![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Earth & environment > Earth sciences > Geology & the lithosphere > Soil science, sedimentology
Edited by One of the Best Specialists in Soil Science Recent studies reveal that Phosphorus (P) in the form of phosphate, a macronutrient essential for plant growth, and crop yields can influence the bioavailability, retention, and mobility of trace elements, metal(loid)s, and radio nuclides in soils. When this occurs, phosphates can affect the dynamics of heavy metals and influence soil characteristics, impacting soil mobility and toxicity. Phosphate in Soils: Interaction with Micronutrients, Radionuclides and Heavy Metals utilizes the latest research to emphasize the role that phosphate plays in enhancing or reducing the mobility of heavy metals in soil, and the soil-water-plant environment. It provides an in-depth understanding of each heavy metal species, and expands on phosphate interactions in geological material.Composed of 12 chapters, this text: Provides an overview of the reactions of metal(loid)s and common P compounds that are used as fertilizer in soils Emphasizes the effect of phosphorus on copper and zinc adsorption in acid soils Discusses findings on the influence of phosphate compounds on speciation, mobility, and bioavailability of heavy metals in soils as well as the role of phosphates on in situ and phytoremediation of heavy metals for contaminated soils Places emphasis on the influence of phosphate on various heavy metals species in soils, and their solubility/mobility and availability Provides extensive information on testing various high phosphate materials for remediation of heavy metal, micronutrients, and radionuclides contaminated sites Explores the reactivity of heavy metals, micronutrients and radionuclides elements in several soils Presents a case study illustrating various remediation efforts of acidic soils and remediation of Cu, Zn, and lead (Pb) contaminated soils around nonferrous industrial plants Emphasizes the significance of common ions (cations and anions) on phosphate mobility and sorption in soils, and more The author includes analytical and numerical solutions along with hands-on applications, and addresses other topics that include the transport and sorption modeling of heavy metals in the presence of phosphate at different scales in the vadose zone.
Assessment, Restoration and Reclamation of Mining Influenced Soils covers processes operating in the environment as a result of mining activity, including the whole spectra of negative effects of anthropopressure and the environment, from changes in soil chemistry, changes in soil physical properties, geomechanical disturbances, and mine water discharges. Mining activity and its waste are an environmental concern. Knowledge of the fate of potentially harmful elements and their effect on plants and the food chain, and ultimately on human health, is still being understood. Therefore, there is a need for better knowledge on the origin, distribution, and management of mine waste on a global level. This book provides information on hazard assessment and remediation of the disturbed environment, including stabilization of contaminated soils and phytoremediation, and will help scientists and public authorities formulate answers to the daily challenges related to the restoration of contaminated land.
For more than 30 years, soil testing has been widely used as a basis for determining lime and fertilizer needs. Today, a number of procedures are used for determining everything from soil pH and lime requirement, to the level of extractable nutrient elements. And as the number of cropped fields being tested increases, more and more farmers and growers will come to rely on soil test results. But if soil testing is to be an effective means of evaluating the fertility status of soils, standardization of methodology is essential. No single test is appropriate for all soils. Soil Analysis Handbook of Reference Methods is a standard laboratory technique manual for the most commonly used soil analysis procedures. First published in 1974, this Handbook has changed over the years to reflect evolving needs. New test methods and modifications have been added, as well as new sections on nitrate, heavy metals, and quality assurance plans for agricultural testing laboratories. Compiled by the Soil and Plant Analysis Council, this latest edition of Soil Analysis Handbook of Reference Methods also addresses the major methods for managing plant nutrition currently in use in the United States and other parts of the world. For soil scientists, farmers, growers, or anyone with an interest in the environment, this reference will prove an invaluable guide to standard methods for soil testing well into the future. Features
This comprehensive work integrates knowledge from physics, chemistry, biology, mathematics, geology, engineering, and several other fields. Its purpose is to provide solution methods, techniques of parameter estimation, and tools for solving the complex problems of mathematical modeling. The main topics presented include fundamentals of mathematical modeling of migration processes; analytical, numerical, and inverse solutions to migration problems; and techniques of parameter estimation and monitoring of migration processes. The book is perfect for anyone involved in the areas of hydrogeology, soil science, environmental engineering, subsurface cleanup, water sciences, agronomy, land development, and civil engineering. It provides professionals with a survey of the methodology of migration model building, the mathematical tools for solving these models, and the technique of parameter estimation in laboratories and in the field. Consultants will appreciate the book's multidisciplinary theoretical background and first approximations for a broad variety of migration data. Professors and students gain an integrated survey of subsurface solute and heat transport, storage, transformation, and exchange processes in both theoretical and practical applications, complete with example problems and solutions.
