![]() |
![]() |
Your cart is empty |
||
Books > Earth & environment > Earth sciences > Geology & the lithosphere > Soil science, sedimentology
Phytoplasma III is the last of three books in the series covering all the aspects of phytoplasma-associated diseases. Phytoplasmas are a major limiting factor in the quality and productivity of many ornamental, horticultural and economically important agriculture crops worldwide, and losses due to phytoplasma diseases have disastrous consequences for farming communities. As there is no effective cure for these diseases, management strategies focus-on exclusion, minimizing their spread by insect vectors and propagation materials, and developing host plant resistance. This book provides an update on genomics, effectors and pathogenicity factors toward a better understanding of phytoplasma-host metabolic interactions. It offers a comprehensive overview of biological, serological and molecular characterization of the phytoplasmas, including recently developed approaches in diagnostics, such as transcriptomics studies, which have paved the way for analyzing the gene expression pattern in phytoplasmas on infection and revealed the up-regulation of genes associated with hormonal response, transcription factors, and signaling genes. Although phytoplasmas remain the most poorly characterized pathogens, recent studies have identified virulence factors that induce typical disease symptoms and have characterized the unique reductive evolution of the genome. Reviewing the advances in cultivation in axenic media together with the perspectives for future research to reduce the global incidence of these pathogens and the associated agricultural losses, the book is a valuable resource for plant pathologists, researchers in agriculture and PhD students.
Phytoremediation is an emerging technology that employs higher plants for the clean-up of contaminated environments. Basic and applied research have unequivocally demonstrated that selected plant species possess the genetic potential to accumulate, degrade, metabolize and immobilize a wide range of contaminants. The main focus of this volume is on the recent advances of technologies using green plants for remediation of various metals and metalloids. Topics include biomonitoring of heavy metal pollution, amendments of higher uptake of toxic metals, transport of heavy metals in plants, and toxicity mechanisms. Further chapters discuss agro-technological methods for minimizing pollution while improving soil quality, transgenic approaches to heavy metal remediation and present protocols for metal remediation via in vitro root cultures.
This book details the plant-assisted remediation method, "phytoremediation", which involves the interaction of plant roots and associated rhizospheric microorganisms for the remediation of soil contaminated with high levels of metals, pesticides, solvents, radionuclides, explosives, crude oil, organic compounds and various other contaminants. Each chapter highlights and compares the beneficial and economical alternatives of phytoremediation to currently practiced soil removal and burial practices.
Freezing and thawing of soils is a common phenomenon in the winter-cold zone. The thesis titled "Material Cycling of Wetland Soils Driven by Freeze-Thaw Effects" systematically explores the freeze-thaw effects on the accumulation and release processes of carbon and nitrogen in wetland soils, which is a good step toward the investigation of biogeochemical processes in wetlands in seasonal freeze-thaw areas. It is also developing strategies aimed at global warming effects on the accumulation and release of carbon and nitrogen in wetlands. Dr. Xiaofei Yu works at the Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, China.
The relationships between soils, microbes and humans are of crucial relevance in the tropics, where plant stress and microbial activity are exacerbated. This volume of Soil Biology presents the living component of tropical soils, showing how it is shaped by environmental conditions and emphasizing its dramatic impact on human survival and well-being. Following an introduction to the specificities of tropical soils and of their microbial communities, the biological aspects of soil management are examined, dealing with land use change, conservation and slash-and-burn agriculture, the restoration of hot deserts, agroforestry and paddy rice cultivation. As they are of particular relevance for tropical agriculture, symbioses of plants and microbes are thoroughly covered, as are the biodegradation of pesticides and health risks associated with wastewater irrigation. Lastly, traditional soil knowledge is discussed as a key to our sustainable presence in this world.
Nitrous oxide gas is a long-lived relatively active greenhouse gas (GHG) with an atmospheric lifetime of approximately 120 years, and heat trapping effects about 310 times more powerful than carbon dioxide per molecule basis. It contributes about 6% of observed global warming. Nitrous oxide is not only a potent GHG, but it also plays a significant role in the depletion of stratospheric ozone. This book describes the anthropogenic sources of N2O with major emphasis on agricultural activities. It summarizes an overview of global cycling of N and the role of nitrous oxide on global warming and ozone depletion, and then focus on major source, soil borne nitrous oxide emissions. The spatial-temporal variation of soil nitrous oxide fluxes and underlying biogeochemical processes are described, as well as approaches to quantify fluxes of N2O from soils. Mitigation strategies to reduce the emissions, especially from agricultural soils, and fertilizer nitrogen sources are described in detail in the latter part of the book.
