods and algorithms; performance results; existing software; strengths, pitfalls, challenges, and future research.
One ofthe major drivers in biological research is the establishment ofstructures and functions of the 50,000 or so proteins in our bodies. Each has a characteristic- dimensional structure, highly "ordered" yet "disordered"! This structure is essential for a protein's function and, significantly, it must be sustained in the competitive and complex environment of the living cell. It is now being recognised that when a cell loses control, proteins can se- assemble into more complex supermolecular structures such as the amyloid fibres and plaques associated with the pathogenesis of prion (CJD) or age-related (Alzheimer's) diseases. This is a pointer to the wider significance of the self-assembling properties of polypeptides. It has been long known that, in silk, polypeptides are assembled into- sheet structures which impart on the material its highly exploitable properties of flexibility combined with high tensile strength. But only now emerging is the recognition that peptides can Self-assemble into a wide variety of non-protein-like structures, including fibrils, fibres, tubules, sheets and monolayers. These are exciting observations and, more so, the potential for materials and medical exploitations is so wide ranging that over 80 scientists from Europe, USA, Japan and Israel. met 1-6 July 1999 in Crete, to discuss the wide-ranging implications of these novel developments. There was a spirit of excitement about the workshop indicative of an important new endeavor. The emerging perception is that of a new class of materials set to become commercially viable early in the 21st century.
Intended for Molecular Biologists, Biochemists, and Geneticists interested in manipulating and analyzing the Hedgehog Signaling Pathway, this volume offers various detailed chapters on experimental description, including anecdotal pointers and notes.
In this book, a select group of researchers has contributed their state-of-the-art methodologies on protein profiling and identification of disease biomarkers in tissues, microdissected cells and body fluids. The book integrates biochemistry, pathology, analytical technology, bioinformatics, and proteome informatics. Experimental approaches are thoroughly detailed and explained through a step-by-step instructional format that ensures successful results.
This book surveys the current knowledge concerning the expression and function of stress proteins in different organisms, ranging from prokaryotes to humans. It provides an overview of the diversity and complex evolutionary history of cell stress proteins and describes their function and expression in different eukaryote models. The book will appeal to researchers and scientists in biochemistry, cell biology, microbiology, immunology, and genetics.
This monograph addresses, in a systematic and pedagogical manner, the mathematical methods and the algorithms required to deal with the molecularly based problems of bioinformatics. Prominent attention is given to pair-wise and multiple sequence alignment algorithms, stochastic models of mutations, modulus structure theory and protein configuration analysis. Strong links to the molecular structures of proteins, DNA and other biomolecules and their analyses are developed.
Amino acids are featured in course syllabuses and in project and research work over a wide spectrum of subject areas in chemistry and biology. Chemists and biochemists using amino acids have many common needs when they turn to the literature for comprehensive information. Among these common interests, analytical studies, in particular, have undergone rapid development in recent years. All other chemical and biochemical aspects of amino acids - synthesis, properties and reactions, preparation of derivatives for use in peptide synthesis, racemization and other fundamental mechanistic knowledge - have been the subject of vigorous progress. This book offers a thorough treatment of all these developing areas, and is structured in the belief that biochemists, physiologists and others will profit from access to information on topics such as the physical chemistry of amino acid solutions, as well as from thorough coverage of amino acid metabolism, biosynthesis and enzyme inhibition; and that chemists will find relevant material in biological areas as well as in the analysis, synthesis and reactions of amino acids.
In the areas of biochemistry and cell biology, characterizations of stability and molecular interactions call for a quantitative approach with a level of precision that matches the fine tuning of these interactions in a living cell. Supporting and up-dating previous Methods in Molecular Biology (TM) volumes, Protein Structure, Stability, and Interactions approaches its subject with a focus on theory and practical applications for both established methods as well as exciting new procedures. The volume presents an overview of many techniques currently used to study protein stability and interactions, including scanning and titration calorimetry, spectroscopic methods, high field NMR, and analytical ultracentrifugation. As a volume of the highly successful Methods in Molecular Biology (TM) series, this work provides the kind of detailed description and implementation advice that is crucial for getting optimal results. Cutting-edge and easy to reference, Protein Structure, Stability, and Interactions is an ideal guide for all scientists interested in biomolecular interactions.
