![]() |
![]() |
Your cart is empty |
||
Books > Earth & environment > Earth sciences > Geology & the lithosphere > Soil science, sedimentology
This book provides essential insights into methods and practices of 'Climate-smart Agriculture,' which is driven by the principles of climate resilience and smart resource use in agricultural production. Climate-smart agriculture is a key policy instrument for achieving poverty eradication and a hunger-free world, as well as mitigating the effects of climate change. This book discusses in detail climate-smart agricultural technologies and practices that can reduce the vulnerability of agricultural systems, improve the livelihoods of farmers and other stakeholders, and reduce the greenhouse gas emissions from crop production and livestock husbandry. The agriculture, forestry and other land use (AFOLU) sector produces roughly 10-12 gigatons of CO2-equivalent per year; therefore, sustainable practices for agriculture and related land use hold immense potential to mitigate climate change. The potential impacts of climate variability and climate change on agriculture are extensively documented and articulated, especially with regard to global and national environmental agendas that call for innovation, transformation and climate-resilient advances in agriculture. As the book demonstrates, climate-smart agriculture offers an excellent tool for boosting agricultural output to feed the growing global population; for reducing greenhouse gases emissions from agriculture and other land use; and for protecting agricultural production systems from the impending dangers of climate change.
Heavy metals in soils continue to receive increasing attention due to the growing scientific and public awareness of environmental issues and the development of analytical techniques to measure their concentrations accurately. Building on the success and acclaim of the first edition, this book continues to provide an up-to-date, balanced and comprehensive review of the subject in two sections: the first providing an introduction to the metals chemistry, sources and methods used for their analysis; and the second containing chapters dealing with individual elements in detail.
Several textbooks and edited volumes are currently available on general soil fertility but' to date' none have been dedicated to the study of "Sustainable Carbon and Nitrogen Cycling in Soil." Yet this aspect is extremely important, considering the fact that the soil, as the 'epidermis of the Earth' (geodermis)' is a major component of the terrestrial biosphere. This book addresses virtually every aspect of C and N cycling, including: general concepts on the diversity of microorganisms and management practices for soil, the function of soil's structure-function-ecosystem, the evolving role of C and N, cutting-edge methods used in soil microbial ecological studies, rhizosphere microflora, the role of organic matter (OM) in agricultural productivity, C and N transformation in soil, biological nitrogen fixation (BNF) and its genetics, plant-growth-promoting rhizobacteria (PGPRs), PGPRs and their role in sustainable agriculture, organic agriculture, etc. The book's main objectives are: (1) to explain in detail the role of C and N cycling in sustaining agricultural productivity and its importance to sustainable soil management; (2) to show readers how to restore soil health with C and N; and (3) to help them understand the matching of C and N cycling rules from a climatic perspective. Given its scope, the book offers a valuable resource for educators, researchers, and policymakers, as well as undergraduate and graduate students of soil science, soil microbiology, agronomy, ecology, and the environmental sciences. Gathering cutting-edge contributions from internationally respected researchers, it offers authoritative content on a broad range of topics, which is supplemented by a wealth of data, tables, figures, and photographs. Moreover, it provides a roadmap for sustainable approaches to food and nutritional security, and to soil sustainability in agricultural systems, based on C and N cycling in soil systems.
