![]() |
![]() |
Your cart is empty |
||
Books > Earth & environment > Earth sciences > Geology & the lithosphere > Soil science, sedimentology
Soil Health and Intensification of Agroecosystems examines the climate, environmental, and human effects on agroecosystems and how the existing paradigms must be revised in order to establish sustainable production. The increased demand for food and fuel exerts tremendous stress on all aspects of natural resources and the environment to satisfy an ever increasing world population, which includes the use of agriculture products for energy and other uses in addition to human and animal food. The book presents options for ecological systems that mimic the natural diversity of the ecosystem and can have significant effect as the world faces a rapidly changing and volatile climate. The book explores the introduction of sustainable agroecosystems that promote biodiversity, sustain soil health, and enhance food production as ways to help mitigate some of these adverse effects. New agroecosystems will help define a resilient system that can potentially absorb some of the extreme shifts in climate. Changing the existing cropping system paradigm to utilize natural system attributes by promoting biodiversity within production agricultural systems, such as the integration of polycultures, will also enhance ecological resiliency and will likely increase carbon sequestration.
Soil Reinforcement for Anchor Plates and Uplift Response presents a comprehensive and rigorous review of the current knowledge in soil improvement for anchor plates, and is based on original research that includes experimental data on how to enhance uplift response of soil anchor plates by using several soil reinforcement methods. Divided into 6 chapters, the author makes an introduction to both Ancho Plates and Soil Reinforcement in chapter one, then providing a comprehensive literature review on the topic in chapter 2. Chapter 3 presents how the experiment was set up, the different types of geotextiles used, and the types of soil tested. Chapter 4 presents experimental data, along with data provided by simulation softwares, including Plaxis. Chapter 5 compares the experimental results to the numerical simulation data, providing researchers and geotechnical engineers with tools they can apply to their own projects. In chapter 6, the author presents his conclusions and recommendations on the usage of soil reinforcement to maximize uplift response to anchor plates. Researchers in geotechnical engineering can use the methods and experimental data presented in the book on their own projects, and practicing engineers will benefit from the comparisons between experimental and simulation data provided to make appropriate selection of soil reinforcement techniques that can be applied to their projects.
An understanding of the characteristics and the ecology of soils, particularly those of forest ecosystems in the humid tropics, is central to the development of sustainable forest management systems. The present book examines the contribution that forest soil science and forest ecology can make to sustainable land use in the humid tropics. Four main issues are addressed: characteristics and classification of forest soils, chemical and hydrological changes after forest utilization, soil fertility management in forest plantations and agroforestry systems as well as ecosystem studies from the dipterocarp forest region of Southeast Asia. Additionally, case studies include work from Guyana, Costa Rica, the Philippines, Malaysia, Australia and Nigeria.
Recent years have witnessed the development of computational geomechanics as an important branch of engineering. The use of modern computational techniques makes it possible to deal with many complex engineering problems, taking into account many of the typical properties of geotechnical materials (soil and rock), such as the coupled behaviour of pore water and solid material, nonlinear elasto-plastic behaviour, and transport processes. This book provides an introduction to these methods, presenting the basic principles of the geotechnical phenomena involved as well as the numerical models for their analysis, and including full listings of computer programs (in PASCAL). The types of geotechnical problems considered cover a wide range of applications, varying from classical problems such as slope stability, analysis of foundation piles and sheet pile walls to finite element analysis of groundwater flow, elasto-plastic deformations, consolidation and transport problems.
Plants often encounter abiotic stresses including drought, salinity, flooding, high/low temperatures, and metal toxicity, among others. The majority of these stresses occur simultaneously and thus limit crop production. Therefore, the need of the hour is to improve the abiotic stresses tolerance of crop plants by integrating physiology, omics, and modern breeding approaches. This book covers various aspects including (1) abiotic stress responses in plants and progress made so far in the allied areas for trait improvements, (2) integrates knowledge gained from basic physiology to advanced omics tools to assist new breeding technologies, and (3) discusses key genes, proteins, and metabolites or pathways for developing new crop varieties with improved tolerance traits.
