0
Your cart

Your cart is empty

Browse All Departments
Price
  • R50 - R100 (1)
  • R250 - R500 (3)
  • R500+ (1,096)
  • -
Status
Format
Author / Contributor
Publisher

Books > Science & Mathematics > Chemistry > Physical chemistry > Quantum & theoretical chemistry

Many-Body Quantum Theory in Condensed Matter Physics - An Introduction (Hardcover): Henrik Bruus, Karsten Flensberg Many-Body Quantum Theory in Condensed Matter Physics - An Introduction (Hardcover)
Henrik Bruus, Karsten Flensberg
R2,434 Discovery Miles 24 340 Ships in 10 - 15 working days

This book is an introduction to the techniques of many-body quantum theory with a large number of applications to condensed matter physics. The basic idea of the book is to provide a self-contained formulation of the theoretical framework without losing mathematical rigor, while at the same time providing physical motivation and examples. The examples are taken from applications in electron systems and transport theory.
On the formal side, the book covers an introduction to second quantization, many-body Green's function, finite temperature Feynman diagrams and bosonization. The applications include traditional transport theory in bulk as well as mesoscopic systems, where both the Landau-Buttiker formalism and recent developments in correlated transport phenomena in mesoscopic systems and nano-structures are covered. Other topics include interacting electron gases, plasmons, electron-phonon interactions, superconductivity and a final chapter on one-dimensional systems where a detailed treatment of Luttinger liquid theory and bosonization techniques is given. Having grown out of a set of lecture notes, and containing many pedagogical exercises, this book is designed as a textbook for an advanced undergraduate or graduate course, and is also well suited for self-study.

Quantum Nanochemistry - Five Volume Set (Hardcover): Mihai V. Putz Quantum Nanochemistry - Five Volume Set (Hardcover)
Mihai V. Putz
R21,790 Discovery Miles 217 900 Ships in 10 - 15 working days

This new 5-volume set presents in a balanced yet progressive manner the fundamental and advanced concepts, principles, and models of quanta, atoms, molecules, solids, and crystal and chemical-biological interaction in cells. It also addresses the first and novel combinations and applications in modeling complex natural or designed phenomena. These new volumes by Dr. Putz embrace the best knowledge at the dawn of the twenty-first century of chemical bonding approaches while further advancing the chemical bonding approaches through the author's own progressive vision, which highlights the concept of bosonic-bondon in artificial chemistry. The author approaches the systematics of atoms-in-molecule progressive modeling, in relation to chemical reactivity indices that are rooted in the electronegativity and chemical hardness prime chemical descriptors, with a refreshing and fruitful perspective. He considers the influence of chemical bonding and extends that to chemical-biological interaction in cells and organisms toward recording the biological activity. He covers the relevant connections with chemistry and atomic/molecular structures for the constituent particles/nodes in crystals and solids, including the hot topic of the propagation of defects on graphenes. The work is rigorously, thoughtfully, and analytically presented, with a flexible, instructive, and creative physical-chemical style of presentation and should be well understood by both physical and chemical communities in the nanosciences fields. These volumes will help to stimulate the creative power of the reader interested not just in knowing and understanding nature through the eyes of quantum theory but also in using the necessary know-how to predict and drive the quantum information, coined the nano-scale systems. The multi-volume book uniquely features: A multi-level unitary approach (atoms, molecules, solids, and chemical-biological interaction in an interrelated conceptual and applicative presentation) Fresh quantum views and models of atomic stability and molecular reactivity A new theory of chemical bonding by bosonic-bondons The first path integral applications in quantum chemistry The first bondonic analysis for the graphenic topological defects The volume largely achieves the Organization for Economic and Co-operation Development's (OECD) Quantitative Structure Activity Relationship (QSAR) fifth commandment ensuring mechanistically describing the chemical-biological interaction by prime structural causes-in short, explaining biological activity by chemical reactivity.

