Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Earth & environment > Geography > Cartography, geodesy & geographic information systems (GIS) > Remote sensing
This book describes a comprehensive framework of novel simulation approaches, conventional urban models, and related data mining techniques that will help develop planning support systems in Beijing as well as other mega-metropolitan areas. It investigates the relationships between human behaviors and spatial patterns in order to simulate activities in an urban space, visualize planning alternatives, and support decision making. The book first explains urban space using geometric patterns, such as points, networks, and polygons, that help identify patterns of household and individual human behavior. Next, it details how novel simulation methodologies, such as cellular automaton and multi-agent systems, and conventional urban modeling, such as spatial interaction models, can be used to identify an optimal or a simulated solution for a better urban form. The book develops a comprehensive land use and transportation integrated model used to explore the spatial patterns of mutual interaction between human mobility and urban space. This model can help forecast the distribution of different types of households, rent prices, and land prices, as well as the distribution of routes and traffic volume based on an appraisal of labor demand and supply. This book shows how geospatial analysis can be a useful tool for planners and decision makers to help in ascertaining patterns of activities and support urban planning. Offering both novel and conventional approaches to urban modeling, it will appeal to researchers, students, and policy makers looking for the optimal way to plan the d evelopment of a mega-metropolitan area.
This book contains selected papers from participants at the 4th National Cartographic Conference GeoCart'2008, held in Auckland, New Zealand in September 2008. It provides a contribution to the literature related to contemporary Geoinformation and Cartography as part of the Springer - ries "Lecture Notes in Geoinformation and Cartography." The series aims to provide publications that highlight the research and professional acti- ties taking place in this exciting discipline area. Books published thus far cover a wide range of topics and their content reflects the diverse nature of interests of contributors in the field. The GeoCart conferences are held every two years and attract attendees from Australasia and globally. They offer a forum for reflecting on past practices, exploring future possibilities and reporting on the findings of - search undertakings. They make valuable contributions to the theory and praxis of Geoinformation and Cartography. The editors of this book, Antoni Moore, from the University of Otago, and Igor Drecki, from the University of Auckland, have provided contri- tions that fall under the categories of representation, egocentric mapping, the exploration of tangible and intangible geographical phenomena by v- ual means and Web mapping. The chapters provide valuable information from contributors that illustrate the exciting developments in the dis- pline. I applaud the efforts of the editors and authors for providing this work as an insight into their fields of activity. I hope that you find this book, from the land of the Long White Cloud, a valuable resource.
These Proceedings present selected research papers from CSNC2016, held during 18th-20th May in Changsha, China. The theme of CSNC2016 is Smart Sensing, Smart Perception. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 12 topics to match the corresponding sessions in CSNC2016, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications.
This book describes the interdisciplinary work of the United States Agency for International Development (USAID)'s Famine Early Warning Systems Network (FEWS NET) and its influence on methodological and development policies in the US. FEWS NET operational needs have driven science in biophysical remote sensing applications through its collaboration with NASA, NOAA, USGS and USDA, and socio-economic methodologies through its involvement with USAID, the United Nation's World Food Program and numerous international non-governmental organizations such as Save the Children, Oxfam and others. The book describes FEWS NET's systems, methods and presents several illustrative case studies that will demonstrate the integration of physical and social science disciplines in its work.
Initially, the role of snow and ice in the global water balance is assessed and methods of snow measurements are explained. Remote sensing is dealt with with regard to periodical snow cover mapping. Last advances and refinements refer to spatial resolution, cloud interference and separate monitoring of snow and glacier ice. Following a review of snow melt and runoff modelling, the Snowmelt Runoff Model (SRM) demonstrates the merits of remote sensing in snow hydrology by using the satellite data as a direct input variable. Applications in over 100 mountain basins around the world are documented, with surface areas ranging from 0.3 km2 to 900.000 km2. Based on runoff modelling, runoff forecasts are dealt with including seasonal and short term forecasts as well as computation of hydrographs from forecasted temperatures and precipitation. The climate change is becoming a major concern of our times. The effect of various climate scenarios on the seasonal snow cover and runoff is evaluated by the updated computer program which also enable the real-time runoff forecasts to be improved. As a final note, a method is outlined to predict the decline of glaciers in the warming climate.
