![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Earth & environment > Geography > Cartography, geodesy & geographic information systems (GIS) > Remote sensing
The goal of How to Make Maps is to equip readers with the foundational knowledge of concepts they need to conceive, design, and produce maps in a legible, clear, and coherent manner, drawing from both classical and modern theory in cartography. This book is appropriate for graduate and undergraduate students who are beginning a course of study in geospatial sciences or who wish to begin producing their own maps. While the book assumes no a priori knowledge or experience with geospatial software, it may also serve GIS analysts and technicians who wish to explore the principles of cartographic design. The first part of the book explores the key decisions behind every map, with the aim of providing the reader with a solid foundation in fundamental cartography concepts. Chapters 1 through 3 review foundational mapping concepts and some of the decisions that are a part of every map. This is followed by a discussion of the guiding principles of cartographic design in Chapter 4-how to start thinking about putting a map together in an effective and legible form. Chapter 5 covers map projections, the process of converting the curved earth's surface into a flat representation appropriate for mapping. Chapters 6 and 7 discuss the use of text and color, respectively. Chapter 8 reviews trends in modern cartography to summarize some of the ways the discipline is changing due to new forms of cartographic media that include 3D representations, animated cartography, and mobile cartography. Chapter 9 provides a literature review of the scholarship in cartography. The final component of the book shifts to applied, technical concepts important to cartographic production, covering data quality concepts and the acquisition of geospatial data sources (Chapter 10), and an overview of software applications particularly relevant to modern cartography production: GIS and graphics software (Chapter 11). Chapter 12 concludes the book with examples of real-world cartography projects, discussing the planning, data collection, and design process that lead to the final map products. This book aspires to introduce readers to the foundational concepts-both theoretical and applied-they need to start the actual work of making maps. The accompanying website offers hands-on exercises to guide readers through the production of a map-from conception through to the final version-as well as PowerPoint slides that accompany the text.
This book is a compendium of peer reviewed papers resulting from the International Symposium on Spatial Data Handling (SDH), held in Ottawa, Canada, July 9-12, 2002. It presents a selection of papers that demonstrate a maturing in geographical information science (GISc). Of the many challenges under the general topic of spatial data handling, a number of key areas provide the focus for this book. They tackle issues such as database design and architecture, interoperability, integration, fusion, spatial reasoning, visualisation and web-based mapping, among a number of other aspects.
A variety of disciplines and professions have embraced geospatial technologies for collecting, storing, manipulating, analyzing, and displaying spatial data to investigate crime, prosecute and convict offenders, exonerate suspects, and submit evidence in civil lawsuits. The applications, acceptability and relevance, and procedural legality of each geospatial technologies vary. The purpose of this book is to explain the nature of geospatial technologies, demonstrate a variety of geospatial applications used to investigate and litigate civil and criminal activities, and to provide a reference of current acceptability of geospatial technology in the production of evidence. This book is an introductory overview designed to appeal to researchers and practitioners across disciplinary boundaries. The authors of this book are researchers and practitioners across disciplines and professions, experts in the field.
Uncertainty and context pose fundamental challenges in GIScience and geographic research. Geospatial data are imbued with errors (e.g., measurement and sampling) and various types of uncertainty that often obfuscate any understanding of the effects of contextual or environmental influences on human behaviors and experiences. These errors or uncertainties include those attributable to geospatial data measurement, model specifications, delineations of geographic context in space and time, and the use of different spatiotemporal scales and zonal schemes when analyzing the effects of environmental influences on human behaviors or experiences. In addition, emerging sources of geospatial big data - including smartphone data, data collected by GPS, and various types of wearable sensors (e.g., accelerometers and air pollutant monitors), volunteered geographic information, and/ or location- based social media data (i.e., crowd- sourced geographic information) - inevitably contain errors, and their quality cannot be fully controlled during their collection or production. Uncertainty and Context in GIScience and Geography: Challenges in the Era of Geospatial Big Data illustrates how cutting- edge research explores recent advances in this area, and will serve as a useful point of departure for GIScientists to conceive new approaches and solutions for addressing these challenges in future research. The seven core chapters in this book highlight many challenges and opportunities in confronting various issues of uncertainty and context in GIScience and geography, tackling different topics and approaches. The chapters in this book were originally published as a special issue of the International Journal of Geographical Information Science.