T. Wichtmann, T. Triantafyllidis: Behaviour of granular soils under environmentally induced cyclic loads. - D. Muir Wood: Constitutive modelling. - C. di Prisco: Creep versus transient loading effects in geotechnical problems. - M. Pastor et al.: Mathematical models for transient, dynamic and cyclic problems in geotechnical engineering. - M. Pastor: Discretization techniques for transient, dynamics and cyclic problems in geotechnical engineering: first order hyperbolic partial diffential equations. - M. Pastor et l.: Discretization techniques for transient, dynamic and cyclic problems in geotechnical engineering: second order equation. - C. di Prisco: Cyclic mechanical response of rigid bodies interacting with sand strata. - D. Muir Wood: Macroelement modelling. - M. F. Randolph: Offshore design approaches and model tests for sub-failure cyclic loading of foundations. - M.F. Randolph: Cyclic interface shearing in sand and cemented solis and application to axial response of piles. - M. F. Randolph: Evaluation of the remoulded shear strength of offshore clays and application to pipline-soil and riser-soil interaction. The book gives a comprehensive description of the mechanical response of soils (granular and cohesive materials) under cyclic loading. It provides the geotechnical engineer with the theoretical and analytical tools necessary for the evaluation of settlements developng with time under cyclic, einvironmentally idncued loads (such as wave motion, wind actions, water table level variation) and their consequences for the serviceability and durability of structures such as the shallow or deep foundations used in offshore engineering, caisson beakwaters, ballast and airport pavements and also to interpret monitoring data, obtained from both natural and artificial slopes and earth embankments, for the purposes of risk assessment and mitigation.
This book describes the vast variety of xenobiotics, such as pesticides, antibiotics, antibiotic resistance genes, agrochemicals and other pollutants, their interactions with the soil environment, and the currently available strategies and techniques for soil decontamination and bioremediation. Topics covered include: transport mechanisms of pollutants along the Himalayas; use of earthworms in biomonitoring; metagenomic strategies for assessing contaminated sites; xenobiotics in the food chain; phyto-chemical remediation; biodegradation by fungi; and the use of enzymes and potential microbes in biotransformation. Accordingly, the book offers a valuable guide for scientists in the fields of environmental ecology, soil and food sciences, agriculture, and applied microbiology.
Bioaugmentation, biostimulation and biocontrol approaches using microbial inoculants, biofertilizers, biochemicals and organic amendments improve soil biology, fertility and crop productivity by providing plant growth-promoting nutrients and suppressing soil-borne diseases and plant-parasitic nematodes. Our knowledge of microbial diversity and its function in soils has been increased tremendously due to the availability of a wealth of data gained through recent advances in the development of molecular methods and metagenomics for the evaluation of microbial diversity and functions in the rhizosphere environment of soil. Chapters dealing with the application of biofertilizers and organic amendments are contributed by experts - authorities in the area of soil science including microbiology and molecular biology - from academic institutions and the industry.
Originally published in 1994, the first edition of Field Sampling Methods for Remedial Investigations soon became a premier resource in the field. The "Princeton Groundwater" course designated it as one of the top books on the market that address strategies for groundwater well installation, well completion, and groundwater sampling. This long-awaited second edition continues the tradition of providing guidance on how to develop cost-effective and defensible environmental sampling programs to support site characterization, site remediation, and building decontamination and decommissioning in both chemical and radioactive environments. The book provides guidance on how to: Implement the US EPA's latest Data Quality Objective's procedure Prepare and maintain defensible field documentation Use quality control sampling, data verification, data validation, and data quality assessment to assure the data collected is of adequate quality and quantity for its intended use Properly decontaminate drilling and field sampling equipment Determine appropriate health and safety requirements Manage investigation-derived waste Properly prepare sample bottles for shipment
Phosphorus (P) is a finite resource which is essential for life. It is a limiting nutrient in many ecosystems but also a pollutant which can affect biodiversity in terrestrial ecosystems and change the ecology of water bodies. This book collects the latest information on biological processes in soil P cycling, which to date have remained much less understood than physico-chemical processes. The methods section presents spectroscopic techniques and the characterization of microbial P forms, as well as the use of tracers, molecular approaches and modeling of soil-plant systems. The section on processes deals with mycorrhizal symbioses, microbial P solubilization, soil macrofauna, phosphatase enzymes and rhizosphere processes. On the system level, P cycling is examined for grasslands, arctic and alpine soils, forest plantations, tropical forests, and dryland regions. Further, P management with respect to animal production and cropping, and the interactions between global change and P cycling, are treated.
