![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Physical chemistry > Quantum & theoretical chemistry
Written chemical formulas, such as C2H6O, can tell us the constituent atoms a molecule contains but they cannot differentiate between the possible geometrical arrangements (isomers) of these models. Yet the chemical properties of different isomers can vary hugely. Therefore, to understand the world of chemistry we need to ask what kind of isomers can be produced from a given atomic composition, how are isomers converted into each other, how do they decompose into smaller pieces, and how can they be made from smaller pieces? The answers to these questions will help us to discover new chemistry and new molecules. A potential energy surface (PES) describes a system, such as a molecule, based on geometrical parameters. The mathematical properties of the PES can be used to calculate probable isomer structures as well as how they are formed and how they might behave. Exploration on Quantum Chemical Potential Energy Surfaces focuses on the PES search based on quantum chemical calculations. It describes how to explore the chemical world on PES, discusses fundamental methods and specific techniques developed for efficient exploration on PES, and demonstrates several examples of the PES search for chemical structures and reaction routes.
What Arieh Warshel and fellow 2013 Nobel laureates Michael Levitt and Martin Karplus achieved - beginning in the late 1960s and early 1970s when computers were still very primitive - was the creation of methods and programs that describe the action of biological molecules by 'multiscale models'. In this book, Warshel describes this fascinating, half-century journey to the apex of science.From Kibbutz Fishponds to The Nobel Prize is as much an autobiography as an advocacy for the emerging field of computational science. We follow Warshel through pivotal moments of his life, from his formative years in war-torn Israel in an idealistic kibbutz that did not encourage academic education; to his time in the army and his move to the Technion where he started in his obsession of understanding the catalytic power of enzymes; to his eventual scientific career which took him to the Weizmann Institute, Harvard University, Medical Research Council, and finally University of Southern California. We read about his unique contributions to the elucidation of the molecular basis of biological functions, which are combined with instructive stories about his persistence in advancing ideas that contradict the current dogma, and the nature of his scientific struggle for recognition, both personal and for the field to which he devoted his life. This is, in so many ways, more than just a memoir: it is a profoundly inspirational tale of one man's odyssey from a kibbutz that did not allow him to go to a university to the pinnacle of the scientific world, highlighting that the correct mixture of persistence, talent and luck can lead to a Nobel Prize.
Chemical modelling covers a wide range of disciplines and this book is the first stop for any materials scientist, biochemist, chemist or molecular physicist wishing to acquaint themselves with major developments in the applications and theory of chemical modelling. Containing both comprehensive and critical reviews, it is a convenient reference to the current literature. Coverage includes, but is not limited to, isomerism in polyoxometalate chemistry, modelling molecular magnets, molecular modelling of cyclodextrin inclusion complexes and graphene nanoribbons heterojunctions.
Chemical modelling covers a wide range of disciplines, and this book is the first stop for any chemist, materials scientist, biochemist, or molecular physicist wishing to acquaint themselves with major developments in the applications and theory of chemical modelling. Containing both comprehensive and critical reviews, it is a convenient reference to the current literature. Coverage includes, but is not limited to, considerations towards rigorous foundations for the natural-orbital representation of molecular electronic transitions, quantum and classical embedding schemes for optical properties, machine learning for excited states, ultrafast and wave function-based electron dynamics, and attosecond chemistry.
Quantum mechanics - central not only to physics, but also to chemistry, materials science, and other fields - is notoriously abstract and difficult. Essential Quantum Mechanics is a uniquely concise and explanatory book that fills the gap between introductory and advanced courses, between popularizations and technical treatises. By focusing on the fundamental structure, concepts, and methods of quantum mechanics, this introductory yet sophisticated work emphasizes both physical and mathematical understanding. A modern perspective is adopted throughout - the goal, in part, being to gain entry into the world of 'real' quantum mechanics, as used by practicing scientists. With over 60 original problems, Essential Quantum Mechanics is suitable as either a text or a reference. It will be invaluable to physics students as well as chemists, electrical engineers, philosophers, and others whose work is impacted by quantum mechanics, or who simply wish to better understand this fascinating subject.