This book presents a selection of conference contributions from CARO'13 (Conference on Aerospace Robotics), which was held in Warsaw from July 1 to 3, 2013. It presents the most important and crucial problems of space automation in context of future exploration programs. These programs could involve such issues as space situational awareness program, planetary protection, exploitation of minerals, assembly, manufacturing, and search for new habitable location for next human generations. The future exploration of Space and related activities will involve robots. In particular, new autonomous robots need to be developed with high degree of intelligence. Such robots would make space exploration possible but also they would make space automation an important factor in variety of activities related to Space.
Providing new developments in Geodesy, Cartography, and Geoinformatics
Remote sensing of impervious surfaces has matured using advances in geospatial technology so recent that its applications have received only sporadic coverage in remote sensing literature. Remote Sensing of Impervious Surfaces is the first to focus entirely on this developing field. It provides detailed coverage of mapping, data extraction, and modeling techniques specific to analyzing impervious surfaces, such as roads and buildings. Written by renowned experts in the field, this book reviews the major approaches that apply to this emerging field as well as current challenges, developments, and trends. The authors introduce remote sensing digital image processing techniques for estimating and mapping impervious surfaces in urban and rural areas. Presenting the latest modeling tools and algorithms for data extraction and analysis, the book explains how to differentiate roads, roofs, and other manmade structures from remotely sensed images for individual analysis. The final chapters examine how to use impervious surface data for predicting the flow of storm- or floodwater and studying trends in population, land use, resource distribution, and other real-world applications in environmental, urban, and regional planning. Each chapter offers a consistent format including a concise review of basic concepts and methodologies, timely case studies, and guidance for solving problems and analyzing data using the techniques presented.
During the last decade developments in 3D Geoinformation have made substantial progress. We are about to have a more complete spatial model and understanding of our planet in different scales. Hence, various communities and cities offer 3D landscape and city models as valuable source and instrument for sustainable management of rural and urban resources. Also municipal utilities, real estate companies etc. benefit from recent developments related to 3D applications. To meet the challenges due to the newest changes academics and practitioners met at the 5th International Workshop on 3D Geoinformation in order to present recent developments and to discuss future trends. This book comprises a selection of evaluated, high quality papers that were presented at this workshop in November 2010. The topics focus explicitly on the last achievements (methods, algorithms, models, systems) with respect to 3D geo-information requirements. The book is aimed at decision makers and experts as well at students interested in the 3D component of geographical information science including GI engineers, computer scientists, photogrammetrists, land surveyors, urban planners, and mapping specialists.
A Coming of Age: Geospatial Analysis and Modelling in the Early Twenty First Century Forty years ago when spatial analysis first emerged as a distinct theme within geography's quantitative revolution, the focus was largely on consistent methods for measuring spatial correlation. The concept of spatial au- correlation took pride of place, mirroring concerns in time-series analysis about similar kinds of dependence known to distort the standard probability theory used to derive appropriate statistics. Early applications of spatial correlation tended to reflect geographical patterns expressed as points. The perspective taken on such analytical thinking was founded on induction, the search for pattern in data with a view to suggesting appropriate hypotheses which could subsequently be tested. In parallel but using very different techniques came the development of a more deductive style of analysis based on modelling and thence simulation. Here the focus was on translating prior theory into forms for generating testable predictions whose outcomes could be compared with observations about some system or phenomenon of interest. In the intervening years, spatial analysis has broadened to embrace both inductive and deductive approaches, often combining both in different mixes for the variety of problems to which it is now applied.
The use of synthetic aperture radar (SAR) represents a new era in remote sensing technology. A complete handbook for anyone who must design an SAR system capable of reliably producing high quality image data products, free from image artifacts and calibrated in terms of the target backscatter coefficient. Combines fundamentals underlying the SAR imaging process and the practical system engineering required to produce quality images from a real SAR system. Beginning with a broad overview of SAR technology, it goes on to examine SAR system capabilities and components and detail the techniques required for design and development of the SAR ground data system with emphasis on the correlation processing. Intended for SAR system engineers and researchers, it is generously illustrated for maximum clarity.
This book provides readers with an insight into the development of a novel method for regridding gridded spatial data, an operation required to perform the map overlay operation and apply map algebra when processing spatial data. It introduces the necessary concepts from spatial data processing and fuzzy rulebase systems and describes the issues experienced when using current regridding algorithms. The main focus of the book is on describing the different modifications needed to make the problem compatible with fuzzy rulebases. It offers a number of examples of out-of-the box thinking to handle aspects such as rulebase construction, defuzzification, spatial data comparison, etc. At first, the emphasis is put on the newly developed method, and additional datasets containing information on the underlying spatial distribution of the data are identified. After this, an artificial intelligent system (in the form of a fuzzy inference system) is constructed using this knowledge and then applied on the input data to perform the regridding. The book offers an example of how an apparently simple problem can pose many different challenges, even when trying to solve it with existing soft computing technologies. The workflow and solutions to solve these challenges are universal and may therefore be broadly applied into other contexts.
