![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering > Robotics
Mobile Robotics presents the different tools and methods that enable the design of mobile robots; a discipline booming with the emergence of flying drones, underwater robots mine detectors, sailboats robots and robot vacuum cleaners. Illustrated with simulations, exercises and examples, this book describes the fundamentals of modeling robots, developing the actuator concepts, sensor, control and guidance. Three-dimensional simulation tools are also explored, as well as the theoretical basis for reliable localization of robots within their environment.
This book describes the development of an integrated approach for generating the path and gait of realistic hexapod robotic systems. It discusses in detail locomation with straight-ahead, crab and turning motion capabilities in varying terrains, like sloping surfaces, staircases, and various user-defined rough terrains. It also presents computer simulations and validation using Virtual Prototyping (VP) tools and real-world experiments. The book also explores improving solutions by applying the developed nonlinear, constrained inverse dynamics model of the system formulated as a coupled dynamical problem based on the Newton-Euler (NE) approach and taking into account realistic environmental conditions. The approach is developed on the basis of rigid multi-body modelling and the concept that there is no change in the configuration of the system in the short time span of collisions.
This book presents the select proceedings of the International Conference on Recent Advances in Manufacturing (RAM 2020). The volume focuses on latest research trends in manufacturing systems such as CAE, CAD/CAM, robotics and automation, reverse engineering, resource planning and simulation, computer-integrated manufacturing (CIM) systems, product life-cycle management, collaborative engineering, process monitoring control and traceability technologies, supply chain management, environment risk analysis, and manufacturing systems of renewable energy devices. The topics covered also include emerging fields of the fourth industrial revolution such cyber physical systems and cyber security, and wireless sensors and sensor networks for manufacturing. This book will be of interest to researchers and practitioners interested in latest developments in the field of manufacturing systems.
This book comprises select peer-reviewed papers from the International Conference on Emerging Trends in Electromechanical Technologies & Management (TEMT) 2019. The focus is on current research in interdisciplinary areas of mechanical, electrical, electronics and information technologies, and their management from design to market. The book covers a wide range of topics such as computer integrated manufacturing, additive manufacturing, materials science and engineering, simulation and modelling, finite element analysis, operations and supply chain management, decision sciences, business analytics, project management, and sustainable freight transportation. The book will be of interest to researchers and practitioners of various disciplines, in particular mechanical and industrial engineering.
This book covers a wide range of topics related to human-robot interaction, both physical and cognitive, including theories, methodologies, technologies, and empirical and experimental studies. The International Workshop on Human-Friendly Robotics (HFR) is an annual meeting that brings together academic scientists, researchers and research scholars to present their latest, original findings on all aspects concerning the introduction of robots into everyday life. The growing need to automate daily tasks, combined with new robot technologies, is driving the development of human-friendly robots, i.e., safe and dependable machines that operate in close proximity to humans or directly interact with them in a wide range of contexts. The technological shift from classical industrial robots, which are safely kept away from humans in cages, to robots that are used in close collaboration with humans, is faced with major challenges that need to be overcome. The objective of the workshop was to stimulate discussion and exchange knowledge on design, control, safety and ethical issues concerning the introduction of robots into everyday life. The 12th installment was organized by the University of Modena and Reggio Emilia and took place in Reggio Emilia, Italy.
This book discusses the principles, methodologies, and challenges of robotic musicianship through an in-depth review of the work conducted at the Georgia Tech Center for Music Technology (GTCMT), where the concept was first developed. Robotic musicianship is a relatively new research field that focuses on the design and development of intelligent music-making machines. The motivation behind the field is to develop robots that not only generate music, but also collaborate with humans by listening and responding in an expressive and creative manner. This combination of human and machine creativity has the potential to surprise and inspire us to play, listen, compose, and think about music in new ways. The book provides an in-depth view of the robotic platforms designed at the GTCMT Robotic Musicianship Group, including the improvisational robotic percussionists Haile and Shimon, the personal robotic companion Shimi, and a number of wearable robots, such as the Robotic Drumming Prosthesis, The Third Drumming Arm, and the Skywalker Piano Hand. The book discusses numerous research studies based on these platforms in the context of five main principles: Listen like a Human, Play Like a Machine, Be Social, Watch and Learn, and Wear It.