The field of relativistic electronic structure theory is generally
not part of theoretical chemistry education, and is therefore not
covered in most quantum chemistry textbooks. This is due to the
fact that only in the last two decades have we learned about the
importance of relativistic effects in the chemistry of heavy and
superheavy elements. Developments in computer hardware together
with sophisticated computer algorithms make it now possible to
perform four-component relativistic calculations for larger
molecules. Two-component and scalar all-electron relativistic
schemes are also becoming part of standard ab-initio and density
functional program packages for molecules and the solid state. The
second volume of this two-part book series is therefore devoted to
applications in this area of quantum chemistry and physics of
atoms, molecules and the solid state. Part 1 was devoted to
fundamental aspects of relativistic electronic structure theory
whereas Part 2 covers more of the applications side. This volume
opens with a section on the Chemistry of the Superheavy Elements
and contains chapters dealing with Accurate Relativistic Fock-Space
Calculations for Many-Electron Atoms, Accurate Relativistic
Calculations Including QED, Parity-Violation Effects in Molecules,
Accurate Determination of Electric Field Gradients for Heavy Atoms
and Molecules, Two-Component Relativistic Effective Core Potential
Calculations for Molecules, Relativistic Ab-Initio Model Potential
Calculations for Molecules and Embedded Clusters, Relativistic
Pseudopotential Calculations for Electronic Excited States,
Relativistic Effects on NMR Chemical Shifts, Relativistic Density
Functional Calculations on Small Molecules, Quantum Chemistry with
the Douglas-Kroll-Hess Approach to Relativistic Density Functional
Theory, and Relativistic Solid State Calculations.
Chemical Modelling: Applications and Theory comprises critical literature reviews of molecular modelling, both theoretical and applied. Molecular modelling in this context refers to modelling the structure, properties and reactions of atoms, molecules & materials. Each chapter is compiled by experts in their fields and provides a selective review of recent literature, incorporating sufficient historical perspective for the non-specialist to gain an understanding. With chemical modelling covering such a wide range of subjects, this Specialist Periodical Report serves as the first port of call to any chemist, biochemist, materials scientist or molecular physicist needing to acquaint themselves with major developments in the area. Volume 6 examines the literature published between June 2007 and May 2008
Chemical Modelling: Applications and Theory comprises critical literature reviews of all aspects of molecular modelling. Molecular modelling in this context refers to modelliing the structure, properties and reactions of atoms, molecules and materials. Each chapter provides a selective review of recent literature, incorporating sufficient historical perspective for the non-specialist to gain an understanding. With chemical modelling covering such a wide range of subjects, this Specialist Periodical Report serves as the first port of call to any chemist, biochemist, materials scientist or molecular physicist needing to acquaint themselves with major developments in the area.
This book originated out of a desire to combine topics on vibrational absorption, Raman scattering, vibrational circular dichroism (VCD) and Raman optical activity (VROA) into one source. The theoretical details of these processes are presented in ten different chapters. Using dispersive and Fourier transform techniques, the instrumentation involved in these spectral measurements are given in three chapters. Major emphasis is placed on the newer techniques, i.e. VCD and VROA, with the conventional vibrational absorption and vibrational Raman scattering methods incorporated as natural parts of the newer methods. Features of this book: Comprehensive coverage of vibrational circular dichroism and vibrational Raman optical activity. Coverage of theoretical and instrumental details. A comprehensive survey of VCD and VROA applications is included, so that the reader can get an overview of theory, instrumentation and applications in one source. The topics covered are of an advanced level, which makes this
book invaluable for graduate students and practising scientists in
vibrational spectroscopy.
This volume presents a variety of articles that encompass the broad
scope of supramolecular chemistry. Reusch's chapter covers
biological channel compounds, while the work of Hall and Kirkovits
looks into their synthetic counterparts. Metal ion sensors,
calixarenes and "crystal engineering" are described by pioneers in
these fields. This work, whilst current and authoritative, shows us
that much remains to be undertaken and understood. It is hoped that
this volume will be of interest to those who wish to fill these
gaps; scientists already in the field and those who may see
extensions of their own work that will bring them into it.
Chemical modelling covers a wide range of disciplines and with the increase in volume, velocity and variety of information, researchers can find it difficult to keep up to date with the literature in this field. This book is the first stop for any materials scientist, biochemist, chemist or molecular physicist wishing to acquaint themselves with major developments in the applications and theory of chemical modelling. Containing both comprehensive and critical reviews, its coverage includes materials for energy storage, nanoflakes, chemical modelling of fluidics near surfaces and organic solar cells.
Many new developments, related to the interpretation and importance
of symmetry relationships, quantum mechanics, general relativity,
field theory and mathematics have occurred in the second half of
the 20th century without having a visible impact on chemical
thinking. By re-examining basic theories, The New Theories for
Chemistry aims to introduce a new understanding of old concepts,
such as electron spin, The Periodic Table and electronegativity.
