![]() |
![]() |
Your cart is empty |
||
Books > Earth & environment > Earth sciences > Geology & the lithosphere > Soil science, sedimentology
This book presents a comprehensive collection of various in situ and ex-situ soil remediation regimes that employ natural or genetically modified microbes, plants, and animals for the biodegradation of toxic compounds or hazardous waste into simpler non-toxic products. These techniques are demonstrated to be functionally effective in connection with physical, chemical, and biological strategies. Soil and water contamination through heavy metals, hydrocarbons and radioactive wastes is of global concern, as these factors have cumulative effects on the environment and human health through food-chain contamination. The book discusses the utilization of algae, plants, plant-associated bacteria, fungi (endophytic or rhizospheric) and certain lower animals for the sustainable bioremediation of organic and inorganic pollutants. In addition, it explores a number of more recent techniques like biochar and biofilms for carbon sequestration, soil conditioning and remediation, and water remediation. It highlights a number of recent advances in nanobioremediation, an emerging technology based on biosynthetic nanoparticles. Lastly, it presents illustrative case studies and highlights the successful treatment of polluted soils by means of these strategies.
This two-volume work is a testament to the increasing interest in the role of microbes in sustainable agriculture and food security. Advances in microbial technologies are explored in chapters dealing with topics such as carbon sequestration, soil fertility management, sustainable crop production, and microbial signaling networks. Volume I is a collection of research findings that invites readers to examine the application of microbes in reinstating degraded ecosystems and also in establishing sustainable croplands. Highly readable entries attempt to close the knowledge gap between soil microbial associations and sustainable agriculture. An increase in the global population with changing climate is leading to environments of various abiotic and biotic stresses for agricultural crops. It therefore becomes important to identify the techniques to improve soil fertility and function using different microbial groups such as actinobacteria, microalgae, fluorescent pseudomonads and cyanobacterial systems. These are examined in this volume in greater detail. This work is a significant contribution to research in this increasingly important discipline, and will appeal to researchers in microbiology, agriculture, environmental sciences, and soil and crop sciences.
With millions of different bacterial species living in soil, the microbial community is extremely complex, varying at very small scales. Microbe-driven functions are essential for most processes in soil. Thus, a better understanding of this microbial diversity will be invaluable for the management of the various soil functions. Nucleic Acids and Proteins in Soil combines traditional approaches in soil microbiology and biochemistry with the latest techniques in molecular microbial ecology. Included are methods to analyse the presence and importance of nucleic acids and proteins both inside and outside microbial cells, the horizontal gene transfer which drives bacterial diversity, as well as soil proteomes. Further chapters describe techniques such as PCR, fingerprinting, the challenging use of gene arrays for structural and functional analysis, stable isotope probing to identify in situ metabolic functions, and the use of marker and reporter genes in soil microbial ecology.
Soil organic matter is a reservoir for plant nutrients, provides water-holding capacity, stabilizes soil structure against compaction and erosion, and thus determines soil productivity. All agriculture to some degree depends on soil organic matter. It has long been known that soil organic matter declines when land is taken into cultivation, and that the productivity of new agricultural land is governed by fertility contributions from decomposing natural organic matter. The expansion of agriculture to ever new and more fragile lands, particularly in tropical and developing regions, causes environmental degradation with local effects on soil quality, regional effects on landscape integrity and water quality, and global effects on carbon cycles and the atmosphere. This book summarizes current knowledge of the properties and dynamics of soil organic matter in the tropics, its role in determining soil quality, its stability and turnover, and the options for management in the context of tropical landuse systems, for a readership of resource scientists, economists and advanced students. Maintenance of organic matter is critical for preventing land degradation. Case studies and practical applications are therefore an important part of the book, as are the exploration of future directions in research and management.
The book deals with the processes in marine environment with particular emphasis on the interface processes (sediments- water and atmosphere-water) regarding organic matter and energy fluxes, carbon dioxide intake and transformation. Particular analytical methodologies concerning biosensors for analysis in situ are discussed.
Cryosols - permafrost - occupy a unique part of the earth and have properties greatly different from other soils. They also occur where the greatest impact of global warming is predicted. This is the first book bring together the leading researchers in the area of permafrost soils to produce a review of the geography, cryogenic soil forming processes, ecological processes, classification and use of soils that are affected by permafrost.