Impact cratering is an important geological process on all solid planetary bodies, and, in the case of Earth, may have had major climatic and biological effects. Most terrestrial impact craters have been erased or modified beyond recognition. However, major impacts throw ejecta over large areas of the Earth's surface. Recognition of these impact ejecta layers can help fill in the gaps in the terrestrial cratering record and at the same time provide direct correlation between major impacts and other geological events, such as climatic changes and mass extinctions. This book provides the first summary of known distal impact ejecta layers
Urbanization drastically alters the ecosystems structure and functions, disrupts cycling of C and other elements along with water. It alters the energy balance and influences climate at local, regional and global scales. In 2008, urban population exceeded the rural population. In 2050, 70% of the world population will live in urban centers. The number of megacities (10 million inhabitants) increased from three in 1975 to 19 in 2007, and is projected to be 27 in 2025. Rapid urbanization is altering the ecosystem C budget. Yet, urban ecosystems have a large C sink capacity in soils and biota. Judicious planning and effective management can enhance C pool in urban ecosystems, and off-set some of the anthropogenic emissions. Principal components with regards to C sequestration include home lawns and turfs, urban forests, green roofs, park and recreational/sports facilities and urban agriculture.
This volume presents papers on the use of micro-XRF core scanners in palaeoenvironmental research. It contains a broad ranging view of instrument capability and points to future developments that will help contribute to higher precision elemental data and faster core analysis. Readers will find a diverse range of research by leading experts that have used micro-XRF core scanners in a wide range of scientific applications. The book includes specific application papers reporting on the use of XRF core scanners in a variety of marine, lacustrine, and pollution studies. In addition, coverage also examines practical aspects of core scanner usage, data optimisation and data calibration and interpretation. In a little over a decade, micro-XRF sediment core scanners have made a substantive contribution to palaeoenvironmental research. Their impact is based on their ability to rapidly, non-destructively and automatically scan sediment cores. Not only do they rapidly provide important proxy data without damaging samples, but they can obtain environmental data at decadal, annual and even sub-annual scales. This volume will help both experienced and new users of these non-destructive core scanners take full advantage of one of the most powerful geochemical screening tools in the environmental scientist's toolbox.
This thesis adopts the relative back-projection method to dramatically reduce "swimming" artifacts by identifying the rupture fronts in the time window of a reference station; this led to a faster and more accurate image of the rupture processes of earthquakes. Mitigating the damage caused by earthquakes is one of the primary goals of seismology, and includes saving more people's lives by devising seismological approaches to rapidly analyze an earthquake's rupture process. The back-projection method described in this thesis can make that a reality.
Permafrost Hydrology systematically elucidates the roles of seasonally and perennially frozen ground on the distribution, storage and flow of water. Cold regions of the World are subject to mounting development which significantly affects the physical environment. Climate change, natural or human-induced, reinforces the impacts. Knowledge of surface and ground water processes operating in permafrost terrain is fundamental to planning, management and conservation. This book is an indispensable reference for libraries and researchers, an information source for practitioners, and a valuable text for training the next generations of cold region scientists and engineers.
The fundamentals of methods in nuclear geophysics and their practical applications in engineering geology, hydrology, hydrogeology, agriculture and environmental science are discussed in this book. The methods and apparatus based on absorption and scattering of gamma and neutron radiation for determination of density and soil moisture in natural conditions are presented in Chapters 2, 3, and 4. The theoretical fundamentals and installations of the penetration logging techniques where gamma, gamma-gamma and neutron logging in combination with static penetration form common complexes for engineering geology and hydrogeology exploration without boring holes are described. The developed constructions and practical use penetration logging installations for applications on land and marine shelves are described in Chapters 5, 6, 7, and 8. The physical fundamentals for the use of the natural stable and radioactive isotopes for study of the global hydrological cycle are provided. The experimental data, origin and distribution of cosmogenic and radiogenic isotopes in the oceans, atmospheric moisture, surface and underground waters are presented in Chapters 9, 10, and 11. The sources and conditions of the radioactive contamination of the natural waters are discussed in Chapters 12 and 13. This book will be of interest to scientists and researchers who use nuclear geophysics methods in engineering geology, hydrology, hydrogeology and hydrogeoecology. Lecturers, students, and postgraduates in these subjects will also find it useful.