This 4-volume set focuses on the use of microbial bioremediation and phytoremediation to clean up pollutants in soil, such as pesticides, petroleum hydrocarbons, metals, and chlorinated solvents, which reduce the soil's fertility and renders it unfit for plant growth. The volumes cover the many diverse eco-friendly microbial bioremediation and phytoremediation techniques for sustainable soil management. Bioremediation and Phytoremediation Technologies in Sustainable Soil Management: Volume 1: Fundamental Aspects and Contaminated Sites begins with an overview of phytoremediation and phytotechnologies and the role of environmental factors. It goes on to introduce soil assessment techniques and offers methods of remediation designed to combat soil and agricultural degradation. Attention is given to specific types of sites and soil pollution, such as soils contaminated by heavy metals; microbial and phytoremediation-based removal of polycyclic aromatic hydrocarbons (PAHs) from coal, crude oil, and gasoline; microbial bioremediation and amelioration of pesticide-contaminated soils; phytoremediation techniques for biomedical waste contaminated sites; as well as biomediation processes for human waste sites. Biopesticides are also explained in the book as an alternative to conventional pesticides as well as the possibilities for the improvement of modern bio-pesticides. Volume 2: Microbial Approaches and Recent Trends focuses on new and emerging techniques and approaches to address soil pollution. These include the use of rhizobacteria, archae, cyanobacteria, and microalgae as biofertilizers and for soil bioremediation efforts. New technologies for assessment of soil bioremediation are explored also. The chapters provides in-depth coverage of the mechanisms, advantages, and disadvantages of the technologies used and highlights the use of different microbial enzymes that are used in the process of bioremediation and phytoremediation to clean up different pollutants without causing damage to the natural environment. Volume 3: Inventive Techniques, Research Methods, and Case Studies is organized in three themes: plants in green remediation, tools and techniques in bioremediation and phytoremediation, and special sites and their remediation techniques. Innovative new techniques that advance the use of molecular biological approaches, nanotechnology, immobilization, vermicomposting and genetic modification developments are investigated to take advantage of these possibilities. Volume 4: Degradation of Pesticides and Polychlorinated Biphenyls addresses pesticide degradation, PCBs degradation, and genetic interventions. It begins by describing environment pesticide degradation, mechanisms and sustainability, microbes and microbial enzymes, plant microbe interactions, organophosphorus degradations and endosulfan degradation. It then goes on to discuss PCBs and degradation, cypermethrin, degradation by Phanerochaete chrysosporium, carvone and surfactants for degradation of PCBs. The book also advocates for genetic systems for degradation of PCBs and pesticides, with discussion of the different advantages and disadvantages for each strategy and the various techniques. Together, these four volumes provide in-depth coverage of the mechanisms, advantages, and disadvantages of the bioremediation and phytoremediation technologies for safe and sustainable soil management. The diverse topics help to arm biologists, agricultural engineers, environmental and soil scientists and chemists with the information and tools they need to address soil toxins that are a dangerous risk to plants, wildlife, humans and, of course, the soil itself.
This study, based on a literature review and simulations, shows the efficiency of cover crops at catching nitrate in most agriculture situations. It also analyzes both the negative impacts they can have and the ecosystem services they can provide. The introduction of a cover crop between two main crops helps catch the soil mineral nitrogen before the period of drainage and consequently reduces nitrate leaching and nitrate concentration in the drainage water. This study allows quantifying the efficiency of cover crops at catching nitrate and optimizing their implantation conditions over a large range of French pedoclimatic conditions. The presence of high nitrate levels in surface and ground waters, due to excessive nitrogen fertilization and natural production of nitrate by soil organic matter mineralization, is a double challenge for public health and environment protection.
The aim of this edited volume is to introduce the scientific community to paleoenvironmental studies of estuaries, to highlight the types of information that can be obtained from such studies, and to promote the use of paleoenvironmental studies in estuarine management. Readers will learn about the the application of different paleoecological approaches used in estuaries that develop our understanding of their response to natural and human influences. Particular attention is given to the essential steps required for undertaking a paleoecological study, in particular with regard to site selection, core extraction and chronological techniques, followed by the range of indicators that can be used. A series of case studies are discussed in the book to demonstrate how paleoecological studies can be used to address key questions, and to sustainably manage these important coastal environments in the future. This book will appeal to professional scientists interested in estuarine studies and/or paleoenvironmental research, as well as estuarine managers who are interested in the incorporation of paleoenvironmental research into their management programs.
Vertisols, one of the eleven established soil orders, are clay soils with unusual and interesting properties. They cover more than 350 million hectares of land in the world and in tropical Africa alone there are over 100 million hectares. Because of their very small particle size and high surface area, these soils have higher physical and chemical reactivity than other soils. Their interaction with agrochemicals/industrial wastes, has been, increasingly, the subject of research especially in the last two decades. Vertisols create special problems when used for engineering purposes. This book is intended to provide comprehensive and state-of-the-art information about Vertisols worldwide. Special attention is given to the use and management of soils such as fertilizer use, crop selection, soil tillage, water restriction on land including irrigation, and soil erosion. A special chapter has been added to deal with geotechnical engineering of Vertisols. Vertisols have great potential for agricultural production but many, especially in the developing world, are underutilized due to a lack of understanding regarding their behaviour and management. This book is written by leading scientists worldwide. It is expected that this monograph will be of great use to soil scientists and agronomists, graduate and senior graduate students. Improvement of their management may solve the current food deficiency in the world.
Healthy soil, with active soil life, deters long-term soil
degradation and ensures that geo-physical processes are
undisturbed. Is the vitality of soil under threat due to human
civilization? Or is it due to contamination, intensification, and
deforestation? Vital Soil aims to look at the effects society is
having on soil and contains contributions from recognized experts
in soil science.