Structure and Reactivity of Metals in Zeolite Materials (Hardcover, 1st ed. 2018): Joaquin Perez Pariente, Manuel... Structure and Reactivity of Metals in Zeolite Materials (Hardcover, 1st ed. 2018)
Joaquin Perez Pariente, Manuel Sanchez-Sanchez
R7,669 Discovery Miles 76 690 Ships in 18 - 22 working days

This volume provides the reader with the most up-to-date and relevant knowledge on the reactivity of metals located in zeolite materials, either in framework or extra-framework positions, and the way it is connected with the nature of the chemical environment provided by the host. Since the first report of the isomorphous substitution of titanium in the framework of zeolites giving rise to materials with unusual catalytic properties, the incorporation of many other metals have been investigated with the aim for developing catalysts with improved performance in different reactions. The continuous expansion of the field, both in the variety of metals and zeolite structures, has been accompanied by an increasing focus on the relationship between the reactivity of metal centers and their unique chemical environment. The concepts covered in this volume are of interest to people working in the field of inorganic and physical chemistry, catalysis and chemical engineering, but also for those more interested in theoretical approaches to chemical reactivity. In particular the volume is useful to postgraduate students conducting research in the design, synthesis and catalytic performance of metal-containing zeolites in both academic and application contexts.

Stochastic Energetics (Hardcover, 2010 ed.): Ken Sekimoto Stochastic Energetics (Hardcover, 2010 ed.)
Ken Sekimoto
R2,387 Discovery Miles 23 870 Ships in 10 - 15 working days

Stochastic Energetics by now commonly designates the emerging field that bridges the gap between stochastic dynamical processes and thermodynamics.

Triggered by the vast improvements in spatio-temporal resolution in nanotechnology, stochastic energetics develops a framework for quantifying individual realizations of a stochastic process on the mesoscopic scale of thermal fluctuations.

This is needed to answer such novel questions as:

Can one cool a drop of water by agitating an immersed nano-particle?

How does heat flow if a Brownian particle pulls a polymer chain?

Can one measure the free-energy of a system through a single realization of the associated stochastic process?

This book will take the reader gradually from the basics to the applications: Part I provides the necessary background from stochastic dynamics (Langevin, master equation), Part II introduces how stochastic energetics describes such basic notions as heat and work on the mesoscopic scale, Part III details several applications, such as control and detection processes, as well as free-energy transducers.

It aims in particular at researchers and graduate students working in the fields of nanoscience and technology.

Effects of Nanoconfinement on Catalysis (Hardcover, 1st ed. 2017): Rinaldo Poli Effects of Nanoconfinement on Catalysis (Hardcover, 1st ed. 2017)
Rinaldo Poli
R4,343 Discovery Miles 43 430 Ships in 10 - 15 working days

This book highlights the recent advances and state of the art in the use of functionalized nanostructured environments on catalysis. Nanoconfinements considered include well-defined molecular cages, imprinted self-assembled supramolecules, polymers made by living or controlled polymerization, metallorganic frameworks, carbon nanotubes, mesoporous inorganic solids, and hybrids thereof. Advantages of nanoconfinement of catalysts discussed include higher activities, improved selectivities, catalyst stabilization, cooperativity effects, simplified protocols for cascade syntheses, better catalyst recovery, and recyclability. The multiple applications that these materials offer are revolutionizing industrial sectors such as energy, electronics, sensors, biomedicine, and separation technology.

Multipole Theory in Electromagnetism - Classical, quantum, and symmetry aspects, with applications (Hardcover, New): Roger E.... Multipole Theory in Electromagnetism - Classical, quantum, and symmetry aspects, with applications (Hardcover, New)
Roger E. Raab, Owen L. de Lange
R6,106 Discovery Miles 61 060 Ships in 10 - 15 working days

This book provides an introduction to the classical, quantum and symmetry aspects of multipole theory, demonstrating the successes of the theory and also its unphysical aspects. It presents a transformation theory, which removes these unphysical properties. The book will be of interest to physics students wishing to advance their knowledge of multipole theory, and also a useful reference work for molecular and optical physicists, theoretical chemists working on multipole effects, solid state physicists studying the effects of electromagnetic fields on condensed matter, engineers and applied mathematicians with interests in anisotrpoic materials. An interesting recent development has been the increasing use of computer calculations in applications of multipole theory. The book should assist computational physicists and chemists wishing to work in this area to acquire the necessary background in multipole theory.