The explosion of public interest in the natural environment can, to a large extent, be attributed to greater public awareness of the impacts of global warming and climate change. This has led to increased research interest and funding directed at studies of issues affecting sensitive, natural environments. Not surprisingly, much of this work has required the innovative application of GIS and has led to a crucial research question: How should the environment be represented, modeled, analyzed, and visualized within a GIS? With contributions from recognized international experts, Representing, Modeling, and Visualizing the Natural Environment explores the interplay between data representation, modeling, and visualization in environmental studies. It reviews state-of-the-art GIS applications for the natural environment and presents them in the context of a range of recent studies. This focus identifies analytical challenges and illustrates broader opportunities for applying GIS within other areas of the sciences and social sciences. The integrated approach reflects the need for a single volume covering all aspects While many texts cover aspects of GIS application within an environmental context, few of these books focus specifically on the natural environment nor do they integrate the questions that encompass the full process of enquiry associated with GIS application in studies of the environment. The thirteenth volume in the widely recognized Innovations of GIS series, this book investigates each of these questions in turn, explicitly addressing all aspects of GIS application in the natural environment.
GIS for Sustainable Development examines how GIS applications can improve collaboration in decision making among those involved in promoting sustainable development. This volume reviews leading GIScience, providing an overview of research topics and applications that enable GIS newcomers and professionals to apply GIScience methods to sustainable spatial planning. Divided into three parts, the book begins with an introduction to the issues of sustainability, focusing on concepts concerning GIS adoption and use within public organizations that are planning development. Part II focuses on GIScience methods, which can be used to support sustainable development and solve environmental problems. Part III presents research projects and best practices relating to different areas of application within the field. This text provides the latest research findings, delivers complete references to related publications, and supplies you with a complete reference framework for each topic.
Have you ever considered how much effect information technology has on society throughout the world? Progress often places lower income and marginalized communities at a distinct disadvantage. Community Participation and Geographic Information Systems, however, offers a detailed look at numerous incidences around the world where communities have actually taken control of the technology and really used it to their advantage. This is presented in the form of case studies and models such as Philadelphia's neighborhoods, the Atlanta Project, and neighborhood revitalization in Minneapolis, reflect on public participation in GIS concepts, best practices, constraints and opportunities.
As the use of geographical information systems develops apace, a significant strand of research activity is being directed to the fundamental nature of geographic information. This volume contains a collection of essays and discussions on this theme. What is geographic information? What fundamental principles are associated with it? How can it be represented? How does it represent the world? How can geographic information be quantified? How can it be communicated and related to the other information sciences? How does HCI tie in with it? A number of other more specific but relevant issues are considered, such as Spatio-temporal relationships, boundaries, granularity and taxonomy. This book is a revised and updated version of a collection of presentations given by a group of distinguished researchers in the field of Geographic Information Science who gathered in Manchester in July 2001. It should be useful for graduate students as well as researchers and high-level professionals.
Principles of Synthetic Aperture Radar Imaging: A System Simulation Approach demonstrates the use of image simulation for SAR. It covers the various applications of SAR (including feature extraction, target classification, and change detection), provides a complete understanding of SAR principles, and illustrates the complete chain of a SAR operation. The book places special emphasis on a ground-based SAR, but also explains space and air-borne systems. It contains chapters on signal speckle, radar-signal models, sensor-trajectory models, SAR-image focusing, platform-motion compensation, and microwave-scattering from random media. While discussing SAR image focusing and motion compensation, it presents processing algorithms and applications that feature extraction, target classification, and change detection. It also provides samples of simulation on various scenarios, and includes simulation flowcharts and results that are detailed throughout the book. Introducing SAR imaging from a systems point of view, the author: Considers the recent development of MIMO SAR technology Includes selected GPU implementation Provides a numerical analysis of system parameters (including platforms, sensor, and image focusing, and their influence) Explores wave-target interactions, signal transmission and reception, image formation, motion compensation Covers all platform motion compensation and error analysis, and their impact on final image radiometric and geometric quality Describes a ground-based SFMCW system Principles of Synthetic Aperture Radar Imaging: A System Simulation Approach is dedicated to the use, study, and development of SAR systems. The book focuses on image formation or focusing, treats platform motion and image focusing, and is suitable for students, radar engineers, and micr
Traditional methods for handling spatial data are encumbered by the assumption of separate origins for horizontal and vertical measurements, but modern measurement systems operate in a 3-D spatial environment. The 3-D Global Spatial Data Model: Principles and Applications, Second Edition maintains a new model for handling digital spatial data, the global spatial data model or GSDM. The GSDM preserves the integrity of three-dimensional spatial data while also providing additional benefits such as simpler equations, worldwide standardization, and the ability to track spatial data accuracy with greater specificity and convenience. This second edition expands to new topics that satisfy a growing need in the GIS, professional surveyor, machine control, and Big Data communities while continuing to embrace the earth center fixed coordinate system as the fundamental point of origin of one, two, and three-dimensional data sets. Ideal for both beginner and advanced levels, this book also provides guidance and insight on how to link to the data collected and stored in legacy systems.