Concerns regarding heavy metal contamination in terrestrial ecosystems have prompted increasing efforts on limiting their bioavailability in the root zone. The complexity of the hydrologic system gives rise to the need for understanding the fate and transport of trace elements in the soil-water-plant environment. Dynamics and Bioavailability of Heavy Metals in the Rootzone provides a multidisciplinary approach with emphasis on geohydrology, plant and soil science, and environmental chemistry. The primary focus of this book is on different approaches that describe the dynamics of heavy metals in the soil system. These approaches are key to providing direct information on the concentration of heavy metals and hence on their transport, toxicity, and bioavailability. The book includes chapters covering equilibrium and kinetic models of heavy metal interactions as well as non-equilibrium transport models. It also discusses chemical processes controlling soil solution concentrations and modeling of heavy metals adsorption. Addressing the biological component of heavy metal dynamics, this work examines rhizosphere microorganisms and phytoremediation. Colloid-associated transport, which can result in groundwater contamination, is discussed in relation to reclaimed mine sites. The authors also present an overview of recent advancements in the biogeochemistry of trace elements and their environmental implications. Additional chapters include examination of various natural environments including runoff waters at the watershed scale, heavy metal transformation in wetlands, dynamics of trace metals in frequently flooded soils, and effects on crops in biosolid-amended soils. Reliable assessment of potential risks resulting from the transport of trace elements in the soil environment requires the examination of complex chemical and biological interactions due to the heterogeneous nature of soils. This text describes the current state of the art in this field and explores innovative experimental and theoretical/modeling approaches that will enhance this knowledge. The book provides a coherent presentation of recent advances in techniques, modeling, and dynamics and bioavailability of heavy metals in the root zone.
As soil and crop management procedures have become more complex, County Agricultural Agents, farm advisors, consultants, and fertilizer and chemical dealers have had to specialize in some aspect of soil fertility and crop nutrition management procedures, limiting their ability to provide a range of advice and services. Most farmers and growers can no longer turn to just one source for the information and instruction needed to achieve their production goals. With over 70 percent new material, the second edition of the Plant Nutrition and Soil Fertility Manual discusses the principles determining how plants grow and the elements essential for successful crop production, with a focus on the principles of soil fertility and plant nutrition. The book covers physical and chemical properties of soil, chemical and organic fertilizers, soil acidity and alkalinity, liming and liming materials, and micronutrients essential to plant growth. It also describes elements toxic to plants, soil testing, and plant analysis. The topics and discussion in this self-contained book are practical and user-friendly, yet comprehensive enough to cover material presented in upper-level soil and plant science courses. It allows practitioners with general background knowledge to feel confident applying the principles presented to soil/crop production systems.
From its humble beginning in the late 19th century when Henry Ford's first car was designed to run on ethanol biofuel production has been on the rise with more than 26 billion liters produced in the U.S. in 2007. Ethanol made from biomass (rather than grains) holds great promise, including numerous economic and environmental benefits. However, the adverse interactions of energy, climate, food, and soil quality cannot be ignored. In eight concise chapters, Soil Quality and Biofuel Production presents a state-of-the-knowledge review of soil properties and processes negatively impacted by crop residue removal. It outlines the ecological consequences of biofuels and evaluates land use in the production of raw material for biofuel. The book then spotlights pressing issues related to corn and cellulosic ethanol and also soil erosion. It offers advice for achieving economic balance in the competition for arable land between food and biofuel along with residue harvest management techniques. A thought-provoking discussion of the opportunities and challenges that biofuel presents rounds out the book's coverage. The logistics of producing biomass in a sustainable manner remain a major challenge and will continue to be so for the foreseeable future. Serious questions linger concerning viable sources of biofuel feedstock, competition for resources needed to produce biomass, and energy output/input ratios. Soil Quality and Biofuel Production provides environmental scientists and agricultural engineers with the knowledge they need to address them.