This book describes how robots can make sense of motion in their surroundings and use the patterns they observe to blend in better in dynamic environments shared with humans.The world around us is constantly changing. Nonetheless, we can find our way and aren't overwhelmed by all the buzz, since motion often follows discernible patterns. Just like humans, robots need to understand the patterns behind the dynamics in their surroundings to be able to efficiently operate e.g. in a busy airport. Yet robotic mapping has traditionally been based on the static world assumption, which disregards motion altogether. In this book, the authors describe how robots can instead explicitly learn patterns of dynamic change from observations, store those patterns in Maps of Dynamics (MoDs), and use MoDs to plan less intrusive, safer and more efficient paths. The authors discuss the pros and cons of recently introduced MoDs and approaches to MoD-informed motion planning, and provide an outlook on future work in this emerging, fascinating field.
This book provides a comprehensive review of fundamental issues in the dynamical modeling and vibration control design for several flexible mechanical systems, such as flexible satellites, flexible aerial refueling hoses, and flexible three-dimensional manipulators. Offering an authoritative reference guide to the dynamics and control of flexible mechanical systems, it equips readers to solve a host of problems concerning these systems. It provides not only a complete overview of flexible systems, but also a better understanding of the technical levels involved. The book is divided into ten chapters: Chapters 1 and 2 lay the foundations, while the remaining chapters explore several independent yet related topics in detail. The book's final chapter presents conclusions and recommendations for future research. Given its scope, the book is intended for researchers, graduate students, and engineers whose work involves control systems, flexible mechanical systems, and related areas.
This book provides insights into research in the field of artificial intelligence in combination with robotics technologies. The integration of artificial intelligence and robotic technologies is a highly topical area for researchers and developers from academia and industry around the globe, and it is likely that artificial intelligence will become the main approach for the next generation of robotics research. The tremendous number of artificial intelligence algorithms and big data solutions has significantly extended the range of potential applications for robotic technologies, and has also brought new challenges for the artificial intelligence community. Sharing recent advances in the field, the book features papers by young researchers presented at the 4th International Symposium on Artificial Intelligence and Robotics 2019 (ISAIR2019), held in Daegu, Korea, on August 20-24, 2019.
In addition to the contributions presented at the 2018 International Symposium on Experimental Robotics (ISER 2018), this book features summaries of the discussions that were held during the event in Buenos Aires, Argentina. These summaries, authored by leading researchers and session organizers, offer important insights on the issues that drove the symposium debates. Readers will find cutting-edge experimental research results from a range of robotics domains, such as medical robotics, unmanned aerial vehicles, mobile robot navigation, mapping and localization, field robotics, robot learning, robotic manipulation, human-robot interaction, and design and prototyping. In this unique collection of the latest experimental robotics work, the common thread is the experimental testing and validation of new ideas and methodologies. The International Symposium on Experimental Robotics is a series of bi-annual symposia sponsored by the International Foundation of Robotics Research, whose goal is to provide a dedicated forum for experimental robotics research. In recent years, robotics has broadened its scientific scope, deepened its methodologies and expanded its applications. However, the significance of experiments remains at the heart of the discipline. The ISER gatherings are an essential venue where scientists can meet and have in-depth discussions on robotics based on this central tenet.
This book offers the first systematic guide to machine ethics, bridging between computer science, social sciences and philosophy. Based on a dialogue between an AI scientist and a novelist philosopher, the book discusses important findings on which moral values machines can be taught and how. In turn, it investigates what kind of artificial intelligence (AI) people do actually want. What are the main consequences of the integration of AI in people's every-day life? In order to co-exist and collaborate with humans, machines need morality, but which moral values should we teach them? Moreover, how can we implement benevolent AI? These are just some of the questions carefully examined in the book, which offers a comprehensive account of ethical issues concerning AI, on the one hand, and a timely snapshot of the power and potential benefits of this technology on the other. Starting with an introduction to common-sense ethical principles, the book then guides the reader, helping them develop and understand more complex ethical concerns and placing them in a larger, technological context. The book makes these topics accessible to a non-expert audience, while also offering alternative reading pathways to inspire more specialized readers.
