![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Physical chemistry > Quantum & theoretical chemistry
Can one correlate the philosophical musings of one of the most famous football coaches in history with the best ACS Student Member Chapters? Yes! The link is in the excellence. Award-winning Student Member Chapters-several leaders of which have been kind enough to write a chapter in this volume-all have caught excellence in one or more facets of what they do. Mio and Benvenuto began this journey to capture the best of Student Member Chapters back in 2015, when they asked some of the best and most active organizations' leadership to put into words what they did that puts them at the top. The editors realized there is not one, specific answer to such questions, but found a wealth of information in what their chapter authors reported. There are more voices in this wonderful chorus, voices of leaders who have great ideas and who have figured out ways to make the fascination of chemistry communicable to our students and the general public. This volume represents some excellent input as to what makes a chapter award-winning, and what keeps its excellence sustainable.
Novel Electronic Structure Theory: General Innovations and Strongly Correlated Systems, Volume 76, the latest release in the Advances in Quantum Chemistry series presents work and reviews of current work in quantum chemistry (molecules), but also includes scattering from atoms and solid state work of interest in physics. Topics covered in this release include the Present Status of Selected Configuration Interaction with Truncation Energy Error, Recent Developments in Asymptotic Expansions from Numerical Analysis and Approximation Theory, The kinetic energy Pauli enhancement factor and its role in determining the shell structure of atoms and molecules, Numerical Hartree-Fock and Many-Body Calculations for Diatomic Molecules, and more.
This book focuses on broadly defined areas of chemical information science- with special emphasis on chemical informatics- and computer-aided molecular design. The computational and cheminformatics methods discussed, and their application to drug discovery, are essential for sustaining a viable drug development pipeline. It is increasingly challenging to identify new chemical entities and the amount of money and time invested in research to develop a new drug has greatly increased over the past 50 years. The average time to take a drug from clinical testing to approval is currently 7.2 years. Therefore, the need to develop predictive computational techniques to drive research more efficiently to identify compounds and molecules, which have the greatest likelihood of being developed into successful drugs for a target, is of great significance. New methods such as high throughput screening (HTS) and techniques for the computational analysis of hits have contributed to improvements in drug discovery efficiency. The SARMs developed by Jurgen and colleagues have enabled display of SAR data in a more transparent scaffold/functional SAR table. There are many tools and databases available for use in applied drug discovery techniques based on polypharmacology. The cheminformatics approaches and methodologies presented in this volume and at the Skolnik Award Symposium will pave the way for improved efficiency in drug discovery. The lectures and the chapters also reflect the various aspects of scientific enquiry and research interests of the 2015 Herman Skolnik award recipient.
The field of quantum chemistry has grown so immensely that the importance of some of the earliest work and the earliest pioneers of quantum chemistry is unfamiliar to many of today's youngest scientists in the field. Thus, this book is an attempt to preserve some of the very valuable, early history of quantum chemistry, providing the reader with not only a perspective of the science, but a perspective of the early pioneers themselves, some of whom were quite interesting characters. The symposium on which this book is based came about because one of the co-editors (ETS) came to a conviction that the contributions such as those by George Wheland to quantum chemistry and Otto Schmidt to free electron theory should be better appreciated and known. He organized a symposium in which quantum chemistry pioneers, both those celebrated by everyone and those seemingly overlooked by posterity, would be recognized. While this volume is certainly not a history of quantum chemistry, it does cover many highlights over a period of about sixty years. This volume consists of chapters based upon ten of the presentations at the symposium "Pioneers of Quantum Chemistry" held March 28, 2011, at the 241st ACS National Meeting in Anaheim, CA.
Starting from a clear, concise introduction, the powerful finite element and boundary element methods of engineering are developed for application to quantum mechanics. The reader is led through illustrative examples displaying the strengths of these methods using applications to fundamental quantum mechanical problems and to the design/simulation of quantum nanoscale devices.
Annual Reports in Computational Chemistry, Volume 18 in this important serial, highlights new advances in the field, with this new volume presenting interesting chapters on a variety of timely topics, including Atomistic modelling of surface plasmon resonances, Recent Advances in Solvation Modelling Applications: Chemical Properties, Reaction Mechanisms and Catalysis, Entropy considerations in catalysis, High level computational chemistry methods, and Computational Organofluorine chemistry.