Investigation of Reactions Involving Pentacoordinate Intermediates - The Mechanism of the Wittig Reaction (Hardcover, 2012... Investigation of Reactions Involving Pentacoordinate Intermediates - The Mechanism of the Wittig Reaction (Hardcover, 2012 ed.)
Peter A. Byrne
R2,669 Discovery Miles 26 690 Ships in 18 - 22 working days

In this thesis, the author outlines the discovery of an effect common to representative examples of all Li salt-free Wittig Reactions. The implications of such a universally applicable effect are that all such Wittig reactions occur through the same mechanism. Although the Wittig reaction was first discovered in 1953, its reaction mechanism has never been definitively settled with many different variants proposed and disproved. The work in this thesis shows conclusively that for [2+2] cycloadditions all Wittig reactions occur by the same irreversible mechanism. In addition, the author also describes a new chromatography-free method for the removal of phosphine oxide from the alkene crude product of the Wittig reaction. The work in this thesis has led to several publications in high-profile journals.

Surface  Tension and Related Thermodynamic Quantities of Aqueous Electrolyte Solutions (Hardcover, New): Norihiro Matubayasi Surface Tension and Related Thermodynamic Quantities of Aqueous Electrolyte Solutions (Hardcover, New)
Norihiro Matubayasi
R5,482 Discovery Miles 54 820 Ships in 10 - 15 working days

Surface tension provides a thermodynamic avenue for analyzing systems in equilibrium and formulating phenomenological explanations for the behavior of constituent molecules in the surface region. While there are extensive experimental observations and established ideas regarding desorption of ions from the surfaces of aqueous salt solutions, a more successful discussion of the theory has recently emerged, which allows the quantitative calculation of the distribution of ions in the surface region. Surface Tension and Related Thermodynamic Quantities of Aqueous Electrolyte Solutions provides a detailed and systematic analysis of the properties of ions at the air/water interface. Unifying older and newer theories and measurements, this book emphasizes the contributions of simple ions to surface tension behavior, and the practical consequences. It begins with a general discussion on Gibbs surface thermodynamics, offering a guide to his theoretical insight and formulation of the boundary between fluids. The text then discusses the thermodynamic formulae that are useful for practical experimental work in the analysis of fluid/fluid interfaces. Chapters cover surface tension of pure water at air/water and air/oil interfaces, surface tension of solutions and the thermodynamic quantities associated with the adsorption and desorption of solutes, and surface tension of simple salt solutions. They also address adsorption of ions at the air/water interface, surface tension of solutions and the effect of temperature, adsorption from mixed electrolyte solutions, and thermodynamic properties of zwitterionic amino acids in the surface region. Focusing on the thermodynamic properties of ions at air/fluid interfaces, this book gives scientists a quantitative, rigorous, and objectively experimental methodology they can employ in their research.

Modern Charge-Density Analysis (Hardcover, 2012): Carlo Gatti, Piero Macchi Modern Charge-Density Analysis (Hardcover, 2012)
Carlo Gatti, Piero Macchi
R7,799 Discovery Miles 77 990 Ships in 18 - 22 working days

"Modern Charge-Density Analysis" focuses on state-of-the-art methods and applications of electron-density analysis. It is a field traditionally associated with understanding chemical bonding and the electrostatic properties of matter. Recently, it has also been related to predictions of properties and responses of materials (having an organic, inorganic or hybrid nature as in modern materials and bio-science, and used for functional devices or biomaterials).

"Modern Charge-Density Analysis" is inherently multidisciplinary and written for chemists, physicists, crystallographers, material scientists, and biochemists alike. It serves as a useful tool for scientists already working in the field by providing them with a unified view of the multifaceted charge-density world. Additionally, this volume facilitates the understanding of scientists and PhD students planning to enter the field by acquainting them with the most significant and promising developments in this arena.

Scientific Modeling and Simulations (Hardcover): Sidney Yip, Tomas Diaz Rubia Scientific Modeling and Simulations (Hardcover)
Sidney Yip, Tomas Diaz Rubia
R2,725 Discovery Miles 27 250 Ships in 18 - 22 working days

The conceptualization of a problem (modeling) and the computational solution of this problem (simulation), is the foundation of Computational Science. This coupled endeavor is unique in several respects. It allows practically any complex system to be analyzed with predictive capability by invoking the multiscale paradigm linking unit-process models at lower length (or time) scales where fundamental principles have been established to calculations at the system level.