This book includes high impact papers presented at the International Conference on Communication, Computing and Electronics Systems 2019, held at the PPG Institute of Technology, Coimbatore, India, on 15-16 November, 2019. Discussing recent trends in cloud computing, mobile computing, and advancements of electronics systems, the book covers topics such as automation, VLSI, embedded systems, integrated device technology, satellite communication, optical communication, RF communication, microwave engineering, artificial intelligence, deep learning, pattern recognition, Internet of Things, precision models, bioinformatics, and healthcare informatics.
This book presents selected papers from The 1st International Conference on Computational Design and Robotic Fabrication (CDRF 2019). Focusing on novel architecture theories, tools, methods, and procedures for digital design and construction in architecture, it promotes dialogs between architecture, engineer, computer science, robotics, and other relevant disciplines to establish a new way of production in the building industry in the digital age. The contents make valuable contributions to academic researchers and engineers in the industry. At the same time, it offers readers new ideas for the application of digital technology.
This book presents the select proceedings of the International Conference on Recent Advances in Manufacturing (RAM 2020). This volume, in particular, provides insights into current research trends and opportunities within the manufacturing processes domain such as conventional and unconventional manufacturing, micro and nano manufacturing, chemical and biochemical manufacturing, and computer-integrated manufacturing (CIM). The topics covered include emerging areas of the fourth industrial revolution such as additive manufacturing, sustainable and energy-efficient manufacturing, smart manufacturing, artificial intelligence in manufacturing application, and computer-integrated manufacturing. This book will be useful for to researchers and practitioners alike.
This book presents selected papers from the 9th International Workshop of Advanced Manufacturing and Automation (IWAMA 2019), held in Plymouth, UK, on November 21-22, 2019. Discussing topics such as novel techniques for manufacturing and automation in Industry 4.0 and smart factories, which are vital for maintaining and improving economic development and quality of life, it offers researchers and industrial engineers insights into implementing the concepts and theories of Industry 4.0, in order to effectively respond to the challenges posed by the 4th industrial revolution and smart factories.
This volume gathers the latest advances, innovations, and applications in the field of intelligent systems such as robots, cyber-physical and embedded systems, as presented by leading international researchers and engineers at the International Conference on Intelligent Technologies in Robotics (ITR), held in Moscow, Russia on October 21-23, 2019. It covers highly diverse topics, including robotics, design and machining, control and dynamics, bio-inspired systems, Internet of Thing, Big Data, RFID technology, blockchain, trusted software, cyber-physical systems (CFS) security, development of CFS in manufacturing, protection of information in CFS, cybersecurity of CFS. The contributions, which were selected by means of a rigorous international peer-review process, highlight numerous exciting ideas that will spur novel research directions and foster multidisciplinary collaboration among different specialists, demonstrating that intelligent systems will drive the technological and societal change in the coming decades.
This book addresses various aspects of acoustic-phonetic analysis, including voice quality and fundamental frequency, and the effects of speech fluency and non-native accents, by examining read speech, public speech, and conversations. Voice is a sexually dimorphic trait that can convey important biological and social information about the speaker, and empirical findings suggest that voice characteristics and preferences play an important role in both intra- and intersexual selection, such as competition and mating, and social evaluation. Discussing evaluation criteria like physical attractiveness, pleasantness, likability, and even persuasiveness and charisma, the book bridges the gap between social and biological views on voice attractiveness. It presents conceptual, methodological and empirical work applying methods such as passive listening tests, psychoacoustic rating experiments, and crowd-sourced and interactive scenarios and highlights the diversity not only of the methods used when studying voice attractiveness, but also of the domains investigated, such as politicians' speech, experimental speed dating, speech synthesis, vocal pathology, and voice preferences in human interactions as well as in human-computer and human-robot interactions. By doing so, it identifies widespread and complementary approaches and establishes common ground for further research.
This reference text discusses intelligent robotic and drone technology with embedded Internet of Things (IoT) for smart applications. The text discusses future directions of optimization methods with various engineering and science fundamentals used in robotics and drone-based applications. Its emphasis is on covering deep learning and similar models of neural network-based learning techniques employed in solving optimization problems of different engineering and science applications. It covers important topics including sensors and actuators in the internet of things (IoT), internet-of-robotics-things (IoRT), IoT in agriculture and food processing, routing challenges in flying Ad-hoc networks, and smart cities. The book will serve as a useful text for graduate students and professionals in the fields of electrical engineering, electronics engineering, computer science, and mechanical engineering.