Most reported incidents of soil contamination include an array of heavy metals species rather than a single ion. The various interactions in these multicomponent or multiple-ion systems significantly impact the fate and transport of heavy metals, and competition for sorption sites on soil matrix surfaces is a common phenomenon. Because of this, considering competitive sorption is an important part of predicting contaminant transport. Competitive Sorption and Transport of Heavy Metals in Soils and Geological Media gives you the information needed to understand heavy metals' sorption and transport in the vadose zone and aquifers. The book brings together state-of-the art research on the competitive sorption and mobility of single versus multiple heavy metal species. It also relates the transport mechanisms to the processes that govern sorption mechanisms. The work offers new experimental evidence on the fate of multiple heavy metals in soil columns and new field results on how multiple ions influence the mobility of metals in the soil profile under water-unsaturated flow. Emphasizing modeling approaches, the book begins with an overview of the competitive behavior of heavy metals. It then takes a closer look at various heavy metals, discussing their behavior in tropical soils, speciation and fractionation, accumulation, migration, competitive retention, and the contamination of water resources at the watershed scale. The book also presents extensive data on phosphate, a commonly used fertilizer, and its role in facilitating the release of trace elements. The final chapter looks at the effect of waterlogged conditions on arsenic and cadmium solubilization. Edited by an internationally recognized researcher and featuring expert contributors, this comprehensive work addresses the complex physical and chemical phenomena of sorption mechanisms. Presenting the latest research, it helps you to better predict the potential mobility of multiple heavy metals in soils.
Functional Diversity of Mycorrhiza and Sustainable Agriculture is the first book to present the core concepts of working with Arbuscular mycorrhizal fungi to improve agricultural crop productivity. Highlighting the use of indigenous AM fungi for agriculture, the book includes details on how to maintain and promote AM fungal diversity to improve sustainability and cost-effectiveness. As the need to improve production while restricting scarce inputs and preventing environmental impacts increases, the use of AMF offers an important option for exploiting the soil microbial population. It can enhance nutrient cycling and minimize the impacts of biotic and abiotic stresses, such as soil-borne disease, drought, and metal toxicity. The book offers land managers, policymakers, soil scientists, and agronomists a novel approach to utilizing soil microbiology in improving agricultural practices.
There have been many advances in soil chemistry since Oxford published the first edition of The Chemistry of Soils in 1989 (RTD: 6,747). The physical-chemistry approach to soil chemistry taken in the book, groundbreaking for its time, has been adopted by nearly every soil chemistry book published since. This book offers a thorough update of all topics covered in the previous edition. In the last 16 years, soil chemistry as a discipline has assumed major significance in connection with global climate change. The 2nd edition addresses the emergent issue of global climate change by exploring the interaction between organic carbon and soil. The largest repository of organic carbon on earth is still soil, and the process by which organic carbon is sequestered by soil, thus preventing the release of carbon dioxide into the atmosphere, is one of the proper concerns of soil chemistry. Thus, the revision provides a rigorous discussion of soil chemistry in its broader environmental and biogeochemical contexts
Soil Mapping and Process Modeling for Sustainable Land Use Management is the first reference to address the use of soil mapping and modeling for sustainability from both a theoretical and practical perspective. The use of more powerful statistical techniques are increasing the accuracy of maps and reducing error estimation, and this text provides the information necessary to utilize the latest techniques, as well as their importance for land use planning. Providing practical examples to help illustrate the application of soil process modeling and maps, this reference is an essential tool for professionals and students in soil science and land management who want to bridge the gap between soil modeling and sustainable land use planning.