The community of multiscale materials modeling has evolved into a multidisciplinary group with a number of identified problem areas of interest. Sidney Yip and Tomas Diaz De La Rubia, the editors of this volume, have gathered 18 contributions that showcase the conceptual advantages of modeling which, coupled with the unprecedented computing power through simulations, allow scientists to tackle the formibable problems of our society, such as the search for hydrocarbons, understanding the structure of a virus, or the intersection between simulations and real data in extreme environments.

Scientific Modeling and Simulations advocates the scientific virtues of modeling and simulation, and also encourages the cross fertilization between communities, exploitations of high-performance computing, and experiment-simulation synergies.

The contents of this book were previously published in Scientific Modeling and Simulations, Vol 15, No. 1-3, 2008.

"

Entropies of Condensed Phases and Complex Systems - A First Principles Approach (Hardcover, 2011 ed.): Christian Spickermann Entropies of Condensed Phases and Complex Systems - A First Principles Approach (Hardcover, 2011 ed.)
Christian Spickermann
R2,676 Discovery Miles 26 760 Ships in 18 - 22 working days

Predicting thermodynamic quantities for chemically realistic systems on the basis of atomistic calculations is still, even today, a nontrivial task. Nonetheless, accurate treatment of inter-particle interactions, in terms of quantum chemical first principles methods, is a prerequisite for many applications, because of the complexity of both reactants and solvents in modern molecular sciences. Currently, a straightforward calculation of thermodynamic properties from these methods is only possible for high-temperature and low- density systems. Although the enthalpy of a system can often be predicted to a good level of precision with this ideal gas approach, calculating the entropy contribution to the free energy is problematic, especially as the density of the system increases. This thesis contains a compact and coherent introduction of basic theoretical features. The foundations are then laid for the development of approaches suitable for calculation of condensed phase entropies on the basis of well-established quantum chemical methods. The main emphasis of this work is on realistic systems in solution, which is the most important environment for chemical synthesis. The presented results demonstrate how isolated molecular concepts typically employed in modern quantum chemistry can be extended for the accurate determination of thermodynamic properties by means of scale- transferring approaches.

Complex Hamiltonian Dynamics (Hardcover, 2012 ed.): Tassos Bountis, Haris Skokos Complex Hamiltonian Dynamics (Hardcover, 2012 ed.)
Tassos Bountis, Haris Skokos
R1,432 Discovery Miles 14 320 Ships in 18 - 22 working days

This book introduces and explores modern developments in the well established field of Hamiltonian dynamical systems. It focuses on high degree-of-freedom systems and the transitional regimes between regular and chaotic motion. The role of nonlinear normal modes is highlighted and the importance of low-dimensional tori in the resolution of the famous FPU paradox is emphasized. Novel powerful numerical methods are used to study localization phenomena and distinguish order from strongly and weakly chaotic regimes. The emerging hierarchy of complex structures in such regimes gives rise to particularly long-lived patterns and phenomena called quasi-stationary states, which are explored in particular in the concrete setting of one-dimensional Hamiltonian lattices and physical applications in condensed matter systems. The self-contained and pedagogical approach is blended with a unique balance between mathematical rigor, physics insights and concrete applications. End of chapter exercises and (more demanding) research oriented problems provide many opportunities to deepen the reader 's insights into specific aspects of the subject matter.Addressing a broad audience of graduate students, theoretical physicists and applied mathematicians, this text combines the benefits of a reference work with those of a self-study guide for newcomers to the field.

Energy Transfer Dynamics in Biomaterial Systems (Hardcover, 2009 ed.): Irene Burghardt, V. May, David A. Micha, E. R. Bittner Energy Transfer Dynamics in Biomaterial Systems (Hardcover, 2009 ed.)
Irene Burghardt, V. May, David A. Micha, E. R. Bittner
R4,108 Discovery Miles 41 080 Ships in 18 - 22 working days