The liquid phase of soil (soil solution) is a very thin, penetrating and all-embracing water layer. It has the most extensive surface among the biosphere components and interacts with all these components. Presented in this work is a new complex approach developed for soil liquid phase investigation that is based on "in situ" measurements. Investigation of the soil liquid phase can be of great significance in environmental research.
This book provides a global review of the mechanisms, incidence and control measures related to the problems of soil compaction in agriculture, forestry and other cropping systems. Among the disciplines which relate to this subject are soil physics, soil mechanics, vehicle mechanics, agricultural engineering, plant physiology, agronomy, pedology, climatology and economics. The volume will be of great value to soil scientists, agricultural engineers, and all those involved with irrigation, drainage and tillage. It will help to facilitate the exchange of information on current work throughout the world, as well as to promote scientific understanding and stimulate the development, evaluation and adoption of practical solutions to these widespread and urgent problems.
The geochemistry of the earth 's surface is controlled by chemical equilibrium, and the kinetics of the approach toward equilibrium. Many low temperature processes, such as weathering, do not reach equilibrium except over geologically long time periods. The approach to equilibrium can be described by kinetic theory and the application of kinetic theory to geochemical systems has made vast advances in the last several decades. Geochemical kinetics as a topic is now of importance to a wide range of geochemists in academia, industry, and government, and all geochemists need a rudimentary knowledge of the field. This book will summarize the fundamentals of geochemical kinetics with examples drawn especially from mineral dissolution and precipitation, but will also encompass discussion of high temperature processes and global geochemical cycle modeling. Analysis of textures of rocks, sediments, and mineral surfaces will be incorporated throughout and will be a subtheme of the book.
Sediments are a natural part of aquatic systems and they are
essential for the hydrological, geomorphological and ecological
functioning of those systems. For society they are important and
represent an important resource. However, due to the ever
increasing use of river catchments, sediments need to be managed in
a balanced and sustainable way. Sediment Management at the River
Basin Scale reviews some of the key requirements and challenges
facing scientists, river basin managers, and policy makers for
sustainable sediment management at the river basin scale, and puts
forward important recommendations.
Volume 1 of the Sustainable Management of Sediment Resources
mini-series is the first attempt to fill many of these gaps in
knowledge and also in practice. The volume includes sections on:
This book offers extensive information on the course of sedimentation in the Proterozoic Vindhyan Basin and the potential record of ancient life stored within the rocks. It covers topics ranging from facies analysis to sequence-building, from carbonates to siliciclastics, and mixed lithology and life records from microbial to potentially eukaryotes, along with the basin evolutionary history. Further, the book includes 75 color photographs and accompanying hand-sketches to help readers grasp key aspects of Vindhyan Geology. Vindhyan rocks are well known for their excellent preservation of microbial record of earth. Offering a student-friendly field guide containing detailed route maps, geological maps and a wealth of visual examples, it is also extremely useful in terms of understanding the microbe-dominated environments on Mars.
Since the publication of "The coconut palm - A monograph" in 1960, considerable information has been accrued on the crop through work at research institutes, international organisations and development agencies. Although coconut cultivation is spread over 93 countries, providing employment and creating livelihood opportunities to 64 million families around the globe, smallholder coconut farmers are now facing numerous challenges. The wide gap between the potential and actual yield is a major concern, and as such it is necessary to disseminate knowledge in order to implement research findings. Coconut research in India, one of the leading coconut producing countries, is celebrating its centenary, making this an opportune time to review the research and development advances and the relevant technologies. This detailed, comprehensive book covers all aspects of coconut, from the origins to cultivation, breeding, physiology and value addition, as well as subjects of topical interest like nutrition and health, biotechnology, and climate change and carbon sequestration. Written by leading experts in the fields it emphasises that the livelihood of the small coconut landholders is the ultimate aim of scientists and developmental agencies, and outlines various important strategies to make coconut farming more remunerative globally. It discusses work in all the major coconut growing countries and outlines suggestions for international cooperation. Research work on the crop is comparatively difficult because of its perennial nature, longevity, height, long juvenile phase, large sized nuts, cross pollination and seed propagation. As these special features necessitate greater investment of resources, time and land, it is all the more imperative that research is not duplicated and the information and experience becoming available around the world is shared so that it can be fully utilised. In this context periodic publications, compiling all the available information on coconut assume greater significance. This book is therefore of great value to researchers, students, extension workers, developmental agencies and progressive farmers.
Soils, invaluable indicators of the nature and history of the physical and human landscape, have strongly influenced the cultural record left to archaeologists. Not only are they primary reservoirs for artifacts, they often encase entire sites. And soil-forming processes in themselves are an important component of site formation, influencing which artifacts, features, and environmental indicators (floral, faunal, and geological) will be destroyed and to what extent and which will be preserved and how well. In this book, Holliday will address each of these issues in terms of fundamentals as well as in field case histories from all over the world. The focus will be on principles of soil geomorphology, soil stratigraphy, and soil chemistry and their applications in archaeological research.