The book focuses on the new mathematical concepts that enable the
exploration of interactions between particles, waves and fields
within a chemical context, and is packed with examples to support
its arguments. The author adopts a practical approach and topics
are arranged sequentially, from the mathematical basis through to
general concepts. An essential reference source, this book is
suitable for physicists, theoretical and physical chemists, as well
as students and researchers working in the field.
Chemical Modelling: Applications and Theory comprises critical literature reviews of all aspects of molecular modelling. Molecular modelling in this context refers to modelliing the structure, properties and reactions of atoms, molecules and materials. Each chapter provides a selective review of recent literature, incorporating sufficient historical perspective for the non-specialist to gain an understanding. With chemical modelling covering such a wide range of subjects, this Specialist Periodical Report serves as the first port of call to any chemist, biochemist, materials scientist or molecular physicist needing to acquaint themselves with major developments in the area.
The second edition of "Elementary Molecular Quantum Mechanics"
shows the methods of molecular quantum mechanics for graduate
University students of Chemistry and Physics. This readable book
teaches in detail the mathematical methods needed to do working
applications in molecular quantum mechanics, as a preliminary step
before using commercial programmes doing quantum chemistry
calculations. This book aims to bridge the gap between the classic
Coulson s Valence, where application of wave mechanical principles
to valence theory is presented in a fully non-mathematical way, and
McWeeny s Methods of Molecular Quantum Mechanics, where recent
advances in the application of quantum mechanical methods to
molecular problems are presented at a research level in a full
mathematical way. Many examples and mathematical points are given
as problems at the end of each chapter, with a hint for their
solution. Solutions are then worked out in detail in the last
section of each Chapter.
Chemical Modelling: Applications and Theory comprises critical literature reviews of molecular modelling, both theoretical and applied. Molecular modelling in this context refers to modelling the structure, properties and reactions of atoms, molecules & materials. Each chapter is compiled by experts in their fields and provides a selective review of recent literature, incorporating sufficient historical perspective for the non-specialist to gain an understanding. With chemical modelling covering such a wide range of subjects, this Specialist Periodical Report serves as the first port of call to any chemist, biochemist, materials scientist or molecular physicist needing to acquaint themselves with major developments in the area.
This volume focuses on the use of quantum theory to understand and explain experiments in organic chemistry. High level ab initio calculations, when properly performed, are useful in making quantitative distinctions between various possible interpretations of structures, reactions and spectra. Chemical reasoning based on simpler quantum models is, however, essential to enumerating the likely possibilities. The simpler models also often suggest the type of wave function likely to be involved in ground and excited states at various points along reaction paths. This preliminary understanding is needed in order to select the appropriate higher level approach since most higher level models are designed to describe improvements to some reasonable zeroth order wave function. Consequently, most of the chapters in this volume begin with experimental facts and model functions and then progress to higher level theory only when quantitative results are required.In the first chapter, Zimmerman discusses a wide variety of thermal and photochemical reactions of organic molecules. Gronert discusses the use of ab initio calculations and experimental facts in deciphering the mechanism of -elimination reactions in the gas phase. Bettinger et al focus on carbene structures and reactions with comparison of the triplet and singlet states. Next, Hrovat and Borden discuss more general molecules with competitive triplet and singlet contenders for the ground state structure. Cave explains the difficulties and considerations involved with many of the methods and illustrates the difficulties by comparing with the UV spectra of short polyenes. Jordan et al discuss long-range electron transfer using model compounds and model Hamiltonians. Finally, Hiberty discusses the breathing orbital valence bond model as a different approach to introducing the crucial correlation that is known to be important in organic reactions.
Chemical Modelling: Applications and Theory comprises critical literature reviews of molecular modelling, both theoretical and applied. Molecular modelling in this context refers to modelling the structure, properties and reactions of atoms, molecules & materials. Each chapter is compiled by experts in their fields and provides a selective review of recent literature. With chemical modelling covering such a wide range of subjects, this Specialist Periodical Report serves as the first port of call to any chemist, biochemist, materials scientist or molecular physicist needing to acquaint themselves of major developments in the area. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis. Current subject areas covered are Amino Acids, Peptides and Proteins, Carbohydrate Chemistry, Catalysis, Chemical Modelling. Applications and Theory, Electron Paramagnetic Resonance, Nuclear Magnetic Resonance, Organometallic Chemistry. Organophosphorus Chemistry, Photochemistry and Spectroscopic Properties of Inorganic and Organometallic Compounds. From time to time, the series has altered according to the fluctuating degrees of activity in the various fields, but these volumes remain a superb reference point for researchers.