The role of quantum coherence in promoting the e ciency of the initial stages of photosynthesis is an open and intriguing question. Lee, Cheng, and Fleming, Science 316, 1462 (2007) The understanding and design of functional biomaterials is one of today's grand challenge areas that has sparked an intense exchange between biology, materials sciences, electronics, and various other disciplines. Many new - velopments are underway in organic photovoltaics, molecular electronics, and biomimetic research involving, e. g. , arti cal light-harvesting systems inspired by photosynthesis, along with a host of other concepts and device applications. In fact, materials scientists may well be advised to take advantage of Nature's 3. 8 billion year head-start in designing new materials for light-harvesting and electro-optical applications. Since many of these developments reach into the molecular domain, the - derstanding of nano-structured functional materials equally necessitates f- damental aspects of molecular physics, chemistry, and biology. The elementary energy and charge transfer processes bear much similarity to the molecular phenomena that have been revealed in unprecedented detail by ultrafast op- cal spectroscopies. Indeed, these spectroscopies, which were initially developed and applied for the study of small molecular species, have already evolved into an invaluable tool to monitor ultrafast dynamics in complex biological and materials systems. The molecular-level phenomena in question are often of intrinsically quantum mechanical character, and involve tunneling, non-Born- Oppenheimer e ects, and quantum-mechanical phase coherence.

Design and Applications of Nanomaterials for Sensors (Hardcover, 2014 ed.): Jorge M. Seminario Design and Applications of Nanomaterials for Sensors (Hardcover, 2014 ed.)
Jorge M. Seminario
R5,824 R4,692 Discovery Miles 46 920 Save R1,132 (19%) Ships in 10 - 15 working days

Design and Applications of Nano materials for Sensors begins with an introductory contribution by the editors that: gives an overview of the present state of computational and theoretical methods for nanotechnology; outlines hot topics in this field and points to expected developments in the near future. This general introduction is followed by 15-30 review chapters by invited experts who have substantially contributed to the recent developments of nano materials for sensors.

Guided by molecular and quantum theories, this contributed volume gives a broad picture of the current and past advances that were necessary to develop nano sensors using nano materials. To illustrate the important and relevant applications of nano materials, Design and Applications of Nano materials for Sensors focuses on recent advances that extend the scope of possible applications of the theory, improve the accuracy with respect to experimentation and reduce the cost of these calculations. This volume also features new applications of theoretical chemistry methods to problems of recent general interest in nanotechnology whereby large computational experiments are now necessary.

Molecular Symmetry and Group Theory (Paperback, New): R.L. Carter Molecular Symmetry and Group Theory (Paperback, New)
R.L. Carter
R3,614 Discovery Miles 36 140 Ships in 18 - 22 working days

A Thorough But Understandable Introduction To Molecular Symmetry And Group Theory As Applied To Chemical Problems! In a friendly, easy-to-understand style, this new book invites the reader to discover by example the power of symmetry arguments for understanding theoretical problems in chemistry. The author shows the evolution of ideas and demonstrates the centrality of symmetry and group theory to a complete understanding of the theory of structure and bonding. Plus, the book offers explicit demonstrations of the most effective techniques for applying group theory to chemical problems, including the tabular method of reducing representations and the use of group-subgroup relationships for dealing with infinite-order groups. Also Available From Wiley:
* Concepts and Models of Inorganic Chemistry, 3/E, by Bodie E. Douglas, Darl H. McDaniel, and John J. Alexander 0-471-62978-2
* Basic Inorganic Chemistry, 3/E, by F. Albert Cotton, Paul Gaus, and Geoffrey Wilkinson 0-471-50532-3

Conceptual Trends in Quantum Chemistry (Hardcover): Eugene S. Kryachko, Jean-Louis Calais Conceptual Trends in Quantum Chemistry (Hardcover)
Eugene S. Kryachko, Jean-Louis Calais
R2,435 Discovery Miles 24 350 Ships in 18 - 22 working days

This volume contains nine contributions, from leading scientists, which embrace the fundamentals of various aspects of the conceptual development of quantum chemistry. Topics dealt with include the behaviour of molecules in magnetic fields, the long-standing problem of the decoupling of nuclear from electron motion in molecules, the status of density functional theory, and the string model of chemical reactions. Insights into basic concepts are also presented, such as the nature of chemical bonding and molecular structure and the quantum mechanical problem of the phase space. Trends in the mathematical base of quantum chemistry, such as the methods of hyperspherical harmonics and of the wavelet transform are discussed. This work should be useful for researchers and graduate students of quantum and theoretical chemistry, quantum mechanics and chemical physics.