Intense uplift of the Tibetan Plateau in Late Cenozoic Era is one of the most important events in geological history of the Earth. The plateau offers an ideal region for studying of lithospheric formation and evolution, probing into the mechanism of crustal movement, and understanding of changes in environments and geo-ecosystems in Asia. Intense uplift ofthe plateau resulted in drastic changes of natural environment and apparent regional differentiation on the plateau proper and neighboring regions. The plateau therefore becomes a sensitive area of climate change in Asian monsoon region, which is closely related to the global change. As a special physical unit, its ecosystems occupy a prominent position in the world. Due to its extremely high elevation and great extent, natural types and characteristics of physical landscapes on the plateau are quite different from those in lowlands at comparable latitudes, and environments are also different from those in high latitudinal zones. Consequently, the Tibetan Plateau has been classified as one of three giant physical regions in China and considered as a unique unit on Earth. Scientific surveys and expeditions to the Tibetan Plateau on large scale began from 1950's. Amongst them, a number of comprehensive scientific expeditions to the Xizang (Tibet) Autonomous Region, Hengduan Mts. areas, Karakorum and Kunlun Mts. regions, as well as the Hoh Xii Mts. areas, have been successively carried out by the Integrated Scientific Expedition to Tibetan Plateau, sponsored by Chinese Academy of Sciences since 1973."
Central Asia is a large and understudied region of varied geography, ranging from the high passes and mountains of Tian Shan, to the vast deserts of Kyzyl Kum, Taklamakan to the grassy treeles steppes. This region is faced with adverse conditions, as much of the land is too dry or rugged for farming. Additionally, the rich specific and intraspecific diversity of fruit trees and medicinal plants is threatened by overgrazing, oil and mineral extraction, and poaching. Countless species from the approximately 20 ecosystems and 6000 plant taxa are now rare and endangered. Traditional vegetation studies in this region are far from adequate to handle complex issues such as soil mass movement, soil sodicity and salinity, biodiversity conservation, and grazing management. However, data analysis using a Geographical Information System (GIS) tool provides new insights into the vegetation of this region and opens up new opportunities for long-term sustainable management. While vegetation planning can occur at a property scale, it is often necessary for certain factors, such as salinity, to be dealt with on a regional scale to ensure their effective management. GIS increases the effectiveness and accuracy of vegetation planning in a region. Such regional planning will also greatly increases biodiversity values. This book systematically explores these issues and discuses new applications and approaches for overcoming these issues, including the application of GIS techniques for sustainable management and planning. Professional researchers as well as students and teachers of agriculture and ecology will find this volume to be an integral resource for studying the vegetation of Central Asia.
Computing increasingly happens "somewhere," with that geographic
location important to the computational process itself. Many new
and evolving spatial technologies, such as geosensor networks and
smartphones, embody this trend. Conventional approaches to spatial
computing are centralized, and do not account for the inherently
decentralized nature of "computing somewhere": the limited, local
knowledge of individual system components, and the interaction
between those components at different locations. On the other hand,
despite being an established topic in distributed systems,
decentralized computing is not concerned with geographical
constraints to the generation and movement of information. In this
context, of (centralized) spatial computing and decentralized
(non-spatial) computing, the key question becomes: "What makes
decentralized spatial computing special?"
A variety of biophysical applications (e.g. leaf area index and evapotranspiration) have been derived from using remote sensing methods as for example from NASA s MODIS sensors and other satellite platforms. In Biophysical Applications of Satellite Remote Sensing the authors thoroughly describe the major applications of satellite remote sensing for studying earth's biophysical phenomena. Starting with an introductory and historical overview of the biophysical applications of satellite remote sensing the book provides a comprehensive background and reference base for researchers and newcomers to the field. The focus of the book lies on the broad palette of specific applications (metrics) of biophysical activity derived using satellite remote sensing. Each type of application is described and its use discussed in detail; this includes the theoretical background and methodology, validation efforts by using in-situ observations and major scientific findings associated with each application. With its in-depth discussions of satellite-derived biophysical metrics with an emphasis on theory, methodology, validation, major findings and directions of future research, this book provides an excellent resource for remote sensing specialists, ecologists, geographers, biologists, climatologists and environmental scientists.
With this third edition of Open Source GIS: A GRASS GIS Approach, we enter the new era of GRASS6, the first release that includes substantial new code developed by the International GRASS Development Team. The dramatic growth in open source software libraries has made the GRASS6 development more efficient, and has enhanced GRASS interoperability with a wide range of open source and proprietary geospatial tools. Thoroughly updated with material related to the GRASS6, the third edition includes new sections on attribute database management and SQL support, vector networks analysis, lidar data processing and new graphical user interfaces. All chapters were updated with numerous practical examples using the first release of a comprehensive, state-of-the-art geospatial data set. Open Source GIS: A GRASS GIS Approach (third edition) preserves the continuity of previous editions by maintaining the proven booka (TM)s structure and continues to target a professional audience composed of researchers and practitioners in government and industry as well as graduate students interested in geospatial analysis and modeling.