Hazardous and Trace Materials in Soil and Plants: Sources, Effects and Management explores the latest advancements in reducing, avoiding and eliminating soil contaminants that challenge the health and safety of agricultural plants. With a focus on minimizing the production of those hazardous substances, controlling their distribution and ensuring safe utilization, the book explores each contributing area and provides insights toward improved, sustainable and secure production. This is an excellent reference resource on both current research and future directions from laboratory research to field applications. The combined impacts of climate change and industrialization have led to increased and diversified threats to the health of the soil in which our food crops are grown, as well as in the plants themselves. This dual-hazard scenario is increasingly recognized as a threat to not just the environment, but to global food security as agricultural soils contaminated with pollutants alter plant metabolism, thus resulting in reduced crop quality and production quantity.
The three sections of this volume deal with topics of broad interest. The first deals with cetyl alcohol and is a most comprehensive study of this essential ingredient in the cosmetic and pharmaceutical industry, with an explanation of its functionality. The second is a most comprehensive, up-to-date review of acid/base interactions of a variety of materials, including small molecules, proteins and polyelectrolytes. The third section describes the combined radiochemical and electrochemical methods in the evaluation of the properties of solids in contact with solutions.
Decomposition of organic matter is a major ecosystem process involving an array of different organisms, including bacteria, fungi and invertebrates. The main objective of this book is to provide students and laboratory instructors at universities and professional ecologists with a broad range of established methods to study plant litter decomposition. Detailed protocols for direct use in the field or laboratory are presented in an easy to follow step-by-step format. A short introduction to each protocol reviews the ecological significance and principles of the technique and points to key references. Although most methods are described for freshwater ecosystems, many will work equally well in the presented or slightly modified form for studies in marine and terrestrial environments.
This two-volume work is an effort to provide a common platform to environmental engineers, microbiologists, chemical scientists, plant physiologists and molecular biologists working with a common aim of sustainable solutions to varied environmental contamination issues. Chapters explore biological and non-biological strategies to minimize environmental pollution. Highly readable entries attempt to close the knowledge gap between plant - microbial associations and environmental remediation. Volume 2 focuses on the non-biological/chemical approaches for the cleanup of contaminated soils. Important concepts such as the role of metallic iron in the decontamination of hexavalent chromium polluted waters are highlighted; in addition, nanoscale materials and electrochemical approaches used in water and soil remediation are discussed; and the synthesis and characterization of cation composite exchange material and its application in removing toxic metals are elaborated in detail. Readers will also discover the major advances in the remediation of environmental pollutants by adsorption technologies.
Phytoplasma-associated diseases are a major limiting factor to quality and productivity of many ornamentals, horticultural and other economically important agriculture crops worldwide. Annual losses due to phytoplasma diseases in many crops vary, but under the pathogen favorable conditions they always lead to disastrous consequences to farming community. As there is no effective cure for phytoplasma diseases, the management options emphasize on their exclusion, minimizing their spread by insect vectors and propagation materials and on development of host plant resistance. The phytoplasma associated plant diseases have a history of more than 50 years. Phytoplasmas have undoubtedly infected plants and cause diseases for centuries before they are described and proven to be the causal agents. But important progress related to identification of phytoplasmas only began after 1980's. Phytoplasmas have emerged as the most serious constraints in the production of several crops all around the world during last four decades. Phytoplasmas constitute a major limiting factor to quality and productivity of cereals, horticultural, ornamentals and many other economically important crops all over the world. Annual losses due to phytoplasma diseases may vary, but under the pathogen favorable condition, phytoplasma disease may lead to disastrous consequences for farming and industry community. The scientific literature concerning phytoplasma occurrence, characterization, diagnosis, detection, and management is growing at a fast pace. Significant advancement in the last decades on diagnostic, biological and molecular properties, epidemiology, host-pathogen-insect interactions as well as management of phytoplasmas has been made. Till date, no authentic compilation is available to know the progress of phytoplasmas characterization major crops all over the world. The planned book will compile all the updated information available information on phytoplasmas by distinguished experts in the form of edited book entitled "Characterization and epidemiology of phytoplasma associated diseases". The book covers recent and update information on emerging and re-emerging phytoplasma diseases affecting important crops in tropics and subtropics. It provides comprehensive information on disease distribution, occurrence, and identification of the phytoplasmas including the recent approaches for diagnostics, transmission, and information about losses and geographical distribution along with and management aspects. This volume contains 11-12 chapters contributed by the experienced and recognized experts working on different group of phytoplasmas affecting major crops all over the world. The information on various topics is at advanced as well as comprehensive level and provides the period wise developments of phytoplasma research. The book covers major chapters on an up to date progress of phytoplasma research, and then phytoplasma diseases associated with vegetable, pulse, oils crops, cereals, sugar crops, fruit crops, ornamentals, medicinal plants, palms species, forest tress and weeds. We have covered historical background, geographical distribution, identification and characterization, genetic diversity, host pathogen interaction and management aspects of important phytoplasma diseases infecting our major agricultural crops. The information on various topics is advanced as well as comprehensive, and provides thought provoking ideas for planning novel research ideas for future. This book will be useful to everyone interested in mollicutes, phytoplasma, spiroplasmas, plant pathology, disease control and plant biology and serve as an exhaustive and up-to-date compendium of references on various aspects of different groups of phytoplasmas affecting important crops worldwide.