Algebraic Methods in Quantum Chemistry and Physics (Hardcover): E.A. Castro, Francisco M. Fernandez Algebraic Methods in Quantum Chemistry and Physics (Hardcover)
E.A. Castro, Francisco M. Fernandez
R9,867 Discovery Miles 98 670 Ships in 10 - 15 working days

Algebraic Methods in Quantum Chemistry and Physics provides straightforward presentations of selected topics in theoretical chemistry and physics, including Lie algebras and their applications, harmonic oscillators, bilinear oscillators, perturbation theory, numerical solutions of the Schrödinger equation, and parameterizations of the time-evolution operator.
The mathematical tools described in this book are presented in a manner that clearly illustrates their application to problems arising in theoretical chemistry and physics. The application techniques are carefully explained with step-by-step instructions that are easy to follow, and the results are organized to facilitate both manual and numerical calculations.

Algebraic Methods in Quantum Chemistry and Physics demonstrates how to obtain useful analytical results with elementary algebra and calculus and an understanding of basic quantum chemistry and physics.

Quantum Chemistry (Hardcover): M. S. Prasada Rao Quantum Chemistry (Hardcover)
M. S. Prasada Rao
R4,065 Discovery Miles 40 650 Ships in 10 - 15 working days

Quantum Chemistry provides a coherent and structured approach in introducing the concept of 'quantum' to the students of quantum mechanics. An attempt is made to bring out the subtleties of quantum mechanics, hidden in its abstract laws and equations, applicable to the atomic domain by showing its relevance to the observable macroscopic world as well. The book will help students dispel the stigma associated with quantum mechanics. The emphasis on conceptual approach provides a platform to stand on, and a stimulus to pursue higher quantum mechanics-the doorway to the all-pervasive quantum world. Print edition not for sale in South Asia (India, Sri Lanka, Nepal, Bangladesh, Pakistan or Bhutan).

Nuclear Magnetic Shielding and Molecular Structure - Proceedings of the NATO ARW on 'The Calculation of NMR Shielding... Nuclear Magnetic Shielding and Molecular Structure - Proceedings of the NATO ARW on 'The Calculation of NMR Shielding Constants and Their Use in the Determination of the Geometric and Electronic Structures of Molecules and Solids', College Park, MD, U.S.A., July 20-24, 1992 (Hardcover)
John A. Tossell
R2,490 Discovery Miles 24 900 Ships in 10 - 15 working days

Modern approaches to the theoretical computation and experimental determination of NMR shielding tensors are described in 29 papers based on lectures presented at the NATO ARW. All of the most popular computational methods are reviewed and recent progress is described in their application to chemical, biochemical, geochemical and materials science problems. Experimental studies on NMR shieldings in gases, liquids and solids are also included, with special emphasis placed upon the relationship between NMR shielding and geometric structure and upon tests of the accuracy of the various computational methods. Qualitative MO schemes and semi-empirical approaches are also considered in the light of the computational results. This should be a valuable book for anyone interested in how the NMR shielding tensor can be used to determine the geometric and electronic structures of molecules and solids.

Thermodynamic Properties Of Isomerization Reactions (Hardcover): M.L. Frenkel Thermodynamic Properties Of Isomerization Reactions (Hardcover)
M.L. Frenkel
R8,168 Discovery Miles 81 680 Ships in 10 - 15 working days

In handbook form, this reference monograph provides both experimental and theoretical data describing thermodynamic properties of groups of isomers of different classes, particularly for organic compound reactions. Data have been derived through chemical equilibria studies, statistical thermodynamics, and to some degree, calorimetry. Data based on equilibria studies are also valuable as a cross-check to thermodynamic functions derived purely from calorimetric measurements.

Relativistic Effects in Chemistry - Theory and Techniques Part A (Hardcover, Part A): K. Balasubramanian Relativistic Effects in Chemistry - Theory and Techniques Part A (Hardcover, Part A)
K. Balasubramanian
R5,668 Discovery Miles 56 680 Ships in 18 - 22 working days