Protein phosphorylation controls many basic cellular processes, such as cell growth, differentiation, migration, metabolism, and cell death, and its study can provide key insights into the signal transduction pathways that are activated in cells in response to different stimuli, such as growth factor stimulation or exposure to toxicants. In Phospho-Proteomics: Methods and Protocols, expert researchers contribute both well-established protocols and some of the newest strategies for the identification and evaluation of protein phosphorylation on Tyr, Ser, and Thr residues, including topics such as 2-dimensional gel electrophoresis and protein phosphorylation, enrichment of phospho-proteins and peptides, quantitative analysis of phosphorylation by labeling and MS analysis, and antibody and kinase arrays. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include brief introductions to their respective subjects, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Comprehensive and cutting-edge, Phospho-Proteomics: Methods and Protocols is an ideal reference for both new and experienced scientists who wish to gain insight into the current developments in the field and to find inspiration to pursue its future.
Post-translational protein modifications by members of the ubiquitin family are widely recognized as important regulatory control systems for a variety of biological pathways. Their influence on eukaryotic cellular metabolism is comparable to that of other modifi- tions such as phosphorylation, acetylation and methylation. The small ubiquitin-related modifier SUMO uses a conjugation and de-conjugation system closely related to that of ubiquitin itself; yet, the functions of the SUMO system are highly diverse and largely independent of the ubiquitin system. SUMO modification controls the activity of tr- scription factors and can influence protein stability, but it also contributes to nucleo-cy- plasmic transport, chromosome segregation and DNA damage repair. As a consequence, the SUMO system pervades virtually all areas of basic molecular and cell biology, and scientists from different backgrounds, including medical researchers, are likely to enco- ter SUMO in the course of their studies. This volume, SUMO Protocols, therefore aims at presenting a collection of methods relevant to SUMO research in order to make these tools available to biochemists, molecular and cell biologists as well as research-oriented clinicians not yet familiar with the system. In contrast to the ubiquitin system, which has been the subject of several reviews and methods collections, no practical compendium entirely devoted to SUMO has been p- lished.
Humans have been "manually" extracting patterns from data for centuries, but the increasing volume of data in modern times has called for more automatic approaches. Early methods of identifying patterns in data include Bayes' theorem (1700s) and Regression analysis (1800s). The proliferation, ubiquity and incre- ing power of computer technology has increased data collection and storage. As data sets have grown in size and complexity, direct hands-on data analysis has - creasingly been augmented with indirect, automatic data processing. Data mining has been developed as the tool for extracting hidden patterns from data, by using computing power and applying new techniques and methodologies for knowledge discovery. This has been aided by other discoveries in computer science, such as Neural networks, Clustering, Genetic algorithms (1950s), Decision trees (1960s) and Support vector machines (1980s). Data mining commonlyinvolves four classes of tasks: * Classi cation: Arranges the data into prede ned groups. For example, an e-mail program might attempt to classify an e-mail as legitimate or spam. Common algorithmsinclude Nearest neighbor,Naive Bayes classi er and Neural network. * Clustering: Is like classi cation but the groups are not prede ned, so the algorithm will try to group similar items together. * Regression: Attempts to nd a function which models the data with the least error. A common method is to use Genetic Programming. * Association rule learning: Searches for relationships between variables. For example, a supermarket might gather data of what each customer buys.
A comprehensive guide to the revolutionary area of systems biology and its application in cell culture engineering, this volume presents an overall picture of the current topics central to structural and functional genomics, proteomics, metabolomics and bioinformatics, including such hot topics as RNAi, metabolic engineering and unfolded protein response. It includes reviews of the cellular response of environmental modulation such as low temperature and osmolarity, critical assessments of the applications of metabolomics and fluxomics approaches, examination of the utility of modulation of key genes and a presentation of a theory of chemical organisation which provides a new view of the system's structure. The clearly written chapters by experts in the field describe methods applicable to investigating the unique facets of cell culture. The book should be of interest to all those working in cell culture development and drug discovery in pharmaceutical and biotechnology companies as well as in academic institutions. It provides an invaluable resource for students and researchers in biotechnology, cell culture, genomics and bioinformatics.