The chapters in this book cover crop -weather interaction and agro-met observatory, agro-climatic analysis, crop micro-meteorology, remote sensing, crop simulation models, weather codes and their management, integrated weather forecast and agro advisories, climate change, livestock climatology/meteorology and astrometeorology. To understand the text of the book, under terminology, simple details have been given for hard technical words. Further and above all, under practical tools, important computations and calculations have been given with example, which is the unique of this publication. The authors feel that this publication would be very useful to under graduates, postgraduates, research scholars, publics, teachers and also to the politicians to take policy decisions on the subject. Note: T&F does not sell or distribute the hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka. This title is co-published with NIPA.
Plants often encounter abiotic stresses including drought, salinity, flooding, high/low temperatures, and metal toxicity, among others. The majority of these stresses occur simultaneously and thus limit crop production. Therefore, the need of the hour is to improve the abiotic stresses tolerance of crop plants by integrating physiology, omics, and modern breeding approaches. This book covers various aspects including (1) abiotic stress responses in plants and progress made so far in the allied areas for trait improvements, (2) integrates knowledge gained from basic physiology to advanced omics tools to assist new breeding technologies, and (3) discusses key genes, proteins, and metabolites or pathways for developing new crop varieties with improved tolerance traits.
This book investigates the effect of the Green Revolution (GR) on long-term changes in the fertility status of paddy soils in tropical Asia. While information on long-term changes in soil fertility status are rather limited due to difficulties in obtaining past data or samples for comparison, this investigation on temporal changes in soil fertility is possible by comparing fertility status in the 2010s, which the authors examined recently, with those from the 1960s, when GR was initiated, which was reported by Kawaguchi & Kyuma (1977). More than 220 paddy soils collected from Thailand, the Philippines, Malaysia, Bangladesh, and Indonesia were analyzed for their physicochemical properties as well as total and available fractions of plant macro- and micro- essential elements, and their temporal changes were examined in addition to their spatial variation in each country. The most significant change was a drastic increase of available phosphorus in soils, possibly due to fertilization after the GR. Changes in organic matter, pH, and other nutrients were relatively small. A considerable decrease in the content of some micronutrients was also observed. Long-term studies on soil fertility status in the past and present will be useful to establish soil/fertilizer management for sustainable rice production in the future. This book is an essential reading for soil scientists, agricultural scientists, environmental scientists, as well as policymakers and nongovernmental officers such as FAO.
This book is an unique integrated treatise, on the concepts of fractional calculus as models with applications in hydrology, soil science and geomechanics. The models are primarily fractional partial differential equations (fPDEs), and in limited cases, fractional differential equations (fDEs). It develops and applies relevant fPDEs and fDEs mainly to water flow and solute transport in porous media and overland, and in some cases, to concurrent flow and energy transfer. It is an integrated resource with theory and applications for those interested in hydrology, hydraulics and fluid mechanics. The self-contained book summaries the fundamentals for porous media and essential mathematics with extensive references supporting the development of the model and applications.
Biochar Application: Essential Soil Microbial Ecology outlines the cutting-edge research on the interactions of complex microbial populations and their functional, structural, and compositional dynamics, as well as the microbial ecology of biochar application to soil, the use of different phyto-chemical analyses, possibilities for future research, and recommendations for climate change policy. Biochar, or charcoal produced from plant matter and applied to soil, has become increasingly recognized as having the potential to address multiple contemporary concerns, such as agricultural productivity and contaminated ecosystem amelioration, primarily by removing carbon dioxide from the atmosphere and improving soil functions. Biochar Application is the first reference to offer a complete assessment of the various impacts of biochar on soil and ecosystems, and includes chapters analyzing all aspects of biochar technology and application to soil, from ecogenomic analyses and application ratios to nutrient cycling and next generation sequencing. Written by a team of international authors with interdisciplinary knowledge of biochar, this reference will provide a platform where collaborating teams can find a common resource to establish outcomes and identify future research needs throughout the world.
Originally published in 1990 Tropical Resources presents in-depth coverage of the extremely diverse tropical environments, the resources to be found within the region and their production, and ecological management. The book discusses economic geography and ways of utilizing available resources, including those of tropical forests, wildlife, tidal wetlands and the sea. The book also include chapters on the development and land use of protected areas, the ecological aspects of pasture resources; and the impacts of economic development and population damage. In addition, studies are offered on tropical soils, including their distribution properties and management and the ecological processes at work in tropical forests. For geographers, economists and policymakers, the book provides a wealth of information on tropical resources and their potential development.