E = mc2 and the Periodic Table . . .
RELATIVISTIC EFFECTS IN CHEMISTRY
This century's most famous equation, Einstein's special theory of relativity, transformed our comprehension of the nature of time and matter. Today, making use of the theory in a relativistic analysis of heavy molecules, that is, computing the properties and nature of electrons, is the work of chemists intent on exploring the mysteries of minute particles.
The first work of its kind, Relativistic Effects in Chemistry details the computational and analytical methods used in studying the relativistic effects in chemical bonding as well as the spectroscopic properties of molecules containing very heavy atoms. The first of two independent volumes, Part A: Theory and Techniques describes the basic techniques of relativistic quantum chemistry. Its systematic five-part format begins with a detailed exposition of Einstein's special theory of relativity, the significance of relativity in chemistry, and the nature of relativistic effects, especially with molecules containing both main group atoms and transition metal atoms.
Chapter 3 discusses the fundamentals of relativistic quantum mechanics starting from the Klein-Gordon equation through such advanced constructs as the Breit-Pauli and Dirac multielectron Hamiltonian. Modern computational techniques, of importance with problems involving very heavy molecules, are outlined in Chapter 4. These include the relativistic effective core potentials, ab initio CASSCF, CI, and RCI techniques. Chapter 5 describes relativistic symmetry using the double group symmetry of molecules and the classification of relativistic electronic states and is of special importanceto chemists or spectroscopists interested in computing or analyzing electronic states of molecules containing very heavy atoms.
An exceptional introduction to one of chemistry's foremost analytical techniques, Relativistic Effects in Chemistry is also evidence of the still unending reverberations of Einstein's revolutionary theory.

Quantum Chemistry - An Introduction (Paperback): Michael Springborg, Meijuan Zhou Quantum Chemistry - An Introduction (Paperback)
Michael Springborg, Meijuan Zhou
R2,097 R1,679 Discovery Miles 16 790 Save R418 (20%) Ships in 18 - 22 working days

This textbook introduces the reader to quantum theory and quantum chemistry. The textbook is meant for 2nd - 3rd year bachelor students of chemistry or physics, but also for students of related disciplines like materials science, pharmacy, and bioinformatics. At first, quantum theory is introduced, starting with experimental results that made it inevitable to go beyond classical physics. Subsequently, the Schroedinger equation is discussed in some detail. Some few examples for which the Schroedinger equation can be solved exactly are treated with special emphasis on relating the results to real systems and interpreting the mathematical results in terms of experimental observations. Ultimately, approximate methods are presented that are used when applying quantum theory in the field of quantum chemistry for the study of real systems like atoms, molecules, and crystals. Both the foundations for the different methods and a broader range of examples of their applications are presented. The textbook assumes no prior knowledge in quantum theory. Moreover, special emphasis is put on interpreting the mathematical results and less on an exact mathematical derivations of those. Finally, each chapter closes with a number of questions and exercises that help in focusing on the main results of the chapter. Many of the exercises include answers.

Principles of Quantum Mechanics - As Applied to Chemistry and Chemical Physics (Paperback): Donald D. Fitts Principles of Quantum Mechanics - As Applied to Chemistry and Chemical Physics (Paperback)
Donald D. Fitts
R2,729 Discovery Miles 27 290 Ships in 9 - 17 working days

Quantum behavior encompasses a large fraction of modern science and technology, including the laws of chemistry and the properties of crystals, semiconductors, and superfluids. This graduate-level text presents the basic principles of quantum mechanics using modern mathematical techniques and theoretical concepts, such as hermitian operators, Hilbert space, Dirac notation, and ladder operators. The first two chapters serve as an introduction to quantum theory with a discussion of wave motion and Schrödinger's wave mechanics. Coverage then details the fundamental principles of quantum mechanics. Throughout, basic theory is clearly illustrated and applied to the harmonic oscillator, angular momentum, the hydrogen atom, the variation method, perturbation theory, and nuclear motion. This volume is the ideal textbook for beginning graduate students in chemistry, chemical physics, molecular physics and materials science.

Current Challenges on Large Supramolecular Assemblies - Proceedings of the NATO Advanced Research Workshop, Athens, Greece, 31... Current Challenges on Large Supramolecular Assemblies - Proceedings of the NATO Advanced Research Workshop, Athens, Greece, 31 October-5 November 1997 (Hardcover)
Georges Tsoucaris
R2,462 Discovery Miles 24 620 Ships in 10 - 15 working days

There have been several recent breakthroughs in the supramolecular domain: larger molecular components are being synthesized; 2D layers involving multiple recognition sites; crystals with intricate building blocks are being designed; more components are being used in assembly and self-assembly "algorithms" (some having molecular weights as high as 15,000); and there is an increasing versatility in applications. The difficulty in characterizing and obtaining structural information on such large assemblies has increased to such a level that no single technique is now adequate. Various methods have now been upgraded and are being combined: X-ray diffraction (structures with hundreds of independent atoms), NMR, AFM/STM (manipulation of a single molecule), FAB/MS, time-resolved techniques up to the picosecond range, new computational approaches, and others. The present book aims to shed light on the most recent developments in both the synthesis of novel assemblies and on current methods for their characterization.