Silicon (Si) plays a significant role in the resistance of plants to multiple stresses including biotic and abiotic stresses. Silicon is also the only element that does not damage plants when accumulated in excess. However, the contribution of Si to plant growth has been largely ignored due to its universal existence in the earth's crust. From numerous intensive studies on Si, initiated in Japan about 80 years ago, Japanese scientists realized that Si was important for the healthy growth of rice and for stability of rice production. In a worldwide first, silicon was recognized as a valuable fertilizer in Japan. The beneficial effects of Si on rice growth in particular, are largely attributable to the characteristics of a silica gel that is accumulated on the epidermal tissues in rice. These effects are expressed most clearly under high-density cultivation systems with heavy applications of nitrogen. Si is therefore recognized now as an ''agronomically essential element'' in Japan. Recently, Si has become globally important because it generates
resistance in many plants to diseases and pests, and may contribute
to reduced rates of application of pesticides and fungicides.
Silicon is also now considered as an environment-friendly element.
The achievements of Si research in Japan are introduced in this
book, in relation to soils, fertilizers and plant nutrition.
The study of soil nitrogen has long been an active field, but it was generally pivoted on agricultural and forestry production, and animal husbandry. With the rapid increase in the use of fertilizer nitrogen, more attention has been paid to the relationship between nitrogen management and environmental quality and human health. In addition, the study of soil nitrogen has become more comprehensive with the development of related sciences. The quantitative study of the processes of nitrogen cycling and their interrelationships has been an important part of this project and has attracted the attention of scientists all over the world. Nitrogen is one of the most important nutrients for plant growth and the application of fertilizer nitrogen is playing an important role in agricultural production. The annual consumption of fertilizer nitrogen in the world has reached 70 million tons, and China has an annual consumption of more than 15 million tons and is the largest fertilizer nitrogen consumer in the world. However, the efficiency of fertilizer nitrogen is low and losses are large. It is estimated that nitrogen losses from agriculture in China can be as high as 40-60% of the nitrogen applied. Some of the lost nitrogen enters the atmosphere and contributes to the greenhouse effect and some enters water bodies to pollute the water. Consequently, it is important for scientists all over the world to improve the efficiency of use of fertilizer nitrogen, to promote the biological fixation of nitrogen and to increase the nitrogen-supplying potential of soils.
This book mainly presents the current state of knowledge on the use of of Silicon (Si) in agriculture, including plants, soils and fertilizers. At the same time, it discusses the future interdisciplinary research that will be needed to further our knowledge and potential applications of Si in agriculture and in the environmental sciences in general. As the second most abundant element both on the surface of the Earth's crust and in soils, Si is an agronomically essential or quasi-essential element for improving the yield and quality of crops. Addressing the use of Si in agriculture in both theory and practice, the book is primarily intended for graduate students and researchers in various fields of the agricultural, biological, and environmental sciences, as well as for agronomic and fertilizer industry experts and advisors. Dr. Yongchao Liang is a full professor at the College of Environmental and Resource Sciences of the Zhejiang University, Hangzhou, China. Dr. Miroslav Nikolic is a research professor at the Institute for Multidisciplinary Research of the University of Belgrade, Serbia. Dr. Richard Belanger is a full professor at the Department of Plant Pathology of the Laval University, Canada and holder of a Canada Research Chair in plant protection. Dr. Haijun Gong is a full professor at College of Horticulture, Northwest A&F University, China. Dr. Alin Song is an associate professor at Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.
In view of the grave consequences of soil degradation on ecosystem functions, food security, biodiversity and human health, this book covers the extent, causes, processes and impacts of global soil degradation, and processes for improvement of degraded soils. Soil conservation measures, including soil amendments, decompaction, mulching, cover cropping, crop rotation, green manuring, contour farming, strip cropping, alley cropping, surface roughening, windbreaks, terracing, sloping agricultural land technology (SALT), dune stabilization, etc., are discussed. Particular emphasis is given to soil pollution and the methods of physical, chemical and biological remediation of polluted soils. This book will lead the reader from the basics to a comprehensive understanding of soil degradation, conservation and remediation. |
![]() ![]() You may like...
Ascending the Fourteener of Recovery - A…
Kc Tillman, Bryn Tillman
Paperback
The Inheritance of Solomon Farthing
Mary Paulson-Ellis
Hardcover
![]()
|