Geospatial information modeling and mapping has become an important tool for the investigation and management of natural resources at the landscape scale. Spatial Statistics: GeoSpatial Information Modeling and Thematic Mapping reviews the types and applications of geospatial information data, such as remote sensing, geographic information systems (GIS), and GPS as well as their integration into landscape-scale geospatial statistical models and maps. The book explores how to extract information from remotely sensed imagery, GIS, and GPS, and how to combine this with field data-vegetation, soil, and environmental-to produce a spatial model that can be reconstructed and displayed using GIS software. Readers learn the requirements and limitations of each geospatial modeling and mapping tool. Case studies with real-life examples illustrate important applications of the models. Topics covered in this book include: An overview of the geospatial information sciences and technology and spatial statistics Sampling methods and applications, including probability sampling and nonrandom sampling, and issues to consider in sampling and plot design Fine and coarse scale variability Spatial sampling schemes and spatial pattern Linear and spatial correlation statistics, including Moran's I, Geary's C, cross-correlation statistics, and inverse distance weighting Geospatial statistics analysis using stepwise regression, ordinary least squares (OLS), variogram, kriging, spatial auto-regression, binary classification trees, cokriging, and geospatial models for presence and absence data How to use R statistical software to work on statistical analyses and case studies, and to develop a geospatial statistical model
The past 10 years have brought amazing changes to the technologies used to turn remotely sensed data into maps. As a result, the principles and practices necessary for assessing the accuracy of those maps have also evolved and matured. This third edition of Assessing the Accuracy of Remotely Sensed Data: Principles and Practices is thoroughly updated and includes five new chapters. Now 15 chapters long, this text is the only one of its kind to provide geospatial analysts with the requisite considerations, tools, and theory necessary to conduct successful and efficient map accuracy assessments; and map users with the knowledge to fully understand the assessment process to ensure effective use of maps. See What's New in the Third Edition: All original chapters have been updated to include new standards, practices, and methodologies. A new chapter on planning accuracy assessments. A new chapter on assessing maps created using object-based technologies. Two case study chapters - one showcasing the assessment of maps created from traditional methods, and one on the assessment of object-based maps. Emphasis on considering and planning for positional accuracy in concert with thematic accuracy. An appendix containing the internationally recognized ASPRS Positional Accuracy Standards. A new final chapter summarizing the key concepts, considerations and lessons learned by the authors in their decades of implementing and evaluating accuracy assessments. Assessing map accuracy is complex; however, the discussions in this book, together with the many figures, tables, and case studies, clearly present the necessary concepts and considerations for conducting an assessment that is both is practical, statistically reliable, and achievable.
This volume provides in-depth coverage of the latest in remote sensing of hydrological extremes: both floods and droughts. The book is divided into two distinct sections - floods and droughts - and offers a variety of techniques for monitoring each. With rapid advances in computer modelling and observing systems, floods and droughts are studied with greater precision today than ever before. Land surface models, especially over the entire Continental United States, can map the hydrological cycle at kilometre and sub-kilometre scales. In the case of smaller areas there is even higher spatial resolution and the only limiting factor is the resolution of input data. In-situ sensors are automated and the data is directly relayed to the world wide web for many hydrological variables such as precipitation, soil moisture, surface temperature and heat fluxes. In addition, satellite remote sensing has advanced to providing twice a day repeat observations at kilometre to ten-kilometre spatial scales. We are at a critical juncture in the study of hydrological extremes, and the GPM and SMAP missions as well as the MODIS and GRACE sensors give us more tools and data than were ever available before. A global variety of chapter authors provides wide-ranging perspectives and case studies that will make this book an indispensable resource for researchers, engineers, and even emergency management and insurance professionals who study and/or manage hydrological extremes.
