![]() |
![]() |
Your cart is empty |
||
Books > Earth & environment > Geography > Cartography, geodesy & geographic information systems (GIS) > Remote sensing
"The PhD thesis written by Mr. Ackermann is an outstanding and in-depth scientific study that closes a research gap and paves the way to new developments. Despite the extremely complex issues, his work is very understandable and excellently elaborated." Prof. Dr. Christiane Schmullius "The PhD thesis written by Mr. Ackermann is an excellent and very comprehensive work performed at the highest scientific level. It examines in detail the potential of SAR data with regards to the derivation of forest stem volume in the temperate latitudes. The work belongs to a technically complex field. Nevertheless, Mr. Ackermann has succeeded in presenting the content in a clear and understandable way." Dr. Christian Thiel "The proposed document is overall of very good quality. Mr. Ackermann has done an exhaustive analysis of the in-situ data available on the Thuringian forest and was able to derive Growing Stocking Volume using L- and X-band spaceborne SAR data. The document is very well structured with a good split of information between the core of the text presented in the 6 chapters and the 4 annexes, which contain detailed results. Mr. Ackermann's English grammar is excellent and his syntax is crystal clear, making his document pleasant to read. The way arguments are presented is logical and Mr. Ackermann gives a lot of attention to ensuring that sound explanations properly support these arguments." Dr. Maurice Borgeaud
This volume addresses the physical foundation of remote sensing. The basic grounds are presented in close association with the kinds of environmental targets to monitor and with the observing techniques. The book aims at plugging the quite large gap between the thorough and quantitative description of electromagnetic waves interacting with the Earth's environment and the user applications of Earth observation. It is intended for scientifically literate students and professionals who plan to gain a first understanding of remote sensing data and of their information content.
"Modeling the Dynamics and Consequences of Land System Change" introduces an innovative three-tier architecture approach for modeling the dynamics and consequences of land system change. It also describes the principle, modules and the applications of the three-tier architecture model in detail. The approach holds strong potential for accurate predictions of the land use structure at the regional level, simulating the land use pattern at pixel level and evaluating the consequences of land system change. The simulation results can be used for the planning of land use, urban development, regional development, environmental protection, and also serve as valuable information for decision making concerning land management and optimal utilization of land resources. The book is intended for the researchers and professionals in land use or land systems, regional environmental change, ecological conservation, as well as the land resource administrative agencies and environmental protection agencies. Professor Xiangzheng Deng is a senior research fellow at the Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, China.
This book is based on the premise that research necessary to advance the utility of geographic informatior. systems must extend far beyond concerns with technical issues. The search for formalisms and generalizable principles relative to the behavior and needs of individuals, organizations and institutions is just as important in enabling optimal use of geographic information innovations. This book consists of papers prepared by participants in the NATO Advanced Research Workshop (ARW) on "Modeling the Diffusion and Use of Geographic Information Technologies. " The workshop was held AprilS-II, 1992, in Sounion, Greece. The idea for the workshop and this volume arose from discussions among U. S. and European researchers who had been involved in carrying out studies on the use and diffusion of geographic information innovations and actively involved in critically analyzing each other's work. We felt the time was ripe for reporting studies recently accomplished by the National Center for Geographic Information and Analysis (U. S. A. ), the Economic and Social Research Council (U. K. ), and others relative to these research topics. A workshop would allow contact among and international comparisons with those who were working independently on similar problems with similar or alternative approaches. It would also allow the bringing together of scholars in technology diffusion, management information systems, and sociology with scholars from the GIS community.
One of the key milestones of radar remote sensing for civil applications was the launch of the European Remote Sensing Satellite 1 (ERS 1) in 1991. The platform carried a variety of sensors; the Synthetic Aperture Radar (SAR) is widely cons- ered to be the most important. This active sensing technique provides all-day and all-weather mapping capability of considerably ?ne spatial resolution. ERS 1 and its sister system ERS 2 (launch 1995) were primarily designed for ocean app- cations, but soon the focus of attention turned to onshore mapping. Examples for typical applications are land cover classi?cation also in tropical zones and mo- toring of glaciers or urban growth. In parallel, international Space Shuttle Missions dedicated to radar remote sensing were conducted starting already in the 1980s. The most prominent were the SIR-C/X-SAR mission focussing on the investigation of multi-frequency and multi-polarization SAR data and the famous Shuttle Radar Topography Mission (SRTM). Data acquired during the latter enabled to derive a DEM of almost global coverage by means of SAR Interferometry. It is indispe- ableeventodayandformanyregionsthebestelevationmodelavailable. Differential SAR Interferometry based on time series of imagery of the ERS satellites and their successor Envisat became an important and unique technique for surface defor- tion monitoring. The spatial resolution of those devices is in the order of some tens of meters.