This book reports on developments in Proximal Soil Sensing (PSS) and high resolution digital soil mapping. PSS has become a multidisciplinary area of study that aims to develop field-based techniques for collecting information on the soil from close by, or within, the soil. Amongst others, PSS involves the use of optical, geophysical, electrochemical, mathematical and statistical methods. This volume, suitable for undergraduate course material and postgraduate research, brings together ideas and examples from those developing and using proximal sensors and high resolution digital soil maps for applications such as precision agriculture, soil contamination, archaeology, peri-urban design and high land-value applications, where there is a particular need for high spatial resolution information. The book in particular covers soil sensor sampling, proximal soil sensor development and use, sensor calibrations, prediction methods for large data sets, applications of proximal soil sensing, and high-resolution digital soil mapping. Key themes: soil sensor sampling - soil sensor calibrations - spatial prediction methods - reflectance spectroscopy - electromagnetic induction and electrical resistivity - radar and gamma radiometrics - multi-sensor platforms - high resolution digital soil mapping - applications Raphael A. Viscarra Rossel is a scientist at the Commonwealth Scientific and Industrial Research Organisation (CSIRO) of Australia. Alex McBratney is Pro-Dean and Professor of Soil Science in the Faculty of Agriculture Food & Natural Resources at the University of Sydney in Australia. Budiman Minasny is a Senior Research Fellow in the Faculty of Agriculture Food & Natural Resources at the University of Sydney in Australia.
Design and construction of pavements and railways for high speed trains is moving from merely empirical procedures towards a more mechanistic approach based on a better constructed theoretical basis. This will facilitate the use of new materials in transportation infrastructure under various climatic and traffic (load and speed) conditions. In addition, this will lead to a future challenge to implement a common framework between road, railway and geotechnical engineers. These contributions represent an excellent source of recent developments related to the design and construction of pavements, rail tracks and earth structures with emphasis placed on geotechnical background.
This book provides an extensive review of three interrelated issues: land fragmentation, land consolidation, and land reallocation, and it presents in detail the theoretical background, design, development and application of a prototype integrated planning and decision support system for land consolidation. The system integrates geographic information systems (GIS) and artificial intelligence techniques including expert systems (ES) and genetic algorithms (GAs) with multi-criteria decision methods (MCDM), both multi-attribute (MADM) and multi-objective (MODM). The system is based on four modules for measuring land fragmentation; automatically generating alternative land redistribution plans; evaluating those plans; and automatically designing the land partitioning plan. The presented research provides a new scientific framework for land-consolidation planning both in terms of theory and practice, by presenting new findings and by developing better tools and methods embedded in an integrated GIS environment. It also makes a valuable contribution to the fields of GIS and spatial planning, as it provides new methods and ideas that could be applied to improve the former for the benefit of the latter in the context of planning support systems. From the 1960s, ambitious research activities set out to observe regarding IT-support of the complex and time consuming redistribution processes within land consolidation without any practically relevant results, until now. This scientific work is likely to close that gap. This distinguished publication is highly recommended to land consolidation planning experts, researchers and academics alike. Prof. Dr.-Ing. Joachim Thomas, Munster/ Germany Prof. Michael Batty, University College London"
This is the eleventh volume in the series Light Scattering Reviews, devoted to current knowledge of light scattering problems and both experimental and theoretical research techniques related to their solution. The focus of this volume is to describe modern advances in radiative transfer and light scattering optics. This book brings together the most recent studies on light radiative transfer in the terrestrial atmosphere, while also reviewing environmental polarimetry. The book is divided into nine chapters: * the first four chapters review recent advances in modern radiative transfer theory and provide detailed descriptions of radiative transfer codes (e.g., DISORT and CRTM). Approximate solutions of integro-differential radiative transfer equations for turbid media with different shapes (spheres, cylinders, planeparallel layers) are detailed; * chapters 5 to 8 focus on studies of light scattering by single particles and radially inhomogeneous media; * the final chapter discusses the environmental polarimetry of man-made objects.
These Proceedings present selected research papers from CSNC2016, held during 18th-20th May in Changsha, China. The theme of CSNC2016 is Smart Sensing, Smart Perception. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 12 topics to match the corresponding sessions in CSNC2016, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications.
How does one determine how similar two maps are? This book aims at the theory of spatial similarity relations and its application in automated map generalization, including the definitions, classification and features of spatial similarity relations. Included also are calculation models of spatial similarity relations between arbitrary individual objects and between arbitrary object groups, and the application of the theory in the automation of the algorithms and procedures in map generalization.
The book will provide an overview of the practical application of remote sensing for the purposes of nature conservation as developed by ecologists in collaboration with remote sensing specialists, providing guidance on all phases from the planning of remote sensing projects for conservation to the interpretation and validation of the images. This book and linked activities have been selected as finalists of the European Natura 2000 award 2020.https://natura2000award-application.eu/finalist/3126
The combined observational power of the multiple earth observing satellites is currently not being harnessed holistically to produce more durable societal benefits. We are not able to take complete advantage of the prolific amount of scientific output and remote sensing data that are emerging rapidly from satellite missions and convert them quickly into decision-making products for users. The current application framework we have appears to be an analog one lacking the absorption bandwidth required to handle scientific research and the voluminous (petabyte-scale) satellite data. This book will tackle this question: "How do we change this course and take full advantage of satellite observational capability for a more sustainable, happier and safer future in the coming decades?"