This book presents solutions to control problems in a number of robotic systems and provides a wealth of worked-out examples with full analytical and numerical details, graphically illustrated to aid in reader comprehension. It also presents relevant studies on and applications of robotic system control approaches, as well as the latest findings from interdisciplinary theoretical studies. Featuring chapters on advanced control (fuzzy, neural, backstepping, sliding mode, adaptive, predictive, diagnosis, and fault-tolerant control), the book will equip readers to easily tailor the techniques to their own applications. Accordingly, it offers a valuable resource for researchers, engineers, and students in the field of robotic systems.
Computational Biomechanics for Medicine: Solid and fluid mechanics for the benefit of patients contributions and papers from the MICCAI Computational Biomechanics for Medicine Workshop help in conjunction with Medical Image Computing and Computer Assisted Intervention conference (MICCAI 2019) in Shenzhen, China. The content is dedicated to research in the field of methods and applications of computational biomechanics to medical image analysis, image-guided surgery, surgical simulation, surgical intervention planning, disease prognosis and diagnostics, analysis of injury mechanisms, implant and prostheses design, as well as artificial organ design and medical robotics. These proceedings appeal to researchers, students and professionals in the field.
This book describes the development of portable, wearable, and highly customizable hand exoskeletons to aid patients suffering from hand disabilities. It presents an original approach for the design of human hand motion assistance devices that relies on (i) an optimization-based kinematic scaling procedure, which guarantees a significant adaptability to the user's hands motion, and (ii) a topology optimization-based design methodology, which allowed the design of a lightweight, comfortable device with a high level of performance. The book covers the whole process of hand exoskeleton development, from establishing a new design strategy, to the construction and testing of hand exoskeleton prototypes, using additive manufacturing techniques. As such, it offers timely information to both researchers and engineers developing human motion assistance systems, especially wearable ones.
This book presents the main achievements of the EuRoC (European Robotics Challenges) project, which ran from 1st January,2014 to 30th June 2018 and was funded by the European Union under the 7th Framework Programme. It describes not only the scientific and technological achievements of the project, but also the potential of the comparative challenge approach in robotics for knowledge advancement and technology transfer.
This book provides an insight on the importance that Internet of Vehicles (IoV) solutions can have in taking care of vehicular safety through internetworking and automation. Key features of the book are the inclusion and elaboration of recent and emerging developments in various specializations of intelligent transportation systems and their solutions by incorporating IoT (Internet of Things) and IoV. This book presents to its readers useful IoV applications and architectures that cater to their improved driving requirements and lead towards autonomous driving. The application domains have a large range in which vehicular networking, communication technology, sensor devices, computing materials and devices, IoT communication, vehicular and on-road safety, data security and other topics are included.
This book attempts to treat line design and its related subjects in a cohesive manner, with an emphasis on design applications. It discusses general guidelines for setting up assumptions and determining line performance parameters, based on empirical data from literature reports.
A reference guide for professionals or text for graduate and postgraduate students, this volume emphasizes practical designs and applications of distributed computer control systems. It demonstrates how to improve plant productivity, enhance product quality, and increase the safety, reliability, and |
![]() ![]() You may like...
Artificial Intelligence in Design 1994
John S. Gero, Fay Sudweeks
Hardcover
R2,645
Discovery Miles 26 450
Timing Optimization Through Clock Skew…
Ivan S. Kourtev, Eby G. Friedman, …
Hardcover
R2,996
Discovery Miles 29 960
FE Computation on Accuracy Fabrication…
Hong Zhou, Jiangchao WANG
Hardcover
R4,362
Discovery Miles 43 620
Computational Diffusion MRI - MICCAI…
Elisenda Bonet-Carne, Jana Hutter, …
Hardcover
R4,359
Discovery Miles 43 590
Emerging Trends in Terahertz Engineering…
Arindam Biswas, Amit Banerjee, …
Hardcover
R3,625
Discovery Miles 36 250
|