Nitrogen turnover in the soil-crop system; comparison of fourteen simulation models.- NQuantitative aspects of nitrogen nutrition in crops.- Modelling of the nitrogen cycle in farm land areas.- Nitrate leaching and soil moisture prediction with the LEACHM model.- Nitrate leaching and soil moisture prediction with the LEACHM model.- Some results of nitrogen simulations with the model ANIMO.- The distribution of water and nitrogen in the soil-crop system: a simulation study with validation from a winter wheat field trial.- Modelling water flow, nitrogen transport and root uptake including physical non-equilibrium and optimization of the root water potential.- Modelling water flow, nitrogen transport and root uptake including physical non-equilibrium and optimization of the root water potential.- Simulation of nitrogen dynamics and biomass production in winter wheat using the Danish simulation model DAISY.- Simulation of the nitrogen balance in the soil and a winter wheat crop.- Modelling nitrogen dynamics in a plant-soil system with a simple model for advisory purposes.- Simulation of nitrogen in soil and winter wheat crops: modelling nitrogen turnover through organic matter.- Simulation of nitrogen in soil and winter wheat crops: modelling nitrogen turnover through organic matter.- Simulation of nitrogen in soil and winter wheat crops: a management model that makes the best use of limited information.- Modelling water flow, nitrogen uptake and production for wheat.- WHNSIM - a soil nitrogen simulation model for Southern Germany.- A comparison of the performance of N simulation models in the prediction of Nmin on farmers' fields in the spring.- Response of wheat to nitrogen fertilization, a data set to validate simulation models for nitrogen dynamics in crop and soil.- List of participants.
This single-volume thoroughly summarizes advances in the past several decades and emerging challenges in fundamental research in geotechnical engineering. These fundamental research frontiers are critically reviewed and described in details in lights of four grand challenges our society faces: climate adaptation, urban sustainability, energy and material resources, and global water resources. The specific areas critically reviewed, carefully examined, and envisioned are: sensing and measurement, soil properties and their physics roots, multiscale and multiphysics processes in soil, geochemical processes for resilient and sustainable geosystems, biological processes in geotechnics, unsaturated soil mechanics, coupled flow processes in soil, thermal processes in geotechnical engineering, and rock mechanics in the 21st century.
Presents essential information on the fundamental properties of soils and how they are affected under urban conditions. Coverage includes the physical, chemical and biological characterisitics of soil; how it can be classified, inventoried and mapped; urban soil properties; problems and solutions to many of the more common urban soils; methods of ameliorating compaction including other major drainage problems and much more. Contains over 150 illustrations.
This book deals with an array of topics in the broad area of biotic stress responses in plants, focusing on "problems and their management" by selecting some of the widely investigated themes. Such as: major insect-pest of cereal crops in India and their management, biotic stresses of major pulse crops and their management strategies, insect pests of oilseed crops and their management, biotic stresses of vegetable crops and their management, insect pests infesting major vegetable crops and their management strategies, fruit crops insect pests and their biointensive integrated pest management techniques, mass trapping of fruit flies using Methyl Eugenol based traps, organic means of combating biotic stresses in plants, nematode problem in pulses and their management, and approaches in pest management of stored grain pests. This book is useful for undergraduate and postgraduate students in Entomology, Plant Pathology, Agronomy, Horticulture, other cognate disciplines of agriculture and allied sciences and other research workers. Note: T& F does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka. This title is co-published with NIPA.
1 The first book on data-driven national assessment of social, ecological, and economic rangeland sustainability 2 Written by leading experts who include real community case studies to personalize the assessment and impacts 3 Highlights data needs for future assessments to spur innovation in development of new techniques and technologies 4 Explains web-based mapping tools to help users create maps of sustainability metrics at their preferred scale of interest 5 Introduces a novel 3-dimensional triangle to depict sustainability ratings at variable scales
Soils have important roles to play in criminal and environmental forensic science. Since the initial concept of using soil in forensic investigations was mooted by Conan Doyle in his Sherlock Holmes stories prior to real-world applications, this branch of forensic science has become increasingly sophisticated and broad. New techniques in chemical, physical, biological, ecological and spatial analysis, coupled with informatics, are being applied to reducing areas of search by investigators, site identification, site comparison and measurement for the eventual use as evidence in court. Soils can provide intelligence, in assisting the determination of the provenance of samples from artifacts, victims or suspects, enabling their linkage to locations or other evidence. They also modulate change in surface or buried cadavers and hence affect the ability to estimate post-mortem or post-burial intervals, and locate clandestine graves. This interdisciplinary volume explores the conceptual and practical interplay of soil and geoforensics across the scientific, investigative and legal fields. Supported by reviews, case-studies from across the world, and reports of original research, it demonstrates the increasing convergence of a wide range of knowledge. It covers conceptual issues, evidence (from recovery to use in court), geoforensics, taphonomy, as well as leading-edge technologies. The application of the resultant soil forensics toolbox is leading to significant advances in improving crime detection, and environmental and national security.