Secondary Metabolites in Soil Ecology focuses on the role of bacterial, fungal and plant secondary metabolites in soil ecosystems. Our understanding of the biological function of secondary metabolites is surprisingly limited, considering our knowledge of their structural diversity and pharmaceutically relevant activities. This volume reviews functional aspects of secondary metabolite production, with a focus on interactions among soil organisms. Topics such as truffle metabolites and burnt phenomenon, ecology of mycotoxins in soil, root exudates, and chemical interactions between Streptomyces and mycorrhiza fungi are treated. Further aspects are the role of microbial metabolites as quorum sensing signals, their role in protecting plants against pathogens and the effect of volatiles on soil invertebrates. Chapters describing techniques for the detection of antibiotics in soil and the application of metabolomics to rhizosphere research, which has advanced rapidly in recent years, complement the book.
Reliable methods for monitoring and assessing soil quality are a prerequisite for successful soil bioremediation projects. The fifth volume of Soil Biology presents detailed descriptions of selected methods for evaluating, monitoring and assessing bioremediation treatments of soils contaminated with organic pollutants or heavy metals. Traditional soil investigation techniques, including chemical, physical and microbiological methods, are complemented by the most suitable modern methods, such as the use of bioreporter technology, immunological, ecotoxicological or molecular assays. Feasibility studies for bioremediation treatments complete the manual. Easy-to-follow protocols with step-by-step procedures, lists of the required equipment and reagents as well as notes on the evaluation and quality control allow immediate application. Short introductions to the principles and objectives help to assess the field of application of each procedure.
As the world's population continues to expand, maintaining and indeed increasing agricultural productivity is more important than ever, though it is also more difficult than ever in the face of changing weather patterns that in some cases are leading to aridity and desertification. The absence of scientific soil inventories, especially in arid areas, leads to mistaken decisions about soil use that, in the end, reduce a region's capacity to feed its population, or to guarantee a clean water supply. Greater efficiency in soil use is possible when these resources are properly classified using international standards. Focusing on arid regions, this volume details soil classification from many countries. It is only once this information is properly assimilated by policymakers it becomes a foundation for informed decisions in land use planning for rational and sustainable uses.
The book is a realistic blend of basic knowledge and understanding in soil physical properties. It will enable the reader to scientifically analyze soils to develop practical and successful means of providing sufficient drainage and to develop science-based irrigation strategies. Only basic mathematical knowledge is necessary to understand and apply the proven principles covered. With limited resources that are increasing significantly in costs, the book blends the ideal concept of providing sufficient drainage and irrigation based on using soil physical properties but with financial limitations in mind. One traditional problem with many Soil Physics, Drainage, and Irrigations-based texts is the prerequisite of understanding complicated calculus-based mathematics. Although necessary for a theory-based text, our text was developed with practitioners in mind where such complicated mathematics was avoided but referenced if the reader wishes to further explore the specific topic. Another problem with many traditional texts is the lack of practical examples or case-studies allowing readers to relate their specific scenarios to similar types of situations. We have purposely included numerous examples and practical field experiences. This is especially true when many of the theoretical ideals are covered, followed by explanations of how such ideals can be applied in the laboratory and field.