This book provides an information fusion model with information fusion theory, geographic information system technology and modern mathematical methods to evaluate the risks of groundwater inrushes from aquifers underlying coal seams. In this new model, the water inrush vulnerable index was calculated with variable weights theory. It overcomes the defect of the traditional vulnerability index method that assumes constant weights for the factors controlling the water inrush. Mine water inrush events often occur during coal mine construction and production; they account for a large proportion of the nation's coal mine disasters and accidents in China. Between 2005 and 2014, 513 water inrush incidents have occurred with a total loss of 2,753 lives. As mining depths and mining intensity continue to increase, the hydrogeological conditions encountered are becoming more complex. The innovative model presented here was applied to two coal mines in China with proved better results than the traditional vulnerability index method.
These proceedings present selected research papers from CSNC 2018, held during 23rd-25th May in Harbin, China. The theme of CSNC 2018 is Location, Time of Augmentation. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 12 topics to match the corresponding sessions in CSNC 2018, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications.
* This book is an updated version of a well-received book previously published in Chinese by Science Press of China (the first edition in 2006 and the second in 2013). It offers a systematic and practical overview of spatial data mining, which combines computer science and geo-spatial information science, allowing each field to profit from the knowledge and techniques of the other. To address the spatiotemporal specialties of spatial data, the authors introduce the key concepts and algorithms of the data field, cloud model, mining view, and Deren Li methods. The data field method captures the interactions between spatial objects by diffusing the data contribution from a universe of samples to a universe of population, thereby bridging the gap between the data model and the recognition model. The cloud model is a qualitative method that utilizes quantitative numerical characters to bridge the gap between pure data and linguistic concepts. The mining view method discriminates the different requirements by using scale, hierarchy, and granularity in order to uncover the anisotropy of spatial data mining. The Deren Li method performs data preprocessing to prepare it for further knowledge discovery by selecting a weight for iteration in order to clean the observed spatial data as much as possible. In addition to the essential algorithms and techniques, the book provides application examples of spatial data mining in geographic information science and remote sensing. The practical projects include spatiotemporal video data mining for protecting public security, serial image mining on nighttime lights for assessing the severity of the Syrian Crisis, and the applications in the government project 'the Belt and Road Initiatives'.
This book explores the impact of augmenting novel architectural designs with hardware-based application accelerators. The text covers comprehensive aspects of the applications in Geographic Information Science, remote sensing and deploying Modern Accelerator Technologies (MAT) for geospatial simulations and spatiotemporal analytics. MAT in GIS applications, MAT in remotely sensed data processing and analysis, heterogeneous processors, many-core and highly multi-threaded processors and general purpose processors are also presented. This book includes case studies and closes with a chapter on future trends. Modern Accelerator Technologies for GIS is a reference book for practitioners and researchers working in geographical information systems and related fields. Advanced-level students in geography, computational science, computer science and engineering will also find this book useful.
A significant part of understanding how people use geographic information and technology concerns human cognition. This book provides the first comprehensive in-depth examination of the cognitive aspects of human-computer interaction for geographic information systems (GIS). Cognitive aspects are treated in relation to individual, group, behavioral, institutional, and cultural perspectives. Extensions of GIS in the form of spatial decision support systems and SDSS for groups are part of the geographic information technology considered. Audience: Geographic information users, systems analysts and system designers, researchers in human-computer interaction will find this book an information resource for understanding cognitive aspects of geographic information technology use, and the methods appropriate for examining this use. |
You may like...
Fundamentals of Agricultural and Field…
Manoj Karkee, Qin Zhang
Hardcover
R5,249
Discovery Miles 52 490
Geospatial Intelligence - Concepts…
Information Reso Management Association
Hardcover
R8,973
Discovery Miles 89 730
Methods and Applications of Geospatial…
Jose Antonio Tenedorio, Rossana Estanqueiro, …
Hardcover
R5,681
Discovery Miles 56 810
Geospatial Intelligence - Concepts…
Information Reso Management Association
Hardcover
R8,968
Discovery Miles 89 680
Handbook of Spatial Analysis in the…
Sergio J. Rey, Rachel S. Franklin
Hardcover
R6,947
Discovery Miles 69 470
3D Recording and Interpretation for…
Wendy Van Duivenvoorde, Trevor Winton, …
Hardcover
R1,419
Discovery Miles 14 190
|