The second edition of The Chemistry of Soils, published in 2008, has been used as a main text in soil-science courses across the world, and the book is widely cited as a reference for researchers in geoscience, agriculture, and ecology. The book introduces soil into its context within geoscience and chemistry, addresses the effects of global climate change on soil, and provides insight into the chemical behavior of pollutants in soils. Since 2008, the field of soil science has developed in three key ways that Sposito addresses in this third edition. For one, research related to the Critical Zone (the material extending downward from vegetation canopy to groundwater) has undergone widespread reorganization as it becomes better understood as a key resource to human life. Secondly, scientists have greatly increased their understanding of how organic matter in soil functions in chemical reactions. Finally, the study of microorganisms as they relate to soil science has significantly expanded. The new edition is still be comprised of twelve chapters, introducing students to the principal components of soil, discussing a wide range of chemical reactions, and surveying important human applications. The chapters also contain completely revised annotated reading lists and problem sets.
Fertigation requires a thorough understanding of the science behind the technology to make it deliver the immense possibility it offers in crop production. Though the idea of fertigation existed from the times of solution culture, it did not receive the necessary attention from among plant nutritionists and agronomists when it reappeared in the context of micro irrigation. Fertilizer application in field agriculture has also not developed as a precision technology. Recommendations of the quantum of fertilizers required for a crop, at least in India are not based on current varieties of the crops, nor have they anything to do with the growth rate and developmental changes occurring while a crop is managed by the grower. Most of the fertilizer recommendations are itself very old and efforts to make them relevant to the current growing conditions, soil status, crop variety and crops reaction to the environment etc. are very limited. It is even worse when growers follow traders' recommendations whose idea is to sell more the fertilizer they supply. Not only lower yields and very low fertilizer use efficiencies, but the deterioration of soil and water bodies are the results. Note: T&F does not sell or distribute the hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka. This title is co-published with NIPA.
Soil organic matter (SOM) is a highly reactive constituent of the soil matrix because of its large surface area, high ion exchange capacity, enormous affinity for water due to hygroscopicity, and capacity to form organo-mineral complexes. It is an important source and sink of atmospheric CO2 and other greenhouse gases depending on climate, land use, soil and crop management, and a wide range of abiotic and biotic factors, including the human dimensions of socioeconomic and political factors. Agroecosystems are among important controls of the global carbon cycle with a strong impact on anthropogenic or abrupt climate change. This volume of Advances in Soil Sciences explains pedological processes set-in-motion by increases in SOM content of depleted and degraded soils. It discusses the relationship between SOM content and critical soil quality parameters including aggregation, water retention and transport, aeration and gaseous exchange, and chemical composition of soil air. The book identifies policy options needed to translate science into action for making sustainable management of SOM as a strategy for adaptation to and mitigation of climate change. Features: Relates soil organic matter stock to soil processes, climate parameters, vegetation, landscape attributes Establishes relationships between soil organic matter and land use, species, and climate Identifies land use systems for protecting and restoring soil organic matter stock Links soil organic matter stock with the global carbon cycle for mitigation of climate change Part of the Advances in Soil Sciences series, this volume will appeal to agricultural, environmental, and soil scientists demonstrating the link between soil organic matter stock and provisioning of critical ecosystem services for nature and humans.