Despite the connections between soils and human health, there has not been a great amount of attention focused on this area when compared to many other fields of scientific and medical study. Soils and Human Health brings together authors from diverse fields with an interest in soils and human health, including soil science, geology, geography, biology, and anthropology to investigate this issue from a number of perspectives. The book includes a soil science primer chapter for readers from other fields, and discusses the ways the soil science community can contribute to improving our understanding of soils and human health. Features Discusses ways the soil science community can contribute to the improvement of soil health Approaches human health from a soils-focused perspective, covering the influence of soil conservation and contact with soil on human health Illustrates topics via case studies including arsenic in groundwater in Bangladesh; the use of Agent Orange in Vietnam; heavy metal contamination in Shipham, United Kingdom and Omaha, Nebraska, USA; and electronic waste recycling in China. In a scientific world where the trend has often been ever-increasing specialization and increasingly difficult communication between fields and subfields, the interdisciplinary nature of soils and human health studies presents a significant challenge going forward. Fields with an interest in soils and human health need to have increased cross-disciplinary communication and cooperation. This book is a step in the direction of accessibility and innovation, elucidating the state of knowledge in the meeting of soil and health sciences, and identifying places where more work is needed.
The idea for the volume first came about through a conversation the editors had at the Sustainable Management of Soil Organic Matter Conference in Edinburgh in September 1999. It developed with two symposia on Amazonian dark earths that were held in 2001 in conjunction with the Conference ofLatin Americanist Geographers in Benicassim, Spain, and the Congress of the Brazi- lian Archaeological Society in Rio de Janeiro, Brazil, respectively, and culmi- nated at the First International Workshop on Terra Preta Soils held in Manaus and Santarem, Brazil, in July 2002. As a comprehensive treatment of these dis- tinctive anthropogenic soils has never been published, we decided to select papers from these symposia and develop an edited volume. The result con- tains the efforts of an international group of distinguished scholars from the disciplines of anthropology, archaeology, biology, geography, and soil science. The 15 chapters of this volume provide an array of interesting and comple- mentary interpretative stances developed from a diverse body of investigative methodologies. The readerwill note that there are some inconsistencies inter- minology and differences in interpretation among the chapter presentations. However, the editors purposely allowed these to remain and retained as much as possible of the authors' own words, since we feit that it was important to maintain the flavor of the symposium atmosphere in this volume and conse- quently did not intentionally force standardization upon the authors.
Rice production is affected by changing climate conditions and has the dual role of contributing to global warming through emissions of the greenhouse gas methane. Climate change has been recognized as a major threat to the global environment. Because of insufficient field data, rice-growing countries face a problem when trying to comply with the United Nations Framework Convention on Climate Change stipulations to compile a national inventory of emissions and to explore mitigation options. Given the expected doubling in rice production in Asia, the need to evaluate the interaction between climate change and rice production is critical to forming a sound basis for future directions of technology developments by policy makers, agriculturists, environmentalists, rice producers, and rice consumers. The present book comprises two sections. The first part documents a comprehensive overview of the results achieved from an interregional research effort to quantify methane emission from major rice ecosystems and to identify efficient mitigation options. This research report broadens understanding of the contribution of rice cultivation to methane emissions and clarifies that emissions are relatively low, except in specific rice ecosystems, and that these high emissions could be ameliorated without sacrificing yield. The second section shows results from other projects that investigated the role of rice cultivators in field and laboratory approaches. The findings represent inputs for future modeling approaches in the role of rice cultivators. The expanded database generated by other projects is reflected in modeling efforts.
This book focuses on developing an integrated holistic approach for harnessing the potential of rain-fed agriculture. In this approach, rainwater management through harvesting and recharging the groundwater is used as an entry point activity for increasing the productivity for farmers through enhanced water use efficiency. To provide the holistic and integrated solutions, the approach of consortium through building partnerships with different stakeholders, eg. different research institutions (State, National and International), development departments, eg. Department of Agriculture, Department of Animal Husbandry etc., Non-Government Organizations (NGOs), Farmers Organizations Community-based Organizations (CBOs) along with market linkages through private companies.