This volume collects new information on the genomics of saprophytic soil Pseudomonas, as well as functions related to genomic islands. It explores life styles in different settings and sheds further insights on the wide metabolic potential of this microbe for the removal of pollutants and production of added-value products. This volume also explores how Pseudomonas responds and reacts to environmental signals, including detection of cell density.
An accurate description of current scientific developments in the field of bioinformatics and computational implementation is presented by research of the BioSapiens Network of Excellence. Bioinformatics is essential for annotating the structure and function of genes, proteins and the analysis of complete genomes and to molecular biology and biochemistry. Included is an overview of bioinformatics, the full spectrum of genome annotation approaches including; genome analysis and gene prediction, gene regulation analysis and expression, genome variation and QTL analysis, large scale protein annotation of function and structure, annotation and prediction of protein interactions, and the organization and annotation of molecular networks and biochemical pathways. Also covered is a technical framework to organize and represent genome data using the DAS technology and work in the annotation of two large genomic sets: HIV/HCV viral genomes and splicing alternatives potentially encoded in 1% of the human genome.
This book outlines three emergent disciplines, which are now poised to engineer a paradigm shift from hypothesis- to data-driven research: theoretical immunology, immunoinformatics, and Artificial Immune Systems. It details how these disciplines will enable new understanding to emerge from the analysis of complex datasets. Coverage shows how these three are set to transform immunological science and the future of health care.
As studies using microarray technology have evolved, so have the data analysis methods used to analyze these experiments. The CAMDA (Critical Assessment of Microarray Data Analysis) conference was the first to establish a forum for a cross section of researchers to look at a common data set and apply innovative analytical techniques to microarray data. Methods of Microarray Analysis V includes selected papers from CAMDA'04, and focuses on data sets relating to a significant global health issue, malaria. Previous books focused on classification (V. I), pattern recognition (V. II), quality control issues (V. III), and associating array data with a survival endpoint, lung cancer, (V. IV). The contributions come from research fields including statistics, biology, computer science and mathematics. Part of the book is devoted to review papers, which provide a more general look at various analytical approaches. It also presents some background readings for the advanced topics discussed in the CAMDA papers.
The many books that have been published on bioinformatics tend toward either of two extremes: those that feature computational details with a great deal of mathematics, for computational scientists and mathematicians; and those that treat bioinformatics as a giant black box, for biologists. This is the first book using comprehensive numerical illustration of mathematical techniques and computational algorithms used in bioinformatics that converts molecular data into organized biological knowledge.
This book presents state-of-the-art analytical methods from statistics and data mining for the analysis of high-throughput data from genomics and proteomics. It adopts an approach focusing on concepts and applications and presents key analytical techniques for the analysis of genomics and proteomics data by detailing their underlying principles, merits and limitations.
The biological interactions of living organisms, and protein-protein interactions in particular, are astonishingly diverse. This comprehensive book provides a broad, thorough and multidisciplinary coverage of its field. It integrates different approaches from bioinformatics, biochemistry, computational analysis and systems biology to offer the reader a comprehensive global view of the diverse data on protein-protein interactions and protein interaction networks.
Actin is an extremely abundant protein that comprises a dynamic polymeric network present in all eukaryotic cells, known as the actin cytoskeleton. The structure and function of the actin cytoskeleton, which is modulated by a plethora of actin-binding proteins, performs a diverse range of cellular roles. Well-documented functions for actin include: providing the molecular tracks for cytoplasmic streaming and organelle movements; formation of tethers that guide the cell plate to the division site during cytokinesis; creation of honeycomb-like arrays that enmesh and immobilize plastids in unique subcellular patterns; supporting the vesicle traffic and cytoplasmic organization essential for the directional secretory mechanism that underpins tip growth of certain cells; and coordinating the elaborate cytoplasmic responses to extra- and intracellular signals. The previous two decades have witnessed an immense accumulation of data relating to the cellular, biochemical, and molecular aspects of all these fundamental cellular processes. This prompted the editors to put together a diverse collection of topics, contributed by established international experts, related to the plant actin cytoskeleton. Because the actin cytoskeleton impinges on a multitude of processes critical for plant growth and development, as well as for responses to the environment, the book will be invaluable to any researcher, from the advanced undergraduate to the senior investigator, who is interested in these areas of plant cell biology. |
You may like...
|