This unique book focuses on remote sensing (RS) and geographical information systems (GIS) in Iraq. The environmental applications include monitoring and mapping soil salinity and prediction of soil properties, monitoring and mapping of land threats, proximal sensing for soil monitoring and soil fertility, spatiotemporal land use/cover, agricultural drought monitoring, hydrological applications including spatial rainfall distribution, surface runoff and drought control, geo-morphometric analysis and flood simulation, hydrologic and hydraulic modelling and the effective management of water resources. Also, this book assesses the impacts of climate change on natural resources using both RS and GIS, as well as other applications, covering different parts of Iraq. The book chapters include tens of maps extracted from the remotely sensed datasets, in addition to tables and statistical relations obtained from the results of the studies of the chapters' authors. These studies have been conducted in different parts of Iraq; in the north (Kurdistan region) with its mountainous and undulating lands, in western parts which have desert soils, and in central and southern Iraq where there are salty soils, dunes, wetlands, and marshes. The book is written by distinguished scientists from Iraq, China, USA, Italy, Iran, Germany, and the Czech Republic who are interested in the Iraqi environment. The book is therefore a useful source of information and knowledge on Iraqi environment for graduate students, researchers, policy planners, and stakeholders in Iraq as well as similar regions.
Originally published in 1984, Themes in Biogeography presents a broad examination of biogeographical themes, extending across the field of plant and animal ecology and geography. The book provides a detailed and unique investigation into life and its environment and delves into not just geography, and ecology, but provides an interdisciplinary look at these areas across both biological and environmental sciences. The book examines biogeographical themes applying them to areas of research in soils and climate change, as well as in depth studies of plant communities and their animal associates. The book also discusses plants and animals through their taxonomic distribution, and deals with factors of plant geography, using both global and regional examples. This book will be of interest to biologists, ecologists and geographers alike.
Originally published in 1998, Southern Forested Wetlands is an up to date, one source compendium of current knowledge on the wetland ecology of America's southern forests. This book presents both the ecological and management aspects of these important ecosystems. The book was compiled by members of the Consortium for Research on southern forested wetlands, and was a collaboration of those working to conserve, study, and manage these economically and environmentally influential areas. The book covers geographic ranges from West Virginia to Florida, to Texas and inland north to Arkansas and Tennessee. It also addresses specific wetland types, including deep-water swamps, major and minor alluvial flood plains, pocosins and Carolina bays, mountain fens, pond cypress swamps, flatwoods wetlands, and mangroves.
Soil organic matter (SOM) is the primary determinant of soil functionality. Soil organic carbon (SOC) accounts for 50% of the SOM content, accompanied by nitrogen, phosphorus, and a range of macro and micro elements. As a dynamic component, SOM is a source of numerous ecosystem services critical to human well-being and nature conservancy. Important among these goods and services generated by SOM include moderation of climate as a source or sink of atmospheric CO2 and other greenhouse gases, storage and purification of water, a source of energy and habitat for biota (macro, meso, and micro-organisms), a medium for plant growth, cycling of elements (N, P, S, etc.), and generation of net primary productivity (NPP). The quality and quantity of NPP has direct impacts on the food and nutritional security of the growing and increasingly affluent human population. Soils of agroecosystems are depleted of their SOC reserves in comparison with those of natural ecosystems. The magnitude of depletion depends on land use and the type and severity of degradation. Soils prone to accelerated erosion can be strongly depleted of their SOC reserves, especially those in the surface layer. Therefore, conservation through restorative land use and adoption of recommended management practices to create a positive soil-ecosystem carbon budget can increase carbon stock and soil health. This volume of Advances in Soil Sciences aims to accomplish the following: Present impacts of land use and soil management on SOC dynamics Discuss effects of SOC levels on agronomic productivity and use efficiency of inputs Detail potential of soil management on the rate and cumulative amount of carbon sequestration in relation to land use and soil/crop management Deliberate the cause-effect relationship between SOC content and provisioning of some ecosystem services Relate soil organic carbon stock to soil properties and processes Establish the relationship between soil organic carbon stock with land and climate Identify controls of making soil organic carbon stock as a source or sink of CO2 Connect soil organic carbon and carbon sequestration for climate mitigation and adaptation |
![]() ![]() You may like...
VBA and Macros for Microsoft Office…
Bill Jelen, Tracy Syrstad
Paperback
R1,265
Discovery Miles 12 650
Cybercrime Prevention - Theory and…
Russell Brewer, Melissa De Vel-Palumbo, …
Hardcover
R1,890
Discovery Miles 18 900
|