Quantum chemistry is simulating atomistic systems according to the laws of quantum mechanics, and such simulations are essential for our understanding of the world and for technological progress. Machine learning revolutionizes quantum chemistry by increasing simulation speed and accuracy and obtaining new insights. However, for nonspecialists, learning about this vast field is a formidable challenge. Quantum Chemistry in the Age of Machine Learning covers this exciting field in detail, ranging from basic concepts to comprehensive methodological details to providing detailed codes and hands-on tutorials. Such an approach helps readers get a quick overview of existing techniques and provides an opportunity to learn the intricacies and inner workings of state-of-the-art methods. The book describes the underlying concepts of machine learning and quantum chemistry, machine learning potentials and learning of other quantum chemical properties, machine learning-improved quantum chemical methods, analysis of Big Data from simulations, and materials design with machine learning. Drawing on the expertise of a team of specialist contributors, this book serves as a valuable guide for both aspiring beginners and specialists in this exciting field.
Annual Reports in Computational Chemistry, Volume 17 provides timely and critical reviews on important topics in computational chemistry. Topics covered in the series include quantum chemistry, molecular mechanics, force fields, chemical education, and applications in academic and industrial settings. Focusing on the most recent literature and advances in the field, each article covers a specific topic of importance to computational chemists.
Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field, one that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry and biology. The book features detailed reviews written by leading international researchers. In this volume, the readers are presented with an exciting combination of themes.
Annual Reports in Computational Chemistry, Volume 16, provides timely and critical reviews of important topics in computational chemistry. Topics covered in this series include quantum chemistry, molecular mechanics, force fields, chemical education, and applications in academic and industrial settings. Focusing on the most recent literature and advances in the field, each article covers a specific topic of importance to computational chemists.
Quantum Boundaries of Life, Volume 82 in the Advances in Quantum Chemistry series, presents current topics in this rapidly developing field that have emerged at the cross section of mathematics, physics, chemistry and biology. Topics covered include Quantum Considerations of Neural Memory, Functional Neural Electron Transport, Plasmon-polariton mechanism of the saltatory conduction in myelinated axons, Quantum Field Theory Formulation of Brain Dynamics: Nonequilibrium, Multi Field Theory Formulation of Brain Dynamics, Quantum Protein Folding, Classical-Quantum Interplay in Living Neural Tissue Function, Quantum Effects in Life Dynamics, Quantum transport and utilization of free energy in protein a-helices, and much more. The book's message is simple. Mystics prefer to put consciousness in the cosmos to avoid Darwinism. If the seat of consciousness is found to evolve within all animals, then we have a Darwinian understanding not only of the origin of life and species according to natural selection but also concerning consciousness and, in particular, life being quantum Darwinian.
Molecular simulation allows researchers unique insight into the structures and interactions at play in fluids. Since publication of the first edition of Molecular Simulation of Fluids, novel developments in theory, algorithms and computer hardware have generated enormous growth in simulation capabilities. This 2nd edition has been fully updated and expanded to highlight this recent progress, encompassing both Monte Carlo and molecular dynamic techniques, and providing details of theory, algorithms and both serial and parallel implementations. Beginning with a clear introduction and review of theoretical foundations, the book goes on to explore intermolecular potentials before discussing the calculation of molecular interactions in more detail. Monte Carlo simulation and integrators for molecular dynamics are then discussed further, followed by non-equilibrium molecular dynamics and molecular simulation of ensembles and phase equilibria. The use of object-orientation is examined in detail, with working examples coded in C++. Finally, practical parallel simulation algorithms are discussed using both MPI and GPUs, with the latter coded in CUDA. Drawing on the extensive experience of its expert author, Molecular Simulation of Fluids: Theory, Algorithms, Object-Orientation, and Parallel Computing 2nd Edition is a practical, accessible guide to this complex topic for all those currently using, or interested in using, molecular simulation to study fluids.
Annual Reports in Computational Chemistry, Volume 15, provides timely and critical reviews of important topics in computational chemistry. Topics covered in this series include quantum chemistry, molecular mechanics, force fields, chemical education, and applications in academic and industrial settings. Focusing on the most recent literature and advances in the field, each article covers a specific topic of importance to computational chemists.
Quantum theory and computational chemistry have become integral to the fields of chemistry, chemical engineering, and materials chemistry. Concepts of chemical bonding, band structure, material properties, and interactions between light and matter at the molecular scale tend to be expressed in the framework of orbital theory, even when numerical calculations go beyond simple orbital models. Yet, the connections between these theoretical models and experimental observations are often unclear. It is important-now more than ever-that students master quantum theory if they are going to apply chemical concepts. In this book, Jochen Autschbach connects the abstract with the concrete in an elegant way, creating a guiding text for scholars and students alike. Quantum Theory for Chemical Applications covers the quantum theory of atoms, molecules, and extended periodic systems. Autschbach goes beyond standard textbooks by connecting the molecular and band structure perspectives, covering response theory, and more. The book is broken into four parts: Basic Theoretical Concepts; Atomic, Molecular, and Crystal Orbitals; Further Basic Concepts of Quantum Theory; and Advanced Topics, such as relativistic quantum chemistry and molecule-light interactions. The foresight Autschbach provides is immense, and he sets up a solid theoretical background for nearly every quantum chemistry method used in contemporary research. Because quantum theory tells us what the electrons do in atoms, molecules, and extended systems, the pages in this book are full of answers to questions both long-held and never-before considered.