Chemical Modelling: Applications and Theory comprises critical literature reviews of molecular modelling, both theoretical and applied. Molecular modelling in this context refers to modelling the structure, properties and reactions of atoms, molecules and materials. Each chapter is compiled by experts in their fields and provides a selective review of recent literature. With chemical modelling covering such a wide range of subjects, this Specialist Periodical Report serves as the first port of call to any chemist, biochemist, materials scientist or molecular physicist needing to acquaint themselves of major developments in the area. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis. Current subject areas covered are Amino Acids, Peptides and Proteins, Carbohydrate Chemistry, Catalysis, Chemical Modelling. Applications and Theory, Electron Paramagnetic Resonance, Nuclear Magnetic Resonance, Organometallic Chemistry. Organophosphorus Chemistry, Photochemistry and Spectroscopic Properties of Inorganic and Organometallic Compounds. From time to time, the series has altered according to the fluctuating degrees of activity in the various fields, but these volumes remain a superb reference point for researchers.
What Arieh Warshel and fellow 2013 Nobel laureates Michael Levitt and Martin Karplus achieved - beginning in the late 1960s and early 1970s when computers were still very primitive - was the creation of methods and programs that describe the action of biological molecules by 'multiscale models'. In this book, Warshel describes this fascinating, half-century journey to the apex of science.From Kibbutz Fishponds to The Nobel Prize is as much an autobiography as an advocacy for the emerging field of computational science. We follow Warshel through pivotal moments of his life, from his formative years in war-torn Israel in an idealistic kibbutz that did not encourage academic education; to his time in the army and his move to the Technion where he started in his obsession of understanding the catalytic power of enzymes; to his eventual scientific career which took him to the Weizmann Institute, Harvard University, Medical Research Council, and finally University of Southern California. We read about his unique contributions to the elucidation of the molecular basis of biological functions, which are combined with instructive stories about his persistence in advancing ideas that contradict the current dogma, and the nature of his scientific struggle for recognition, both personal and for the field to which he devoted his life. This is, in so many ways, more than just a memoir: it is a profoundly inspirational tale of one man's odyssey from a kibbutz that did not allow him to go to a university to the pinnacle of the scientific world, highlighting that the correct mixture of persistence, talent and luck can lead to a Nobel Prize.
Chemical Modelling: Applications and Theory comprises critical literature reviews of molecular modelling, both theoretical and applied. Molecular modelling in this context refers to modelling the structure, properties and reactions of atoms, molecules & materials. Each chapter is compiled by experts in their fields and provides a selective review of recent literature. With chemical modelling covering such a wide range of subjects, this Specialist Periodical Report serves as the first port of call to any chemist, biochemist, materials scientist or molecular physicist needing to acquaint themselves of major developments in the area. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis. Current subject areas covered are Amino Acids, Peptides and Proteins, Carbohydrate Chemistry, Catalysis, Chemical Modelling. Applications and Theory, Electron Paramagnetic Resonance, Nuclear Magnetic Resonance, Organometallic Chemistry. Organophosphorus Chemistry, Photochemistry and Spectroscopic Properties of Inorganic and Organometallic Compounds. From time to time, the series has altered according to the fluctuating degrees of activity in the various fields, but these volumes remain a superb reference point for researchers.
The fourth edition of "Quantum Chemistry" is an updated textbook on the subject covering the model syllabi of various undergraduate and postgraduate courses. The book contains the basics of quantum mechanics and quantum mechanical laws; applications of translational, vibrational and rotational motions of sub-atomic particles; theories of harmonic oscillator and atomic structure etc. The Hartree Fock self-consistent field methods, configuration, interaction, extended Huckel theory etc. are all presented with utmost clarity and examples. The present edition contains a chapter on matrix-vector methods of quantum mechanics as well as one on density functional theory along with molecular symmetry and group theory with applications to molecular orbital treatment. Steps involved in mathematical derivations are presented in full, leaving no ambiguity. Illustrative examples and practice problems, with hints are provided in each chapter.
The study of the structure of molecular systems is an enduring area of research. This series is devoted to bringing together articles from leading workers in the field that draw together recent theoretical and experimental results and advances in understanding.
Chemical modelling covers a wide range of hot topics and active areas in computational chemistry and related fields. With the increase in volume, velocity and variety of information, researchers can find it difficult to keep up to date with the literature in these areas. Containing both comprehensive and critical reviews, this book is the first stop for any materials scientist, biochemist, chemist or molecular physicist wishing to acquaint themselves with major developments in the applications and theory of chemical modelling. |
![]() ![]() You may like...
Intelligent Control - Power Electronic…
Yasuhiko Dote, Richard G. Hoft
Hardcover
|