The 15th anniversary of the Chernobyl nuclear power plant disaster
offered a timely opportunity for an expert assessment of the
current situation and suggestions for approaches to managing the
information associated with the site and surrounding contaminated
territories.
The book is based on selected contributions presented at the (General) Session on the "Observation, Prediction and Verification of Precipitation" of the 2006 EGU General Assembly held in Vienna, Austria. It focuses on current advances in the field of precipitation measurement (i.e. instrumentation), estimation (i.e. remote sensing) and prediction (i.e. modeling). Following an introduction, which includes definitions and a summary on the history of measurement, estimation and prediction of precipitation, modern methods in the measurement, estimation and predication of precipitation are presented followed by the integration of the three themes for improved precipitation estimates and prediction as well as calibration and fine-tuning of methods. It describes advances in in-situ ground based instruments, in remote sensing methods of precipitation from space, ground and underwater observations and state of the art methods of precipitation nowcasting and forecasting, along with verification.
Earth Observation interacts with space, remote sensing, communication, and information technologies, and plays an increasingly significant role in Earth related scientific studies, resource management, homeland security, topographic mapping, and development of a healthy, sustainable environment and community. Geospatial Technology for Earth Observation provides an in-depth and broad collection of recent progress in Earth observation. Contributed by leading experts in this field, the book covers satellite, airborne and ground remote sensing systems and system integration, sensor orientation, remote sensing physics, image classification and analysis, information extraction, geospatial service, and various application topics, including cadastral mapping, land use change evaluation, water environment monitoring, flood mapping, and decision making support. Geospatial Technology for Earth Observation serves as a valuable training source for researchers, developers, and practitioners in geospatial science and technology industry. It is also suitable as a reference book for upper level college students and graduate students in geospatial technology, geosciences, resource management, and informatics.
This book is a composition of diverse points of view regarding the application of Computational Intelligence techniques and methods into Remote Sensing data and problems. It is the general consensus that classi?cation, and related data processing, and global optimization methods are the main topics of Compu- tional Intelligence. Global random optimization algorithms appear in this book, such as the Simulated Annealing in chapter 6 and the Genetic Algorithms p- posedinchapters3and9. Muchofthecontentsofthe bookaredevotedto image segmentationandrecognition, using diversetoolsfromregionsofComputational Intelligence, ranging from Arti?cial Neural Networks to Markov Random Field modelling. However, there are some fringe topics, such the parallel implem- tation of some algorithms or the image watermarking that make evident that thefrontiersbetweenComputationalIntelligenceandneighboringcomputational disciplines are blurred and the fences run low and full of holes in many places. The book starts with a review of the current designs of hyperspectral sensors, more appropriately named Imaging Spectrometers. Knowing the shortcomings and advantages of the diverse designs may condition the results on some app- cations of Computational Intelligence algorithms to the processing and und- standing of them Remote Sensing images produced by these sensors. Then the book contentsmovesinto basic signalprocessing techniquessuch ascompression and watermarking applied to remote sensing images. With the huge amount of remotesensinginformationandtheincreasingrateatwhichitisbeingproduced, itseems only naturalthatcompressiontechniques willleapintoa prominentrole in the near future, overcoming the resistances of the users against uncontrolled manipulation of "their" data. Watermarkingis the way to address issues of o- ership authentication in digital contents.
China Satellite Navigation Conference (CSNC) 2015 Proceedings presents selected research papers from CSNC2015, held during 13th-15th May in Xian, China. The theme of CSNC2015 is Opening-up, Connectivity and Win-win. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 10 topics to match the corresponding sessions in CSNC2015, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications. SUN Jiadong is the Chief Designer of the Compass/ BDS, and the academician of Chinese Academy of Sciences (CAS); LIU Jingnan is a professor at Wuhan University. FAN Shiwei is a researcher at China Satellite Navigation Office; LU Xiaochun is an academician of Chinese Academy of Sciences (CAS).