Computational Quantum Chemistry: Insights into Polymerization Reactions consolidates extensive research results, couples them with computational quantum chemistry (CQC) methods applicable to polymerization reactions, and presents those results systematically. CQC has advanced polymer reaction engineering considerably for the past two decades. The book puts these advances into perspective. It also allows you to access the most up-to-date research and CQC methods applicable to polymerization reactions in a single volume. The content is rigorous yet accessible to graduate students as well as researchers who need a reference of state-of-the-art CQC methods with polymerization applications.
Chemical modelling covers a wide range of disciplines, and this book is the first stop for any chemist, materials scientist, biochemist, or molecular physicist wishing to acquaint themselves with major developments in the applications and theory of chemical modelling. Containing both comprehensive and critical reviews, it is a convenient reference to the current literature. Coverage includes, but is not limited to, considerations towards rigorous foundations for the natural-orbital representation of molecular electronic transitions, quantum and classical embedding schemes for optical properties, machine learning for excited states, ultrafast and wave function-based electron dynamics, and attosecond chemistry.
Written chemical formulas, such as C2H6O, can tell us the constituent atoms a molecule contains but they cannot differentiate between the possible geometrical arrangements (isomers) of these models. Yet the chemical properties of different isomers can vary hugely. Therefore, to understand the world of chemistry we need to ask what kind of isomers can be produced from a given atomic composition, how are isomers converted into each other, how do they decompose into smaller pieces, and how can they be made from smaller pieces? The answers to these questions will help us to discover new chemistry and new molecules. A potential energy surface (PES) describes a system, such as a molecule, based on geometrical parameters. The mathematical properties of the PES can be used to calculate probable isomer structures as well as how they are formed and how they might behave. Exploration on Quantum Chemical Potential Energy Surfaces focuses on the PES search based on quantum chemical calculations. It describes how to explore the chemical world on PES, discusses fundamental methods and specific techniques developed for efficient exploration on PES, and demonstrates several examples of the PES search for chemical structures and reaction routes.
Materials Under Extreme Conditions: Recent Trends and Future Prospects analyzes the chemical transformation and decomposition of materials exposed to extreme conditions, such as high temperature, high pressure, hostile chemical environments, high radiation fields, high vacuum, high magnetic and electric fields, wear and abrasion related to chemical bonding, special crystallographic features, and microstructures. The materials covered in this work encompass oxides, non-oxides, alloys and intermetallics, glasses, and carbon-based materials. The book is written for researchers in academia and industry, and technologists in chemical engineering, materials chemistry, chemistry, and condensed matter physics.
Electron Correlation in Molecules - ab initio Beyond Gaussian Quantum Chemistry presents a series of articles concerning important topics in quantum chemistry, including surveys of current topics in this rapidly-developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology.
Insights from Imaging in Bioinorganic Chemistry continues a long-running series that describes recent advances in scientific research, in particular, in the field of inorganic chemistry. Several highly regarded experts, mostly from academe, contribute on specific topics. The series editor chooses a sub-field within inorganic chemistry as the theme and focus of the volume, extending invitations to experts for their contributions; the current theme is insights from metal ion imaging in bioinorganic and medicinal chemistry.
Combined Quantum Mechanical and Molecular Mechanical Modelling of Biomolecular Interactions continues the tradition of the Advances in Protein Chemistry and Structural Biology series has been the essential resource for protein chemists. Each volume brings forth new information about protocols and analysis of proteins, with each thematically organized volume guest edited by leading experts in a broad range of protein-related topics.
This volume presents a series of articles concerning current important topics in quantum chemistry.
Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field one that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features detailed reviews written by leading international researchers. In this volume the readers are presented with an exciting combination of themes. |
You may like...
Space Division Multiple Access for…
Patrick Vandenameele, Liesbet Van Der Perre, …
Hardcover
R2,788
Discovery Miles 27 880
Introduction to Ultra Wideband for…
Homayoun Nikookar, Ramjee Prasad
Hardcover
R4,117
Discovery Miles 41 170
UMTS Radio Network Planning…
Jukka Lempiainen, Matti Manninen
Hardcover
R4,062
Discovery Miles 40 620
Neuroendocrine Regulation of Animal…
Cheryl S. Rosenfeld, Frauke Hoffmann
Paperback
R2,770
Discovery Miles 27 700
|