This book gathers selected papers presented at the 8th International Congress on Environmental Geotechnics (ICEG), held on October 28 - November 1, 2018 in Hangzhou, China. The theme of the congress is "Towards a Sustainable Geoenvironment", which means meeting the needs of the present generation without compromising the ability of future generations to meet their own needs. Under this theme, the congress covers a broad range of topics and provides an excellent opportunity for academics, engineers, scientists, government officials, regulators, and planners to present, discuss and exchange notes on the latest advances and developments in the research and application of environmental geotechnics.
This book reviews the state of the art of natural disasters like floods and landslides, highlighting the possibility of safe and correct land planning and management by means of a global approach to territory. In fact, the events deriving from slope dynamics (gravitational phenomena) and fluvial dynamics (floods) are commonly triggered by the same factor (heavy rainfall), occur at the same time and are closely related. For this reason, this book analyses floods and slope stability phenomena as different aspects of the same dynamic system: the drainage basin.
First published in 1991. Routledge is an imprint of Taylor & Francis, an informa company.
Soil contamination represents a serious environmental problem and requires an immediate action plan to be prepared for typical and emergent contaminants. This book provides an overview of some remediation technologies, both traditional and emergent, as well as case studies based on the contribution from academia and service providers. Several soil and groundwater remediation technologies such as electrokinetic remediation, biological treatments (including phytoremediation), and chemical remediation are presented. Innovative technologies such as nanoremediation and the application of life cycle assessment as a decision tool for soil remediation technologies are also considered in this book. This book serves as a reference source for soil remediation as it includes applications, technologies, and valuable tools that can help in decision making during remediation actions. It can be used by students, researchers, service providers, and industry practitioners.
This two-volume work is a testament to the increasing interest in the role of microbes in sustainable agriculture and food security. Advances in microbial technologies are explored in chapters dealing with topics such as carbon sequestration, soil fertility management, sustainable crop production, and microbial signaling networks. Volume I is a collection of research findings that invites readers to examine the application of microbes in reinstating degraded ecosystems and also in establishing sustainable croplands. Highly readable entries attempt to close the knowledge gap between soil microbial associations and sustainable agriculture. An increase in the global population with changing climate is leading to environments of various abiotic and biotic stresses for agricultural crops. It therefore becomes important to identify the techniques to improve soil fertility and function using different microbial groups such as actinobacteria, microalgae, fluorescent pseudomonads and cyanobacterial systems. These are examined in this volume in greater detail. This work is a significant contribution to research in this increasingly important discipline, and will appeal to researchers in microbiology, agriculture, environmental sciences, and soil and crop sciences.
Soil classification and terminology are fundamental issues for the clear understanding and communication of the subject. However, while there are many national soil classification systems, these do not directly correlate with each other. This leads to confusion and great difficulty in undertaking comparative scientific research that draws on more than one system and in making sense of international scientific papers using a system that is unfamiliar to the reader. This book aims to clarify this position by describing and comparing different systems and evaluating them in the context of the World Reference Base (WRB) for Soil Resources. The latter was set up to resolve these problems by creating an international 'umbrella' system for soil correlation. All soil scientists should then classify soils using the WRB as well as their national systems. The book is a definitive and essential reference work for all students studying soils as part of life, earth or environmental sciences, as well as professional soil scientists. Published with International Union of Soil Sciences
This book presents a comprehensive collection of various in situ and ex-situ soil remediation regimes that employ natural or genetically modified microbes, plants, and animals for the biodegradation of toxic compounds or hazardous waste into simpler non-toxic products. These techniques are demonstrated to be functionally effective in connection with physical, chemical, and biological strategies. Soil and water contamination through heavy metals, hydrocarbons and radioactive wastes is of global concern, as these factors have cumulative effects on the environment and human health through food-chain contamination. The book discusses the utilization of algae, plants, plant-associated bacteria, fungi (endophytic or rhizospheric) and certain lower animals for the sustainable bioremediation of organic and inorganic pollutants. In addition, it explores a number of more recent techniques like biochar and biofilms for carbon sequestration, soil conditioning and remediation, and water remediation. It highlights a number of recent advances in nanobioremediation, an emerging technology based on biosynthetic nanoparticles. Lastly, it presents illustrative case studies and highlights the successful treatment of polluted soils by means of these strategies.