Geocomputation may be viewed as the application of a computational science paradigm to study a wide range of problems in geographical systems contexts.This volume presents a clear, comprehensive and thoroughly state-of-the-art overview of current research, written by leading figures in the field.It provides important insights into this new and rapidly developing field and attempts to establish the principles, and to develop techniques for solving real world problems in a wide array of application domains with a catalyst to greater understanding of what geocomputation is and what it entails.The broad coverage makes it invaluable reading for resarchers and professionals in geography, environmental and economic sciences as well as for graduate students of spatial science and computer science.
The focus of this volume is comprised of the fundamentals, models, and information technologies (IT) methods and tools for disaster prediction and mitigation. A more detailed list of topics includes mathematical and computational modeling of processes leading to or producing disasters, modeling of disaster effects, IT means for disaster mitigation, including data mining tools, knowledge-based and expert systems for use in disaster circumstances, GIS-based systems for disaster prevention and mitigation and equipment for disaster-prone areas. A specific type or class of disasters (natural or human-made), however will not be part of the main focus of this work. Instead, this book was conceived to offer a comprehensive, integrative view on disasters, seeking to determine what various disasters have in common. Because disaster resilience and mitigation involve humans, societies and cultures, not only technologies and economic models, special attention was paid in this volume to gain a comprehensive view on these issues, as a foundation of the IT tool design.
This book is comprised of a selection of the best papers presented during the 25th International Cartography Conference which was held in Paris between 3rd and 8th July 2011. The scope of the conference covers all fields of relevant GIS and Mapping research subjects, such as geovisualization, semiotics, SDI, standards, data quality, data integration, generalization, use and user issues, spatio-temporal modelling and analysis, open source technologies and web services, digital representation of historical maps, history of GIS and cartography as well as cartography for school children and education.
Proceedings of a Seminar on the Practical Applications of Remote Sensing in Forestry, Jonkoping, May 1985, under the Auspices of the Joint FAO/ECE Working Party on Forest Economics and Statistics and the Swedish National Board of Forestry under the Ministry of Agriculture
This book provides an overview of positioning technologies, applications and services in a format accessible to a wide variety of readers. Readers who have always wanted to understand how satellite-based positioning, wireless network positioning, inertial navigation, and their combinations work will find great value in this book. Readers will also learn about the advantages and disadvantages of different positioning methods, their limitations and challenges. Cognitive positioning, adding the brain to determine which technologies to use at device runtime, is introduced as well. Coverage also includes the use of position information for Location Based Services (LBS), as well as context-aware positioning services, designed for better user experience.
This book thoroughly covers the remote sensing visualization and analysis techniques based on computational imaging and vision in Earth science. Remote sensing is considered a significant information source for monitoring and mapping natural and man-made land through the development of sensor resolutions that committed different Earth observation platforms. The book includes related topics for the different systems, models, and approaches used in the visualization of remote sensing images. It offers flexible and sophisticated solutions for removing uncertainty from the satellite data. It introduces real time big data analytics to derive intelligence systems in enterprise earth science applications. Furthermore, the book integrates statistical concepts with computer-based geographic information systems (GIS). It focuses on image processing techniques for observing data together with uncertainty information raised by spectral, spatial, and positional accuracy of GPS data. The book addresses several advanced improvement models to guide the engineers in developing different remote sensing visualization and analysis schemes. Highlights on the advanced improvement models of the supervised/unsupervised classification algorithms, support vector machines, artificial neural networks, fuzzy logic, decision-making algorithms, and Time Series Model and Forecasting are addressed. This book guides engineers, designers, and researchers to exploit the intrinsic design remote sensing systems. The book gathers remarkable material from an international experts' panel to guide the readers during the development of earth big data analytics and their challenges.
China Satellite Navigation Conference (CSNC) 2015 Proceedings presents selected research papers from CSNC2015, held during 13th-15th May in Xian, China. The theme of CSNC2015 is Opening-up, Connectivity and Win-win. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 10 topics to match the corresponding sessions in CSNC2015, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications. SUN Jiadong is the Chief Designer of the Compass/ BDS, and the academician of Chinese Academy of Sciences (CAS); LIU Jingnan is a professor at Wuhan University. FAN Shiwei is a researcher at China Satellite Navigation Office; LU Xiaochun is an academician of Chinese Academy of Sciences (CAS).