Structures and Conformations of Non-rigid Molecules - Proceedings of the NATO Advanced Research Workshop, Reisenburg, Germany,... Structures and Conformations of Non-rigid Molecules - Proceedings of the NATO Advanced Research Workshop, Reisenburg, Germany, September 6-10, 1992 (Hardcover)
Jaan Laane, Etc
R2,497 Discovery Miles 24 970 Ships in 10 - 15 working days

From the beginnings of modern chemistry, molecular structure has been a lively area of research and speculation. For more than half a century spectroscopy and other methods have been available to characterize the structures and shapes of molecules, particularly those that are rigid. However, most molecules are at least to some degree non-rigid and this non-rigidity plays an important role in such diverse areas as biological activity, energy transfer, and chemical reactivity. In addition, the large-amplitude vibrations present in non-rigid molecules give rise to unusual low-energy vibrational level patterns which have a dramatic effect on the thermodynamic properties of these systems. Only in recent years has a coherent picture of the energetics and dynamics of the conformational changes inherent in non-rigid (and semi-rigid) molecules begun to emerge. Advances have been made in a number of different experimental areas: vibrational (infrared and Raman) spectroscopy, rotational (microwave) spectroscopy, electron diffraction, and, most recently, laser techniques probing both the ground and excited electronic states. Theoretically, the proliferation of powerful computers coupled with scientific insight has allowed both empirical and ab initio methods to increase our understanding of the forces responsible for the structures and energies of non-rigid systems. The development of theory (group theoretical methods and potential energy surfaces) to understand the unique characteristics of the spectra of these floppy molecules has also been necessary to reach our present level of understanding. The thirty chapters in this volume contributed by the key speakers at the Workshop are divided over the various areas. Both vibrational and rotational spectroscopy have been effective at determining the potential energy surfaces for non-rigid molecules, often in a complementary manner. Recent laser fluorescence work has extended these types of studies to electronic excited states. Electronic diffraction methods provide radial distribution functions from which both molecular structures and compositions of conformational mixtures can be found. Ab initio calculations have progressed substantially over the past few years, and, when carried out at a sufficiently high level, can accurately reproduce (or predict ahead of time) experimental findings. Much of the controversy of the ARW related to the question of when an ab initio is reliable. Since the computer programs are readily available, many poor calculations have been carried out. However, excellent results can be obtained from computations when properly done. A similar situation exists for experimental analyses. The complexities of non-rigid molecules are many, but major strides have been taken to understand their structures and conformational processes.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Advances in Quantum Chemistry, Volume 84
Erkki J. Brandas Hardcover R5,923 Discovery Miles 59 230
Building and Maintaining Award-Winning…
Matthew J. Mio, Mark a. Benvenuto Hardcover R4,011 Discovery Miles 40 110
Schrodinger In Oxford
David Charles Clary Hardcover R2,407 Discovery Miles 24 070
Frontiers in Molecular Design and…
Rachelle J. Bienstock, Veerabahu Shanmugasundaram, … Hardcover R4,846 Discovery Miles 48 460
Advances in Quantum Chemistry, Volume 70
John R. Sabin, Erkki J. Brandas Hardcover R5,285 Discovery Miles 52 850
Quantum Chemistry in the Age of Machine…
Pavlo O. Dral Paperback R4,302 Discovery Miles 43 020
Pioneers of Quantum Chemistry
E. Thomas Strom, Angela K. Wilson Hardcover R5,475 Discovery Miles 54 750
Annual Reports on Computational…
David A Dixon Hardcover R5,566 Discovery Miles 55 660
Finite Element and Boundary Element…
Ramdas Ram-Mohan Hardcover R3,163 Discovery Miles 31 630
Quantum Theory for Chemical Applications…
Jochen Autschbach Hardcover R2,071 Discovery Miles 20 710

 

Partners