"GPR Remote Sensing in Archaeology "provides a complete description of the processes needed to take raw GPR data all the way to the construction of subsurface images. The book provides an introduction to the theory of GPR by using a simulator that shows how radar profiles across simple model structures look and provides many examples so that the complexity of radar signatures can be understood.It continues with a review of the necessary radargram signal processes needed along with examples. The most comprehensive methodology to construct subsurface images from either coarsely spaced data using interpolation or from dense data from multi-channel equipment and 3D volume generation is presented, advanced imaging solutions such as overlay analysis are introduced, and numerous worldwide site case histories are shown. The authors present their studies in a way that most technical and non-technical users of the equipment will find essentialsfor implementing in their own subsurface investigations."
One of the ongoing problems researchers in geography and GIS have is studying data that is inherently spatial over a long period of time. One of the main hurdles they have to overcome is the study of groups of people classified by their socio-economic status (one of the main means for governments, companies and research organisations to group together segments of the population). The amount of data collected by governments, business and research organisations has increased markedly in recent years. Geographic Information Systems have been more widely used than ever before for the storage and analysis of this information. Most GIS can handle this information spatially rather than temporally, and have difficulty with the management of socio-economic time series, which relate to spatial units. Accordingly, this book covers the issues ranging from the formal model to differentiate aspects of spatio-temporal data, through philosophical and fundamental reconsideration of time and space to the development of practical solutions to the problem. This book draws together an interdisciplinary group of scientists in the field of geography, computing, surveying and philosophy. It presents the definitive sourcebook on temporal GIS as applied to socio-economic units.
Although interest in Spatial Decision Support Systems (SDSS) continues to grow rapidly in a wide range of disciplines, students, planners, managers, and the research community have lacked a book that covers the fundamentals of SDSS along with the advanced design concepts required for building SDSS. Filling this need, Spatial Decision Support Systems: Principles and Practices provides a comprehensive examination of the various aspects of SDSS evolution, components, architecture, and implementation. It integrates research from a variety of disciplines, including the geosciences, to supply a complete overview of SDSS technologies and their application from an interdisciplinary perspective. This groundbreaking reference provides thorough coverage of the roots of SDSS. It explains the core principles of SDSS, how to use them in various decision making contexts, and how to design and develop them using readily available enabling technologies and commercial tools. The book consists of four major parts, each addressing different topic areas in SDSS: Presents an introduction to SDSS and the evolution of SDSS Covers the essential and optional components of SDSS Focuses on the design and implementation of SDSS Reviews SDSS applications from various domains and disciplines-investigating current challenges and future directions The text includes numerous detailed case studies, example applications, and methods for tailoring SDSS to your work environment. It also integrates sample code segments throughout. Addressing the technical and organizational challenges that affect the success or failure of SDSS, the book concludes by considering future directions of this rapidly emerging field of study.
Optical Remote Sensing is one of the main technologies used in sea surface monitoring. Optical Remote Sensing of Ocean Hydrodynamics investigates and demonstrates capabilities of optical remote sensing technology for enhanced observations and detection of ocean environments. It provides extensive knowledge of physical principles and capabilities of optical observations of the oceans at high spatial resolution, 1-4m, and on the observations of surface wave hydrodynamic processes. It also describes the implementation of spectral-statistical and fusion algorithms for analyses of multispectral optical databases and establishes physics-based criteria for detection of complex wave phenomena and hydrodynamic disturbances including assessment and management of optical databases. This book explains the physical principles of high-resolution optical imagery of the ocean surface, discusses for the first time the capabilities of observing hydrodynamic processes and events, and emphasizes the integration of optical measurements and enhanced data analysis. It also covers both the assessment and the interpretation of dynamic multispectral optical databases and includes applications for advanced studies and nonacoustic detection. This book is an invaluable resource for researches, industry professionals, engineers, and students working on cross-disciplinary problems in ocean hydrodynamics, optical remote sensing of the ocean and sea surface remote sensing. Readers in the fields of geosciences and remote sensing, applied physics, oceanography, satellite observation technology, and optical engineering will learn the theory and practice of optical interactions with the ocean. |
You may like...
Asymptotic Expansion of a Partition…
Gaetan Borot, Alice Guionnet, …
Hardcover
R1,886
Discovery Miles 18 860
Introduction To Stochastic Processes And…
Horacio Sergio Wio
Hardcover
R2,313
Discovery Miles 23 130
Experiments and Modeling in Cognitive…
Fabien Mathy, Mustapha Chekaf
Hardcover
The Oxford Handbook of Hypo-egoic…
Kirk Warren Brown, Mark Leary
Hardcover
R5,459
Discovery Miles 54 590
|