From environmental management to land planning and geo-marketing, the number of application domains that may greatly benefit from using data enriched with spatio-temporal features is expanding very rapidly. Unfortunately, development of new spatio-temporal applications is hampered by the lack of conceptual design methods suited to cope with the additional complexity of spatio-temporal data. This complexity is obviously due to the particular semantics of space and time, but also to the need for multiple representations of the same reality to address the diversity of requirements from highly heterogeneous user communities. Conceptual design methods are also needed to facilitate the exchange and reuse of existing data sets, a must in geographical data management due to the high collection costs of the data. Yet, current practice in areas like geographical information systems or moving objects databases does not include conceptual design methods very well, if at all. This book shows that a conceptual design approach for spatio-temporal databases is both feasible and easy to apprehend. While providing a firm basis through extensive discussion of traditional data modeling concepts, the major focus of the book is on modeling spatial and temporal information. Parent, Spaccapietra and Zimanyi provide a detailed and comprehensive description of an approach that fills the gap between application conceptual requirements and system capabilities, covering both data modeling and data manipulation features. The ideas presented summarize several years of research on the characteristics and description of space, time, and perception. In addition to the authors' own data modeling approach, MADS (Modeling of Application Data with Spatio-temporal features), the book also surveys alternative data models and approaches (from industry and academia) that target support of spatio-temporal modeling. The reader will acquire intimate knowledge of both the traditional and innovative features that form a consistent data modeling approach. Visual notations and examples are employed extensively to illustrate the use of the various constructs. Therefore, this book is of major importance and interest to advanced professionals, researchers, and graduate or post-graduate students in the areas of spatio-temporal databases and geographical information systems. "For anyone thinking of doing research in this field, or who is developing a system based on spatio-temporal data, this text is essential reading." (Mike Worboys, U Maine, Orono, ME, USA) "The high-level semantic model presented and validated in this book provides essential guidance to researchers and implementers when improving the capabilities of data systems to serve the actual needs of applications and their users in the temporal and spatial domains that are so prevalent today." (Gio Wiederhold, Stanford U, CA, USA)"
This book focuses on developing an integrated holistic approach for harnessing the potential of rain-fed agriculture. In this approach, rainwater management through harvesting and recharging the groundwater is used as an entry point activity for increasing the productivity for farmers through enhanced water use efficiency. To provide the holistic and integrated solutions, the approach of consortium through building partnerships with different stakeholders, eg. different research institutions (State, National and International), development departments, eg. Department of Agriculture, Department of Animal Husbandry etc., Non-Government Organizations (NGOs), Farmers Organizations Community-based Organizations (CBOs) along with market linkages through private companies.
This book complements the growing body of literature exploring the relationships between arts and cartography . It is distinct from the previous ones by its main focus: The multiple ways of representing a database. In the context of the exponential increase of the volume of geospatial data available, addressing this issue becomes critical and has not yet received much attention. Furthermore, the content of the database - environmental issues in the city - gives a strong social and political texture to the project. The expected audience for this book are academic as well as students interested in the relationships between art and cartography, place and technology, power and representations. This book could serve as an inspiration for local groups and communities dealing with environmental injustice all over the world. Finally, at a local scale, this book could become a major reference for individuals, communities and institutions interested in environmental issues in the city of Montreal.
Significant advances in the scientific use of space based data were achieved in three joint interdisciplinary projects based on data of the satellite missions CHAMP, GRACE and GOCE within the R&D program GEOTECHNOLOGIEN. It was possible to explore and monitor changes related to the Earth's surface, the boundary layer between atmosphere and solid earth, and the oceans and ice shields. This boundary layer is our habitat and therefore is in the focus of our interests. The Earth's surface is subject to anthropogenetic changes, to changes driven by the Sun, Moon and planets, and by changes caused by processes in the Earth system. The state parameters and their changes are best monitored from space. The theme "Observation of the System Earth from Space" offers comprehensive insights into a broad range of research topics relevant to society including geodesy, oceanography, atmospheric science (from meteorology to climatology), hydrology and glaciology.