Humic substances are everywhere; in plants, soils and water. These brown materials are the most versatile and widely dispersed organic compounds on Earth. Studies of humic substances sustain all current efforts to bioremediate and purify water, develop and support sustainable agriculture, decontaminate polluted soil, and combat soul desertification and erosion. Taken from the 2004 Humic Substances Seminar VII held at Northeastern University, this selection of expert papers investigate the important functions of humic substances, focusing on water treatment and land preservation. Reflecting the work of an international host of scientists, this book describes how researchers from many disciplines are working to link humic substances structures to their many crucial functions in land and water conservation. Reporting on the latest analytical advances and information for understanding humic substances, this book will be of great interest to a wide range of readers from graduate students and professional biologists to soil scientists and engineers.
The Australasia-Pacific Region supports approximately 50% of the world's population. The last half-century has witnessed a rapid increase in the regional population, agricultural productivity, industrial activities and trade within the region. Both the demand for increased food production and the desire to improve the economic conditions have affected regional environmental quality. This volume presents an overview of the fate of contaminants in the soil environment; current soil management factors used to control contaminant impacts, issues related to sludge and effluent disposals in the soil environment; legal, health and social impacts of contaminated land, remediation approaches and strategies to manage contaminated land, some of the problems associated with environmental degradation in the Australasia-Pacific Region and steps that we need to take to safeguard our environment.
Plant-microbe interaction is a powerful and promising link to mitigate the various kinds of stresses like drought, salinity, heavy metals, and pathogenic effects. It is more beneficial for crop improvement and sustainable approaches for reclamation of problematic soils. Taking a multidisciplinary approach, this book explores the recent uses of plant-microbe interactions in ecological and agricultural revitalization beyond normal agriculture practices and offers practical and applied solutions for the restoration of degraded land to fulfill human needs with food, fodder, fuel, and fiber. It provides a single comprehensive platform for soil scientists, agriculture specialists, ecologists, and those in related disciplines. Features * Presents cutting-edge microbial biotechnology as a tool for restoring degraded lands * Explores the aspects of sustainable development of degraded lands using microbe-inspired land remediation * Highlights sustainable food production intensification in nutrient-poor lands through the innovative use of microbial inoculants * Explains the remediation of polluted land for regaining biodiversity and achieving United Nations Sustainable Development Goals * Includes many real-life applications from South Asia offering solutions to today's agricultural problems This book will be of interest to professionals, researchers, and students in environmental, soil, and agricultural sciences, as well as stakeholders, policy makers, and practitioners with an interest in this field. |
You may like...
Cyber Security and Threats - Concepts…
Information Reso Management Association
Hardcover
R9,416
Discovery Miles 94 160
Presbyterian Treasury of Education…
Presbyterian Church In The U.S.A.
Hardcover
R827
Discovery Miles 8 270
Handbook of Research on Advanced…
Ahmed J. Obaid, Ghassan H Abdul-Majeed, …
Hardcover
R7,311
Discovery Miles 73 110
Old and Homeless -- Double-Jeopardy - An…
Larry Mullins, Diane W. Rich, …
Hardcover
R2,040
Discovery Miles 20 400
Graduate Migration and Regional…
Jonathan Corcoran, Alessandra Faggian
Hardcover
R3,280
Discovery Miles 32 800
Urban Ecologies - City Space, Material…
Christopher Schliephake
Hardcover
(Mis)managing Macroprudential…
John H. Morris, Hannah Collins
Hardcover
R2,504
Discovery Miles 25 040
The Evolution of Primary Sexual…
Janet Leonard, Alex Cordoba-Aguilar
Hardcover
R3,318
Discovery Miles 33 180
|