Almost 50% of the total area of Austria is forested, and the forests are dominated by commercially valuable stands of Norway spruce ( (Picea abies). The few remaining forests that resemble the natural vegetation composition are located in forest reserves with restricted management. These natural forests are used as reference systems for evaluating silvicultural research on sustainable forest management. Natural forests are expected to have high biodiversity, where the structural richness of the habitat enables complex relationships between fauna, flora, and microflora. They also provide refugia for rare plants and animals found only in natural forest types. Austria had 180 of these forest reserves up to the year 2003. Most of these forests are privately owned, and owners are compensated by the government for loss of income associated with conservation status. The Ministerial Conference for the Protection of Forest Ecosystems (MCPFE) has launched a world-wide network of protected forest areas which should cover all major forest types (MCPFE and UNECE/FAO, 2003). The sites selected for our investigation of soil conditions and communities were chosen by vegetation ecologists and soil scientists. The stands have developed under natural competition conditions with no management interventions. All sites were well documented with known forest history. Our set of sites spans gradients of environmental conditions as well as species composition, providing a realistic evaluation of the interactions of biotic and abiotic factors.
279 4. 2. Basic formulation 280 4. 3. Variations on the theme 285 4. 4. C. S. Parameters 286 5. CONCLUSIONS 289 REFERENCES 290 CHAPTER 12 FINITE ELEMENT METHODS FOR FILLS AND EMBANKMENT DAMS D. J. NAYLOR 1. INTRODUCTION 291 2. NUMBER OF LAYERS - ACTUAL AND ANALYTICAL 292 3. DEFORMATION IN A RISING FILL 292 4. BASIC FINITE ELEMENT PROCEDURE 292 5. INTERPRETATION OF FINITE ELEMENT DIS PLACEMENTS - 1D CASE 294 6. NEW LAYER STIFFNESS REDUCTION 296 7. MODELLING COMPACTION 300 8. FINITE ELEMENT EFFECTIVE STRESS TECHNIQUES 302 8. 1. Undrained effective stress analysis 302 8. 2. Known pore pressure change analysis 305 9. FIRST FILLING AND OPERATION - GENERAL 306 10. LOADING DUE TO IMPOUNDING 308 10. 1. upstream membrane dam 308 10. 2. Internal membrane dam 308 10. 3. Zoned embankment dams 312 11. ANALYSIS OF FIRST FILLING AND OPERATION 312 11. 1. First filling 312 11. 2. Steady seepage condition 314 11. 3. Finite element considerations 314 12. COLLAPSE SETTLEMENT 314 xili 12. 1. Nobari and Duncan's method 317 12. 2. Generalisation of Nobari and Duncan's method 319 12. 3. One-dimensional example 320 323 13. APPLICATIONS 13. 1. carsington dam 323 13. 2. Beliche dam 325 13. 3. Monasavu dam 330 REFERENCES 335 APPENDIX: DERIVATION OF EQUIVALENT LAYER STIFFNESS 332 CHAPTER 13 CONCRETE FACE ROCKFILL DAMS NELSON L. DE S. PINTO 1. INTRODUCTION 341 2. CURRENT DESIGN PRACTICE 343 2. 1. Evolution 343 2. 2. Embankment 344 2. 2. 1."
Following a description of the various sources and factors influencing the contents of heavy metal pollution in post-catastrophic and agricultural soils, subsequent chapters examine soil enzymes and eggs as bio-monitors, lead adsorption, the effects of arsenic on microbial diversity, and the effects of Mediterranean grasslands on abandoned mines. A third section focuses on the adaptation strategies used by plants and bacteria, such as Pinus sylvestris in industrial areas, and the rhizosphere in contaminated tropical soils and soil treated with sewage sludge. Further topics addressed include strategies of bioremediation, e.g. using transgenic plants as tools for soil remediation. This new volume on heavy metals in soil will be of interest to researchers and scholars in microbial and plant biotechnology, agriculture, the environmental sciences and soil ecology.
Earthworms, which belong to the order Oligochaeta, comprise roughly 3,000 species grouped into five families. Earthworms have been called 'ecosystem engineers'; much like human engineers, they change the structure of their environments. Earthworms are very versatile and are found in nearly all terrestrial ecosystems. They play an important role in forest and agricultural ecosystems. This Soil Biology volume describes the various facets of earthworms, such as their role in soil improvement, soil structure, and the biocontrol of soil-borne plant fungal diseases. Reviews discuss earthworms' innate immune system, molecular markers to address various issues of earthworm ecology, earthworm population dynamics, and the influences of organic farming systems and tillage. Further topics include the characteristics of vermicompost, relationships between soil earthworms and enzymes, the role of spermathecae, copulatory behavior, and adjustment of the donated sperm volume.