This is a detailed description of the steps leading from raw signals measured in space, to calibrated comparable long term data sets, to its final form: useful information for user communities. Examples of applications and data validations result from different investigations in the Mediteranean area. An appendix summarizes useful formulas of the evaluation of satellite data.
Global Navigation Satellite Systems (GNSS), such as GPS, have become an efficient, reliable and standard tool for a wide range of applications. However, when processing GNSS data, the stochastic model characterising the precision of observations and the correlations between them is usually simplified and incomplete, leading to overly optimistic accuracy estimates. This work extends the stochastic model using signal-to-noise ratio (SNR) measurements and time series analysis of observation residuals. The proposed SNR-based observation weighting model significantly improves the results of GPS data analysis, while the temporal correlation of GPS observation noise can be efficiently described by means of autoregressive moving average (ARMA) processes. Furthermore, this work includes an up-to-date overview of the GNSS error effects and a comprehensive description of various mathematical methods.
In a computational tour-de-force, this volume wipes away a host of problems related to location discovery in wireless ad-hoc sensor networks. WASNs have recognized potential in many applications that are location-dependent, yet are heavily constrained by factors such as cost and energy consumption. Their "ad-hoc" nature, with direct rather than mediated connections between a network of wireless devices, adds another layer of difficulty. Basing this work entirely on data-driven, coordinated algorithms, the author's aim is to present location discovery techniques that are highly accurate-and which fit user criteria. The research deploys nonparametric statistical methods and relies on the concept of joint probability to construct error (including location error) models and environmental field models. It also addresses system issues such as the broadcast and scheduling of the beacon. Reporting an impressive accuracy gain of almost 17 percent, and organized in a clear, sequential manner, this book represents a stride forward in wireless localization.
There are more than 70 countries in the world that suffer from the presence of landmines. Annually, between 15,000 and 20,000 people are killed or injured by these mines so there is a pressing need for advances in technology to help to remove them. Anti-personnel Landmine Detection for Humanitarian Demining reports on state-of-the-art technologies developed during a Japanese National Research Project which ran from 2002 2007. The conventional, and often reliable, method of landmine detection is to use a metal detector to pick up small amounts of metal within the mine. Unfortunately, minefields are frequently strewn with small metal fragments which can camouflage landmines greatly hindering progress using this form of demining. The challenge, then, is to develop practical detection systems that can discriminate between anti-personnel (AP) landmines and randomly scattered innocent metal fragments. The results of research proposals from universities and industrial sources adopted by the Japan Science and Technology Agency are presented here. This book concentrates on various aspects of three main approaches to AP mine detection: enhancing and confirming the results of metal-detection scans using ground penetrating radar (GPR); using robot vehicles and manipulators to operate within minefields remotely; and methods of sensing the explosives within mines. Basic results are presented in the fields of GPR, nuclear quadrupole resonance, neutron thermal analysis and biosensors. The integration of these methods for workable robot operation is demonstrated. The project was carried out in conjunction with mine action centers in Croatia, Cambodia and Afghanistan and evaluation data from field trials of the technologies are also reported. The results presented by Professor Furuta and his colleagues will be most useful to anyone who is involved in the use or production of technical equipment associated with landmine removal. In addition, academics researching advances in this field and those working in remote sensing, mechatronics and robotics will find much to interest them and a co-ordinated body of work with which to expand their own studies. |
![]() ![]() You may like...
Land Reclamation and Restoration…
Gouri Sankar Bhunia, Uday Chatterjee, …
Paperback
R3,209
Discovery Miles 32 090
Geospatial Intelligence - Concepts…
Information Reso Management Association
Hardcover
R9,198
Discovery Miles 91 980
Spatial Regression Analysis Using…
Daniel A. Griffith, Yongwan Chun, …
Paperback
R3,203
Discovery Miles 32 030
Geospatial Intelligence - Concepts…
Information Reso Management Association
Hardcover
R9,210
Discovery Miles 92 100
Further Developments in the Theory and…
D.R.F. Taylor, Erik Anonby, …
Paperback
R4,058
Discovery Miles 40 580
Case Studies in Geospatial Applications…
Pravat Kumar Shit, Gouri Sankar Bhunia, …
Paperback
R3,438
Discovery Miles 34 380
|