Recent global events such as the devastating 1998 Papua New Guinea tsunami, the 2004 Sumatran tsunami and the 2006 SE Asia undersea network cable failure underscore the societal and economic effects of submarine mass movements. These events call upon the scientific community to understand submarine mass movement processes and consequences to assist in hazard assessment, mitigation and planning. Additionally, submarine mass movements are beginning to be recognized as prevalent in continental margin geologic sections. As such, they represent a significant if not dominant role in margin sedimentary processes. They also represent a potential hazard to hydrocarbon exploration and development, but also represent exploration indicators and targets. This volume consists of a collection of the latest scientific research by international experts in geological, geophysical, engineering and environment aspects of submarine mass failures, focussed on understanding the full spectrum of challenges presented by submarine mass movements and their consequences.
This is a synthesis of several studies on fluxes of carbon, water and energy conducted in a range of European forests encompassing different climates, soils and biomes. The volume covers methodological issues, particularly the eddy covariance technique describing its limitations and practical use. Further, major insights in ecosystem processes gained through investigations in evergreen coniferous, mediterranean and broad-leaved forests are presented. In an integrated effort, atmospheric physicists, ecologists, ecosystem modellers, and remote sensing scientists elucidate the impact of terrestrial ecosystems on the global biogeochemistry of the earth.
Submarine mass movements represent major offshore geohazards due
to their destructive and tsunami-generation potential. This
potential poses a threat to human life as well as to coastal,
nearshore and offshore engineering structures. Recent examples of
catastrophic submarine landslide events that affected human
populations (including tsunamis) are numerous; e.g., Nice airport
in 1979, Papua-New Guinea in 1998, Stromboli in 2002, Finneidfjord
in 1996, and the 2006 and 2009 failures in the submarine cable
network around Taiwan. The Great East Japan Earthquake in March
2011 also generated submarine landslides that may have amplified
effects of the devastating tsunami. Given that 30% of the World 's
population live within 60 km of the coast, the hazard posed by
submarine landslides is expected to grow as global sea level rises.
This elevated awareness of the need for better understanding of
underwater landslides is coupled with great advances in underwater
mapping, sampling and monitoring technologies, laboratory analogue
and numerical modeling capabilities developed over the past two
decades. Multibeam sonar, 3D seismic reflection, and remote and
autonomous underwater vehicle technologies provide hitherto
unparalleled imagery of the geology beneath the oceans, permitting
investigation of submarine landslide deposits in great detail.
Increased and new access to drilling, coring, in situ measurements
and monitoring devices allows for ground-thruthing geophysical
data, provides access to samples for geotechnical laboratory
experiments and unprecedented in situ information on strength and
effective stress conditions of underwater slopes susceptible to
fail. Great advances in numerical simulation of submarine landslide
kinematics and tsunami propagation, particularly since the 2004
Sumatra tsunami, have also lead to increased understanding and
predictability of submarine landslide consequences. |
![]() ![]() You may like...
Data Analysis and Data Mining - An…
Adelchi Azzalini, Bruno Scarpa
Hardcover
R3,552
Discovery Miles 35 520
Mathematical and Statistical Methods for…
Marco Corazza, Claudio Pizzi
Hardcover
R3,579
Discovery Miles 35 790
Emerging Trends in Terahertz Engineering…
Arindam Biswas, Amit Banerjee, …
Hardcover
R3,811
Discovery Miles 38 110
International Perspectives on…
Lucy apRoberts, Bryn Davies, …
Hardcover
R2,927
Discovery Miles 29 270
Phosphor Handbook - Three Volume Set
Ru-Shi Liu, Xiaojun Wang
Hardcover
R14,146
Discovery Miles 141 460
Bug Club Phonics Set 11 / Red C Elvis…
Maolisa Kelly, Teresa Heapy
Paperback
R223
Discovery Miles 2 230
New all-in-one: Disasters: Part of life…
Mart Meij, Beatrix de Villiers
Paperback
|