About 20 years ago the emphasis in soil chemistry research switched from studies of problems related to scarcities of plant nutrients to those arising from soil pollutants. The new problems have come about because of the excessive uses of fertilizers, the inputs from farm and industrial wastes, the widespread applications of anthropogenie xenobiotic chemicals, and the deterioration of soil structure resulting from certain modern agriculture practises. The International Society of Soil Science (ISSS) recognized these problems and challenges. A provisional Working Group was set up in 1978 to focus attention on soil colloids with a view to understanding better the interactions wh ich take place at their surfaces. It was recognized that these interactions are fundamental to problems of soil fertility, as weIl as to those of soil pollution. After the group had received the official support of ISSS at its 12th International Congress in New Delhi in 1982 it set as its priority the assembling and evaluation of information, relevant to the soil and environmental sciences, concerning the composition and structure of soil colloids. Prior to that aseries of Position Papers were published in the Bulletin of the International Society of Soil Science (Vol. 61, 1981) outlining the state of knowledge about the composition and properties of soil colloids.
Soil carbon sequestration can play a strategic role in controlling the increase of CO2 in the atmosphere and thereby help mitigate climatic change. There are scientific opportunities to increase the capacity of soils to store carbon and remove it from circulation for longer periods of time. The vast areas of degraded and desertified lands throughout the world offer great potential for the sequestration of very large quantities of carbon. If credits are to be bought and sold for carbon storage, quick and inexpensive instruments and methods will be needed to monitor and verify that carbon is actually being added and maintained in soils. Large-scale soil carbon sequestration projects pose economic and social problems that need to be explored. This book focuses on scientific and implementation issues that need to be addressed in order to advance the discipline of carbon sequestration from theory to reality. The main issues discussed in the book are broad and cover aspects of basic science, monitoring, and implementation. The opportunity to restore productivity of degraded lands through carbon sequestration is examined in detail. This book will be of special interest to professionals in agronomy, soil science, and climatology.
This book presents recent lessons learned in the context of research and development for various dryland ecosystems, focusing on water resources management, land and vegetation cover degradation and remediation, and socioeconomic aspects, as well as integrated approaches to ensuring water and land security in view of the current and predicted climate change. As water and land are the essential bases of food production, the management of these natural resources is becoming a cornerstone for the development of dryland populations. The book gathers the peer-reviewed, revised versions of the most outstanding papers on these topics presented at the ILDAC2015 Conference in Djerba, Tunisia.
Human activities have dramatically changed the composition and organisation of soils. Industrial and urban wastes, agricultural application and also mining activities resulted in an increased concentration of heavy metals in soils. How plants and soil microorganisms cope with this situation and the sophisticated techniques developed for survival in contaminated soils is discussed in this volume. The topics presented include: the general role of heavy metals in biological soil systems; the relation of inorganic and organic pollutions; heavy metal, salt tolerance and combined effects with salinity; effects on abuscular mycorrhizal and on saprophytic soil fungi; heavy metal resistance by streptomycetes; trace element determination of environmental samples; the use of microbiological communities as indicators; phytostabilization of lead polluted sites by native plants; effects of soil earthworms on removal of heavy metals and the remediation of heavy metal contaminated tropical land.
A comprehensive book on basic processes of soil C dynamics and the underlying factors and causes which determine the technical and economic potential of soil C sequestration. The book provides information on the dynamics of both inorganic (lithogenic and pedogenic carbonates) and organic C (labile, intermediate and passive). It describes different types of agroecosystems, and lists questions at the end of each chapter to stimulate thinking and promote academic dialogue. Each chapter has a bibliography containing up-to-date references on the current research, and provides the state-of-the-knowledge while also identifying the knowledge gaps for future research. The critical need for restoring C stocks in world soils is discussed in terms of provisioning of essential ecosystem services (food security, carbon sequestration, water quality and renewability, and biodiversity). It is of interest to students, scientists, and policy makers. |
![]() ![]() You may like...
Electrical Steels, Volume 1…
Anthony Moses, Philip Anderson, …
Hardcover
Electronic Circuit Analysis using…
Pooja Mohindru, Pankaj Mohindru
Hardcover
R2,776
Discovery Miles 27 760
Shakespeare's History of King Henry the…
William Shakespeare
Hardcover
Moomin Set of 3 Mini Notebooks
Flame Tree Studio
Notebook / blank book
The Antichrist - Translated and…
Friedrich Wilhelm Nietzsche, H.L. Mencken
Hardcover
R680
Discovery Miles 6 800
|